Rosariou commited on
Commit
14fed89
1 Parent(s): ac92a10

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +180 -3
README.md CHANGED
@@ -1,3 +1,180 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - question-answering
5
+ language:
6
+ - en
7
+ tags:
8
+ - finance
9
+ - music
10
+ - medical
11
+ - food
12
+ - academic disciplines
13
+ - natural disasters
14
+ - software
15
+ - synthetic
16
+ pretty_name: Using KGs to test knowledge consistency in LLMs
17
+ size_categories:
18
+ - 10K<n<100K
19
+ ---
20
+
21
+ For background on this dataset, please check https://arxiv.org/abs/2405.20163.
22
+
23
+ ## What it is:
24
+ Each dataset in this delivery is made up of query clusters that test an aspect of the consistency of the LLM knowledge about a particular domain. All the questions in each
25
+ cluster are meant to be answered either 'yes' or 'no'. When the answers vary within a cluster, the knowledge is said to be inconsistent. When all the questions in a cluster
26
+ are answered 'no' when the expected answer is 'yes' (or viceversa), the knowledge is said to be 'incomplete' (i.e., maybe the LLM wasn't trained in that particular domain).
27
+ It is our experience that incomplete clusters are very few (less than 3%) meaning that the LLMs we have tested know about the domains included here (see below for a list of the
28
+ individual datasets), as opposed to inconsistent clusters, which can be between 6%-20% of the total clusters.
29
+
30
+ ## How it is made:
31
+ The questions and clusters are automatically generated from a knowledge graph from seed concepts and properties. In our case, we have used Wikidata,
32
+ a well known knowledge graph. The result is an RDF/OWL subgraph that can be queried and reasoned over using Semantic Web technology.
33
+
34
+ ## Types of query clusters
35
+
36
+ There are different types of query clusters depending on what aspect of the knowledge graph and its deductive closure they capture:
37
+
38
+ Edge clusters test a single edge using different questions. For example, to test the edge ('orthopedic pediatric surgeon', IsA, 'orthopedic surgeon), the positive
39
+ or 'edge_yes' (expected answer is 'yes') cluster is:
40
+
41
+ "is 'orthopedic pediatric surgeon' a subconcept of 'orthopedic surgeon' ?",
42
+ "is 'orthopedic pediatric surgeon' a type of 'orthopedic surgeon' ?",
43
+ "is every kind of 'orthopedic pediatric surgeon' also a kind of 'orthopedic surgeon' ?",
44
+ "is 'orthopedic pediatric surgeon' a subcategory of 'orthopedic surgeon' ?"
45
+
46
+ There are also inverse edge clusters (with questions like "is 'orthopedic surgeon' a subconcept of 'orthopedic pediatric surgeon' ?") and negative or 'edge_no' clusters
47
+ (with questions like "is 'orthopedic pediatric surgeon' a subconcept of 'dermatologist' ?")
48
+
49
+ Hierarchy clusters measure the consistency of a given path, including n-hop virtual edges (in graph's the deductive closure). For example, the path
50
+ ('orthopedic surgeon', 'surgeon', 'medical specialist', 'medical occupation') is tested by the cluster below
51
+
52
+ "is 'orthopedic surgeon' a subconcept of 'surgeon' ?",
53
+ "is 'orthopedic surgeon' a type of 'surgeon' ?",
54
+ "is every kind of 'orthopedic surgeon' also a kind of 'surgeon' ?",
55
+ "is 'orthopedic surgeon' a subcategory of 'surgeon' ?",
56
+ "is 'orthopedic surgeon' a subconcept of 'medical specialist' ?",
57
+ "is 'orthopedic surgeon' a type of 'medical specialist' ?",
58
+ "is every kind of 'orthopedic surgeon' also a kind of 'medical specialist' ?",
59
+ "is 'orthopedic surgeon' a subcategory of 'medical specialist' ?",
60
+ "is 'orthopedic surgeon' a subconcept of 'medical_occupation' ?",
61
+ "is 'orthopedic surgeon' a type of 'medical_occupation' ?",
62
+ "is every kind of 'orthopedic surgeon' also a kind of 'medical_occupation' ?",
63
+ "is 'orthopedic surgeon' a subcategory of 'medical_occupation' ?"
64
+
65
+ Property inheritance clusters test the most basic property of conceptualization. If an orthopedic surgeon is a type of surgeon, we expect that
66
+ all the properties of surgeons, e.g., having to be board certified, having attended medical school or working on the field of surgery, are inherited by orthopedic surgeons.
67
+ The example below tests the later:
68
+
69
+ "is 'orthopedic surgeon' a subconcept of 'surgeon' ?",
70
+ "is 'orthopedic surgeon' a type of 'surgeon' ?",
71
+ "is every kind of 'orthopedic surgeon' also a kind of 'surgeon' ?",
72
+ "is 'orthopedic surgeon' a subcategory of 'surgeon' ?",
73
+ "is the following statement true? 'orthopedic surgeon works on the field of surgery' ",
74
+ "is the following statement true? 'surgeon works on the field of surgery' ",
75
+ "is it accurate to say that 'orthopedic surgeon works on the field of surgery'? ",
76
+ "is it accurate to say that 'surgeon works on the field of surgery'? "
77
+
78
+
79
+
80
+ ## List of datasets
81
+
82
+ To show the versatility of our approach, we have constructed similar datasets in the domains below. We test one property inheritance per dataset. The Wikidata main QNode
83
+ (the node corresponding to the entities) and PNode (the node corresponding to the property) are indicated in parenthesis.
84
+
85
+ ### ACADEMIC_DISCIPLINES (https://www.wikidata.org/wiki/Q11862829) ONTOLOGY -- V1 = 443 CLUSTERS, "has use" (https://www.wikidata.org/wiki/Property:P366)
86
+
87
+ edges_yes = 52
88
+
89
+ edges_no = 308
90
+
91
+ edges_inv = 52
92
+
93
+ hierarchies = 30
94
+
95
+ property hierarchies = 1
96
+
97
+ ### DISHES (https://www.wikidata.org/wiki/Q746549) ONTOLOGY -- V1 = 1220 CLUSTERS, has parts (https://www.wikidata.org/wiki/Property:P527) --> has ingredient
98
+
99
+ edges_yes = 225
100
+
101
+ edges_no = 521
102
+
103
+ edges_inv = 224
104
+
105
+ hierarchies = 72
106
+
107
+ property hierarchies = 178
108
+
109
+ ### FINANCIAL PRODUCT (https://www.wikidata.org/wiki/Q15809678) ONTOLOGY -- V1: 725 CLUSTERS, "used by" (https://www.wikidata.org/wiki/Property:P1535)
110
+
111
+ edges_yes = 112
112
+
113
+ edges_no = 433
114
+
115
+ edges_inv = 108
116
+
117
+ hierarchies = 40
118
+
119
+ property hierarchies = 32
120
+
121
+ ### HOME APPLIANCES (https://www.wikidata.org/wiki/Q212920) ONTOLOGY -- V1 = 421 CLUSTERS, "has use" (https://www.wikidata.org/wiki/Property:P366)
122
+
123
+ edges_yes = 58
124
+
125
+ edges_no = 261
126
+
127
+ edges_inv = 58
128
+
129
+ hierarchies = 31
130
+
131
+ property hierarchies = 13
132
+
133
+ ### MEDICAL SPECIALTIES (https://www.wikidata.org/wiki/Q930752) ONTOLOGY -- V1 = 740 CLUSTERS, "field of occupation" (https://www.wikidata.org/wiki/Property:P425)
134
+
135
+ edges_yes = 122
136
+
137
+ edges_no = 386
138
+
139
+ edges_inv = 114
140
+
141
+ hierarchies = 55
142
+
143
+ property hierarchies = 63
144
+
145
+ ### MUSIC_GENRES (https://www.wikidata.org/wiki/Q188451) ONTOLOGY -- V1 = 1990 CLUSTERS, "practiced by" (https://www.wikidata.org/wiki/Property:P3095)
146
+
147
+ edges_yes = 490
148
+
149
+ edges_no = 807
150
+
151
+ edges_inv = 488
152
+
153
+ hierarchies = 212
154
+
155
+ property hierarchies = 139
156
+
157
+
158
+ ### NATURAL DISASTERS (https://www.wikidata.org/wiki/Q8065) ONTOLOGY -- V1 = 357 CLUSTERS, "has cause" (https://www.wikidata.org/wiki/Property:P828)
159
+
160
+ edges_yes = 45
161
+
162
+ edges_no = 225
163
+
164
+ edges_inv = 44
165
+
166
+ hierarchies = 21
167
+
168
+ property hierarchies = 22
169
+
170
+ ### SOFTWARE (https://www.wikidata.org/wiki/Q7397) ONTOLOGY -- V1: 849 CLUSTERS, "studied in" (https://www.wikidata.org/wiki/Property:P7397) is the property
171
+
172
+ edges_yes = 80
173
+
174
+ edges_no = 572
175
+
176
+ edges_inv = 79
177
+
178
+ hierarchies = 114
179
+
180
+ property hierarchies = 4