Datasets:
Languages:
Indonesian
License:
import csv | |
import datasets | |
_URLs = { | |
'train': "https://huggingface.co/datasets/indolem/indo_story_cloze/resolve/main/train.csv", | |
'validation': "https://huggingface.co/datasets/indolem/indo_story_cloze/resolve/main/dev.csv", | |
'test': "https://huggingface.co/datasets/indolem/indo_story_cloze/resolve/main/test.csv" | |
} | |
_CITATION = """\ | |
@inproceedings{koto-etal-2022-cloze, | |
title = "Cloze Evaluation for Deeper Understanding of Commonsense Stories in {I}ndonesian", | |
author = "Koto, Fajri and | |
Baldwin, Timothy and | |
Lau, Jey Han", | |
booktitle = "Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)", | |
month = may, | |
year = "2022", | |
address = "Dublin, Ireland", | |
publisher = "Association for Computational Linguistics", | |
url = "https://aclanthology.org/2022.csrr-1.2", | |
doi = "10.18653/v1/2022.csrr-1.2", | |
pages = "8--16", | |
}""" | |
class IndoStoryClozeConfig(datasets.BuilderConfig): | |
"""IndoStoryClozeConfig for IndoStoryCloze.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for IndoStoryCloze. | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
# Version history: | |
# 1.0.0: Release version | |
super().__init__(version=datasets.Version("1.0.0"), **kwargs) | |
self.features = ['sentence-1','sentence-2','sentence-3','sentence-4', 'correct_ending', 'incorrect_ending'] | |
class IndoStoryCloze(datasets.GeneratorBasedBuilder): | |
"""The Indo_Story_Cloze Datasets.""" | |
BUILDER_CONFIGS = [IndoStoryClozeConfig()] | |
def _info(self): | |
features = {feature: datasets.Value("string") for feature in self.config.features} | |
return datasets.DatasetInfo( | |
description='indo_story_cloze', | |
features=datasets.Features(features), | |
homepage='https://github.com/fajri91/IndoCloze', | |
citation=_CITATION | |
) | |
def _split_generators(self, dl_manager): | |
downloaded_file = dl_manager.download_and_extract(_URLs) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_file": downloaded_file['train']}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"data_file": downloaded_file['validation']}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"data_file": downloaded_file['test']}), | |
] | |
def _generate_examples(self, data_file): | |
data = csv.DictReader(open(data_file, newline='')) | |
for i, row in enumerate(data): | |
yield i, { | |
"sentence-1": row['Kalimat-1'], | |
"sentence-2": row['Kalimat-2'], | |
"sentence-3": row['Kalimat-3'], | |
"sentence-4": row['Kalimat-4'], | |
"correct_ending": row['Correct Ending'], | |
"incorrect_ending": row['Incorrect Ending'], | |
} | |