Datasets:
Languages:
English
Size:
10K - 100K
Update README.md
Browse files
README.md
CHANGED
@@ -16,7 +16,6 @@ tags:
|
|
16 |
- inductiva
|
17 |
- machine learning
|
18 |
- synthetic
|
19 |
-
license: apache-2.0
|
20 |
---
|
21 |
|
22 |
<p align="center">
|
@@ -25,7 +24,7 @@ license: apache-2.0
|
|
25 |
|
26 |
|
27 |
# Wind Tunnel 20K Dataset
|
28 |
-
The Wind Tunnel Dataset contains 19,812 OpenFOAM simulations of 1,000 unique automobile-like objects placed in a virtual wind tunnel.
|
29 |
Each object is simulated under 20 distinct conditions: 4 random wind speeds ranging from 10 to 50 m/s, and 5 rotation angles
|
30 |
(0°, 180° and 3 random angles).
|
31 |
The meshes for these automobile-like objects were generated using the Instant Mesh model on images sourced from the Stanford Cars Dataset.
|
@@ -117,7 +116,7 @@ The input mesh was generated using the Instant Mesh model from images in the Sta
|
|
117 |
|
118 |
Details on the mesh generation process can be found [here](#Generating-a-large-quantity-of-Automobile-like-3D-Meshes).
|
119 |
|
120 |
-
| **Input Mesh** |
|
121 |
|-------------------------------|------------------------------|
|
122 |
| ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/input_mesh.png) | ![Histogram](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/histogram_of_points_input.png) |
|
123 |
|
@@ -143,7 +142,7 @@ faces = mesh.faces
|
|
143 |
### openfoam_mesh.obj
|
144 |
This mesh was generated as a result of the OpenFOAM simulation. The number of points is reduced compared to the `input_mesh.obj`, due to mesh refinement and processing steps applied by OpenFOAM during the simulation.
|
145 |
|
146 |
-
| **
|
147 |
|-------------------------------|------------------------------|
|
148 |
| ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/openfoam_mesh.png) | ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/histogram_of_points_foam.png) |
|
149 |
|
@@ -168,7 +167,7 @@ Pressure values were extracted from the `openfoam_mesh.obj` and then interpolate
|
|
168 |
|
169 |
More details can be found here [here](https://github.com/inductiva/wind-tunnel/blob/deab68a018531ff05d0d8ef9d63d8c108800f78f/windtunnel/windtunnel_outputs.py#L111).
|
170 |
|
171 |
-
| **Pressure Field Mesh** |
|
172 |
|-------------------------------|------------------------------|
|
173 |
| ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/pressure_field_mesh.png) | ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/histogram_of_points_input.png)) |
|
174 |
|
@@ -199,7 +198,7 @@ Streamlines provide a visual representation of the flow characteristics within t
|
|
199 |
More information can be found [here](https://github.com/inductiva/wind-tunnel/blob/deab68a018531ff05d0d8ef9d63d8c108800f78f/windtunnel/windtunnel_outputs.py#L70).
|
200 |
|
201 |
|
202 |
-
| **Streamlines Mesh** |
|
203 |
|-------------------------------|------------------------------|
|
204 |
| ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/streamlines_mesh.png) | ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/histogram_of_points_streamlines.png) |
|
205 |
|
@@ -293,20 +292,7 @@ initialConditions.jinja
|
|
293 |
flowVelocity ({{ wind_speed }} 0 0);
|
294 |
```
|
295 |
|
296 |
-
|
297 |
-
```jinja
|
298 |
-
vertices
|
299 |
-
(
|
300 |
-
({{ x_min }} {{ y_min }} {{ z_min }})
|
301 |
-
({{ x_max }} {{ y_min }} {{ z_min }})
|
302 |
-
({{ x_max }} {{ y_max }} {{ z_min }})
|
303 |
-
({{ x_min }} {{ y_max }} {{ z_min }})
|
304 |
-
({{ x_min }} {{ y_min }} {{ z_max }})
|
305 |
-
({{ x_max }} {{ y_min }} {{ z_max }})
|
306 |
-
({{ x_max }} {{ y_max }} {{ z_max }})
|
307 |
-
({{ x_min }} {{ y_max }} {{ z_max }})
|
308 |
-
);
|
309 |
-
```
|
310 |
|
311 |
controlDict.jinja
|
312 |
```jinja
|
|
|
16 |
- inductiva
|
17 |
- machine learning
|
18 |
- synthetic
|
|
|
19 |
---
|
20 |
|
21 |
<p align="center">
|
|
|
24 |
|
25 |
|
26 |
# Wind Tunnel 20K Dataset
|
27 |
+
The Wind Tunnel Dataset contains 19,812 OpenFOAM simulations of 1,000 unique automobile-like objects placed in a virtual wind tunnel measuring 20 meters in length, 10 meters in width, and 8 meters in height.
|
28 |
Each object is simulated under 20 distinct conditions: 4 random wind speeds ranging from 10 to 50 m/s, and 5 rotation angles
|
29 |
(0°, 180° and 3 random angles).
|
30 |
The meshes for these automobile-like objects were generated using the Instant Mesh model on images sourced from the Stanford Cars Dataset.
|
|
|
116 |
|
117 |
Details on the mesh generation process can be found [here](#Generating-a-large-quantity-of-Automobile-like-3D-Meshes).
|
118 |
|
119 |
+
| **Input Mesh** | **# points of input meshes** |
|
120 |
|-------------------------------|------------------------------|
|
121 |
| ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/input_mesh.png) | ![Histogram](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/histogram_of_points_input.png) |
|
122 |
|
|
|
142 |
### openfoam_mesh.obj
|
143 |
This mesh was generated as a result of the OpenFOAM simulation. The number of points is reduced compared to the `input_mesh.obj`, due to mesh refinement and processing steps applied by OpenFOAM during the simulation.
|
144 |
|
145 |
+
| **OpenFoam Mesh** | **# points of OpenFoam meshes** |
|
146 |
|-------------------------------|------------------------------|
|
147 |
| ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/openfoam_mesh.png) | ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/histogram_of_points_foam.png) |
|
148 |
|
|
|
167 |
|
168 |
More details can be found here [here](https://github.com/inductiva/wind-tunnel/blob/deab68a018531ff05d0d8ef9d63d8c108800f78f/windtunnel/windtunnel_outputs.py#L111).
|
169 |
|
170 |
+
| **Pressure Field Mesh** | **# points of Pressure Field meshes** |
|
171 |
|-------------------------------|------------------------------|
|
172 |
| ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/pressure_field_mesh.png) | ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/histogram_of_points_input.png)) |
|
173 |
|
|
|
198 |
More information can be found [here](https://github.com/inductiva/wind-tunnel/blob/deab68a018531ff05d0d8ef9d63d8c108800f78f/windtunnel/windtunnel_outputs.py#L70).
|
199 |
|
200 |
|
201 |
+
| **Streamlines Mesh** | **# points of streamlines meshes** |
|
202 |
|-------------------------------|------------------------------|
|
203 |
| ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/streamlines_mesh.png) | ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/histogram_of_points_streamlines.png) |
|
204 |
|
|
|
292 |
flowVelocity ({{ wind_speed }} 0 0);
|
293 |
```
|
294 |
|
295 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
controlDict.jinja
|
298 |
```jinja
|