code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from math import isqrt def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = False return [i for i in range(2 , SCREAMING_SNAKE_CASE_ ) if is_prime[i]] def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = 10**8 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = calculate_prime_numbers(max_number // 2 ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
0
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _a (_lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = MobileBertTokenizer SCREAMING_SNAKE_CASE = MobileBertTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = filter_non_english SCREAMING_SNAKE_CASE = 'google/mobilebert-uncased' def UpperCamelCase ( self ) -> Any: super().setUp() _SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _SCREAMING_SNAKE_CASE = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCamelCase ( self , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = """unwanted, running""" return input_text, output_text def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(A__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [9, 6, 7, 12, 10, 11] ) def UpperCamelCase ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) # With lower casing _SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=A__ ) _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _SCREAMING_SNAKE_CASE = {} for i, token in enumerate(A__ ): _SCREAMING_SNAKE_CASE = i _SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=A__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def UpperCamelCase ( self ) -> str: self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def UpperCamelCase ( self ) -> Union[str, Any]: self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def UpperCamelCase ( self ) -> Dict: self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A__ , A__ ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def UpperCamelCase ( self ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." _SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( A__ , return_attention_mask=A__ , return_token_type_ids=A__ , return_offsets_mapping=A__ , add_special_tokens=A__ , ) _SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(A__ , """do_lower_case""" ) else False _SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] _SCREAMING_SNAKE_CASE = """""".join(A__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that only the first Chinese character is not preceded by "##". _SCREAMING_SNAKE_CASE = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(A__ ) ] self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ )
0
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _a (_lowerCamelCase): """simple docstring""" def __init__( self , A__ , A__ ) -> Any: _SCREAMING_SNAKE_CASE = params _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array([len(A__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , A__ ) -> Dict: return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Tuple: return len(self.lengths ) def UpperCamelCase ( self ) -> Dict: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.params.max_model_input_size _SCREAMING_SNAKE_CASE = self.lengths > max_len logger.info(F"Splitting {sum(A__ )} too long sequences." ) def divide_chunks(A__ , A__ ): return [l[i : i + n] for i in range(0 , len(A__ ) , A__ )] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] if self.params.mlm: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _SCREAMING_SNAKE_CASE = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , 0 , A__ ) if sub_s[-1] != sep_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , len(A__ ) , A__ ) assert len(A__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(A__ ) new_tok_ids.extend(A__ ) new_lengths.extend([len(A__ ) for l in sub_seqs] ) _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array(A__ ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = self.lengths > 11 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def UpperCamelCase ( self ) -> int: if "unk_token" not in self.params.special_tok_ids: return else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _SCREAMING_SNAKE_CASE = (unk_occs / self.lengths) < 0.5 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def UpperCamelCase ( self ) -> Optional[Any]: if not self.params.is_master: return logger.info(F"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCamelCase ( self , A__ ) -> Any: _SCREAMING_SNAKE_CASE = [t[0] for t in batch] _SCREAMING_SNAKE_CASE = [t[1] for t in batch] assert len(A__ ) == len(A__ ) # Max for paddings _SCREAMING_SNAKE_CASE = max(A__ ) # Pad token ids if self.params.mlm: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""pad_token"""] else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = [list(t.astype(A__ ) ) + [pad_idx] * (max_seq_len_ - len(A__ )) for t in token_ids] assert len(tk_ ) == len(A__ ) assert all(len(A__ ) == max_seq_len_ for t in tk_ ) _SCREAMING_SNAKE_CASE = torch.tensor(tk_ ) # (bs, max_seq_len_) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) # (bs) return tk_t, lg_t
0
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput UpperCamelCase__ : Tuple = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a (_lowerCamelCase): """simple docstring""" def __init__( self , *A__ , A__=None , A__=None , A__=None , **A__ ) -> Optional[int]: super().__init__(*A__ , **A__ ) _SCREAMING_SNAKE_CASE = eval_examples _SCREAMING_SNAKE_CASE = post_process_function _SCREAMING_SNAKE_CASE = quant_trainer_args _SCREAMING_SNAKE_CASE = 1_28 # default number of calibration samples def UpperCamelCase ( self , A__=None ) -> Union[str, Any]: if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) _SCREAMING_SNAKE_CASE = calib_dataset if calib_dataset is not None else self.calib_dataset _SCREAMING_SNAKE_CASE = self._remove_unused_columns(A__ , description="""Calibration""" ) return DataLoader( A__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=A__ , ) def UpperCamelCase ( self , A__=None ) -> str: _SCREAMING_SNAKE_CASE = self.train_dataset if calib_dataset is None else calib_dataset _SCREAMING_SNAKE_CASE = self.get_calib_dataloader(A__ ) _SCREAMING_SNAKE_CASE = self.model quant_trainer.configure_model(A__ , self.quant_trainer_args , calib=A__ ) model.eval() quant_trainer.enable_calibration(A__ ) logger.info("""***** Running calibration *****""" ) logger.info(F" Num examples = {self.calib_num}" ) logger.info(F" Batch size = {calib_dataloader.batch_size}" ) for step, inputs in enumerate(A__ ): # Prediction step _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.prediction_step(A__ , A__ , prediction_loss_only=A__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(A__ , self.quant_trainer_args ) _SCREAMING_SNAKE_CASE = model def UpperCamelCase ( self , A__=None , A__=None , A__=None , A__ = "eval" ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset _SCREAMING_SNAKE_CASE = self.get_eval_dataloader(A__ ) _SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) self.log(A__ ) else: _SCREAMING_SNAKE_CASE = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , A__ ) return metrics def UpperCamelCase ( self , A__ , A__ , A__=None , A__ = "test" ) -> List[str]: _SCREAMING_SNAKE_CASE = self.get_test_dataloader(A__ ) # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions , """predict""" ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A__ ) def UpperCamelCase ( self , A__="./" ) -> Tuple: _SCREAMING_SNAKE_CASE = self.eval_dataset _SCREAMING_SNAKE_CASE = self.get_eval_dataloader(A__ ) _SCREAMING_SNAKE_CASE = next(iter(A__ ) ) # saving device - to make it consistent _SCREAMING_SNAKE_CASE = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple _SCREAMING_SNAKE_CASE = tuple(v.to(A__ ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = self.model.to(A__ ) model.eval() model.float() _SCREAMING_SNAKE_CASE = model.module if hasattr(A__ , """module""" ) else model quant_trainer.configure_model(A__ , self.quant_trainer_args ) _SCREAMING_SNAKE_CASE = os.path.join(A__ , """model.onnx""" ) logger.info(F"exporting model to {output_model_file}" ) _SCREAMING_SNAKE_CASE = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( A__ , A__ , A__ , export_params=A__ , opset_version=13 , do_constant_folding=A__ , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=A__ , ) logger.info("""onnx export finished""" )
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : str = { "configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"], "tokenization_canine": ["CanineTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bytes: """simple docstring""" # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
0
1
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available UpperCamelCase__ : List[str] = logging.getLogger(__name__) @dataclass class _a : """simple docstring""" SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 @dataclass class _a : """simple docstring""" SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = 'train' SCREAMING_SNAKE_CASE = 'dev' SCREAMING_SNAKE_CASE = 'test' class _a : """simple docstring""" @staticmethod def UpperCamelCase ( A__ , A__ ) -> List[InputExample]: raise NotImplementedError @staticmethod def UpperCamelCase ( A__ ) -> List[str]: raise NotImplementedError @staticmethod def UpperCamelCase ( A__ , A__ , A__ , A__ , A__=False , A__="[CLS]" , A__=1 , A__="[SEP]" , A__=False , A__=False , A__=0 , A__=0 , A__=-1_00 , A__=0 , A__=True , ) -> List[InputFeatures]: _SCREAMING_SNAKE_CASE = {label: i for i, label in enumerate(A__ )} _SCREAMING_SNAKE_CASE = [] for ex_index, example in enumerate(A__ ): if ex_index % 1_00_00 == 0: logger.info("""Writing example %d of %d""" , A__ , len(A__ ) ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for word, label in zip(example.words , example.labels ): _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(A__ ) > 0: tokens.extend(A__ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(A__ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. _SCREAMING_SNAKE_CASE = tokenizer.num_special_tokens_to_add() if len(A__ ) > max_seq_length - special_tokens_count: _SCREAMING_SNAKE_CASE = tokens[: (max_seq_length - special_tokens_count)] _SCREAMING_SNAKE_CASE = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] _SCREAMING_SNAKE_CASE = [sequence_a_segment_id] * len(A__ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: _SCREAMING_SNAKE_CASE = [cls_token] + tokens _SCREAMING_SNAKE_CASE = [pad_token_label_id] + label_ids _SCREAMING_SNAKE_CASE = [cls_token_segment_id] + segment_ids _SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(A__ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. _SCREAMING_SNAKE_CASE = [1 if mask_padding_with_zero else 0] * len(A__ ) # Zero-pad up to the sequence length. _SCREAMING_SNAKE_CASE = max_seq_length - len(A__ ) if pad_on_left: _SCREAMING_SNAKE_CASE = ([pad_token] * padding_length) + input_ids _SCREAMING_SNAKE_CASE = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask _SCREAMING_SNAKE_CASE = ([pad_token_segment_id] * padding_length) + segment_ids _SCREAMING_SNAKE_CASE = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(A__ ) == max_seq_length assert len(A__ ) == max_seq_length assert len(A__ ) == max_seq_length assert len(A__ ) == max_seq_length if ex_index < 5: logger.info("""*** Example ***""" ) logger.info("""guid: %s""" , example.guid ) logger.info("""tokens: %s""" , """ """.join([str(A__ ) for x in tokens] ) ) logger.info("""input_ids: %s""" , """ """.join([str(A__ ) for x in input_ids] ) ) logger.info("""input_mask: %s""" , """ """.join([str(A__ ) for x in input_mask] ) ) logger.info("""segment_ids: %s""" , """ """.join([str(A__ ) for x in segment_ids] ) ) logger.info("""label_ids: %s""" , """ """.join([str(A__ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: _SCREAMING_SNAKE_CASE = None features.append( InputFeatures( input_ids=A__ , attention_mask=A__ , token_type_ids=A__ , label_ids=A__ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = nn.CrossEntropyLoss().ignore_index def __init__( self , A__ , A__ , A__ , A__ , A__ , A__ = None , A__=False , A__ = Split.train , ) -> List[Any]: # Load data features from cache or dataset file _SCREAMING_SNAKE_CASE = os.path.join( A__ , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(A__ ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _SCREAMING_SNAKE_CASE = cached_features_file + """.lock""" with FileLock(A__ ): if os.path.exists(A__ ) and not overwrite_cache: logger.info(F"Loading features from cached file {cached_features_file}" ) _SCREAMING_SNAKE_CASE = torch.load(A__ ) else: logger.info(F"Creating features from dataset file at {data_dir}" ) _SCREAMING_SNAKE_CASE = token_classification_task.read_examples_from_file(A__ , A__ ) # TODO clean up all this to leverage built-in features of tokenizers _SCREAMING_SNAKE_CASE = token_classification_task.convert_examples_to_features( A__ , A__ , A__ , A__ , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A__ , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F"Saving features into cached file {cached_features_file}" ) torch.save(self.features , A__ ) def __len__( self ) -> str: return len(self.features ) def __getitem__( self , A__ ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class _a : """simple docstring""" SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = -1_00 def __init__( self , A__ , A__ , A__ , A__ , A__ , A__ = None , A__=False , A__ = Split.train , ) -> Tuple: _SCREAMING_SNAKE_CASE = token_classification_task.read_examples_from_file(A__ , A__ ) # TODO clean up all this to leverage built-in features of tokenizers _SCREAMING_SNAKE_CASE = token_classification_task.convert_examples_to_features( A__ , A__ , A__ , A__ , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A__ , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: _SCREAMING_SNAKE_CASE = tf.data.Dataset.from_generator( A__ , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , ( {"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: _SCREAMING_SNAKE_CASE = tf.data.Dataset.from_generator( A__ , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , ( { """input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] ), """token_type_ids""": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ) -> Optional[Any]: return len(self.features ) def __getitem__( self , A__ ) -> InputFeatures: return self.features[i]
0
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def lowerCAmelCase_ ( ) -> int: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("""https://huggingface.co""" )
0
1
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel UpperCamelCase__ : Any = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 48_000, "sample_size": 65_536, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 48_000, "sample_size": 65_536, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 48_000, "sample_size": 131_072, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 16_000, "sample_size": 65_536, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 16_000, "sample_size": 65_536, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 16_000, "sample_size": 65_536, }, } def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" return torch.atana(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) / math.pi * 2 def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.sin(t * math.pi / 2 ) ** 2 _SCREAMING_SNAKE_CASE = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class _a (_lowerCamelCase): """simple docstring""" pass class _a (nn.Module): """simple docstring""" def __init__( self , A__ ) -> Dict: super().__init__() _SCREAMING_SNAKE_CASE = DiffusionAttnUnetaD(A__ , n_attn_layers=4 ) _SCREAMING_SNAKE_CASE = deepcopy(self.diffusion ) _SCREAMING_SNAKE_CASE = torch.quasirandom.SobolEngine(1 , scramble=A__ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]["""url"""] os.system(F"wget {url} ./" ) return F"./{model_name}.ckpt" UpperCamelCase__ : Optional[int] = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } UpperCamelCase__ : List[str] = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } UpperCamelCase__ : str = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } UpperCamelCase__ : Union[str, Any] = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } UpperCamelCase__ : Optional[int] = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } UpperCamelCase__ : Any = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" if name.startswith("""skip""" ): return name.replace("""skip""" , RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(F"ResConvBlock error with {name}" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE_ ) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif name.startswith(SCREAMING_SNAKE_CASE_ ): return [name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for v in value] raise ValueError(F"Attn error with {name}" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" , """time_proj""" ) _SCREAMING_SNAKE_CASE = 0 if string.startswith("""net.3.""" ): depth += 1 _SCREAMING_SNAKE_CASE = string[6:] elif string.startswith("""net.""" ): _SCREAMING_SNAKE_CASE = string[4:] while string.startswith("""main.7.""" ): depth += 1 _SCREAMING_SNAKE_CASE = string[7:] if string.startswith("""main.""" ): _SCREAMING_SNAKE_CASE = string[5:] # mid block if string[:2].isdigit(): _SCREAMING_SNAKE_CASE = string[:2] _SCREAMING_SNAKE_CASE = string[2:] else: _SCREAMING_SNAKE_CASE = string[0] _SCREAMING_SNAKE_CASE = string[1:] if depth == max_depth: _SCREAMING_SNAKE_CASE = MID_NUM_TO_LAYER[layer_num] _SCREAMING_SNAKE_CASE = """mid_block""" elif depth > 0 and int(SCREAMING_SNAKE_CASE_ ) < 7: _SCREAMING_SNAKE_CASE = DOWN_NUM_TO_LAYER[layer_num] _SCREAMING_SNAKE_CASE = F"down_blocks.{depth}" elif depth > 0 and int(SCREAMING_SNAKE_CASE_ ) > 7: _SCREAMING_SNAKE_CASE = UP_NUM_TO_LAYER[layer_num] _SCREAMING_SNAKE_CASE = F"up_blocks.{max_depth - depth - 1}" elif depth == 0: _SCREAMING_SNAKE_CASE = DEPTH_0_TO_LAYER[layer_num] _SCREAMING_SNAKE_CASE = F"up_blocks.{max_depth - 1}" if int(SCREAMING_SNAKE_CASE_ ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(F"Naming error with {input_string} and string_left: {string_left}." ) _SCREAMING_SNAKE_CASE = string_left[1:] if "resnets" in new_layer: _SCREAMING_SNAKE_CASE = convert_resconv_naming(SCREAMING_SNAKE_CASE_ ) elif "attentions" in new_layer: _SCREAMING_SNAKE_CASE = convert_attn_naming(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = new_string_left if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = prefix + """.""" + new_layer + """.""" + string_left else: _SCREAMING_SNAKE_CASE = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue _SCREAMING_SNAKE_CASE = rename(SCREAMING_SNAKE_CASE_ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = transform_conv_attns(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: _SCREAMING_SNAKE_CASE = v return new_state_dict def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) == 1: if len(v.shape ) == 3: # weight _SCREAMING_SNAKE_CASE = v[:, :, 0] else: # bias _SCREAMING_SNAKE_CASE = v else: # qkv matrices _SCREAMING_SNAKE_CASE = v.shape[0] _SCREAMING_SNAKE_CASE = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: _SCREAMING_SNAKE_CASE = v[i * single_shape : (i + 1) * single_shape, :, 0] else: _SCREAMING_SNAKE_CASE = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) _SCREAMING_SNAKE_CASE = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"Make sure to provide one of the official model names {MODELS_MAP.keys()}" _SCREAMING_SNAKE_CASE = download(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]["""sample_rate"""] _SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]["""sample_size"""] _SCREAMING_SNAKE_CASE = Object() _SCREAMING_SNAKE_CASE = sample_size _SCREAMING_SNAKE_CASE = sample_rate _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE_ , sample_rate=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = diffusers_model.state_dict() _SCREAMING_SNAKE_CASE = DiffusionUncond(SCREAMING_SNAKE_CASE_ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE_ )["""state_dict"""] ) _SCREAMING_SNAKE_CASE = orig_model.diffusion_ema.eval() _SCREAMING_SNAKE_CASE = orig_model.state_dict() _SCREAMING_SNAKE_CASE = rename_orig_weights(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) _SCREAMING_SNAKE_CASE = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE_ ) == 0, F"Problem with {renamed_minus_diffusers}" assert all(k.endswith("""kernel""" ) for k in list(SCREAMING_SNAKE_CASE_ ) ), F"Problem with {diffusers_minus_renamed}" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}" if key == "time_proj.weight": _SCREAMING_SNAKE_CASE = value.squeeze() _SCREAMING_SNAKE_CASE = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = 1_00 _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE_ )[:-1] _SCREAMING_SNAKE_CASE = get_crash_schedule(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = torch.manual_seed(33 ) _SCREAMING_SNAKE_CASE = pipe(num_inference_steps=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).audios _SCREAMING_SNAKE_CASE = sampling.iplms_sample(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {} ) _SCREAMING_SNAKE_CASE = generated.clamp(-1 , 1 ) _SCREAMING_SNAKE_CASE = (generated - audio).abs().sum() _SCREAMING_SNAKE_CASE = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" , SCREAMING_SNAKE_CASE_ ) print("""Diff max""" , SCREAMING_SNAKE_CASE_ ) assert diff_max < 1e-3, F"Diff max: {diff_max} is too much :-/" print(F"Conversion for {model_name} successful!" ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") UpperCamelCase__ : int = parser.parse_args() main(args)
0
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> Iterator[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 2 while True: if is_prime(SCREAMING_SNAKE_CASE_ ): yield num num += 1 def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = 2_00_00_00 ) -> int: """simple docstring""" return sum(takewhile(lambda SCREAMING_SNAKE_CASE_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
0
1
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer UpperCamelCase__ : int = logging.get_logger(__name__) UpperCamelCase__ : List[str] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase__ : str = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } UpperCamelCase__ : Optional[Any] = {"allegro/herbert-base-cased": 514} UpperCamelCase__ : List[str] = {} class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = HerbertTokenizer def __init__( self , A__=None , A__=None , A__=None , A__="<s>" , A__="<unk>" , A__="<pad>" , A__="<mask>" , A__="</s>" , **A__ , ) -> List[str]: super().__init__( A__ , A__ , tokenizer_file=A__ , cls_token=A__ , unk_token=A__ , pad_token=A__ , mask_token=A__ , sep_token=A__ , **A__ , ) def UpperCamelCase ( self , A__ , A__ = None ) -> List[int]: _SCREAMING_SNAKE_CASE = [self.cls_token_id] _SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self , A__ , A__ = None , A__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) if token_ids_a is None: return [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1] + ([0] * len(A__ )) + [1] def UpperCamelCase ( self , A__ , A__ = None ) -> List[int]: _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self , A__ , A__ = None ) -> Tuple[str]: _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _a (unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 1_28, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 1_42, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } _SCREAMING_SNAKE_CASE = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 1_28, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 1_42, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(A__ ) , A__ ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(A__ ) , x.transpose() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , transpose(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , transpose(A__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , transpose(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , transpose(A__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , np.asarray(transpose(A__ ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , np.asarray(transpose(A__ , axes=(1, 2, 0) ) ) ) ) def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , np.reshape(A__ , (4, 3) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , np.reshape(A__ , (12, 5) ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , reshape(A__ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , reshape(A__ , (12, 5) ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , reshape(A__ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , reshape(A__ , (12, 5) ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , np.asarray(reshape(A__ , (4, 3) ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , np.asarray(reshape(A__ , (12, 5) ) ) ) ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(A__ ) , np.squeeze(A__ ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , np.squeeze(A__ , axis=2 ) ) ) @require_torch def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , squeeze(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , squeeze(A__ , axis=2 ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , squeeze(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , squeeze(A__ , axis=2 ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , np.asarray(squeeze(A__ ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , np.asarray(squeeze(A__ , axis=2 ) ) ) ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , np.expand_dims(A__ , axis=1 ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , expand_dims(A__ , axis=1 ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , expand_dims(A__ , axis=1 ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , np.asarray(expand_dims(A__ , axis=1 ) ) ) )
0
1
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def lowerCAmelCase_ ( ) -> int: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("""https://huggingface.co""" )
0
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , A__ = None , A__ = None , **A__ , ) -> Optional[int]: super().__init__(self , **A__ ) _SCREAMING_SNAKE_CASE = repo_info _SCREAMING_SNAKE_CASE = token _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> Tuple: if self.dir_cache is None: _SCREAMING_SNAKE_CASE = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _SCREAMING_SNAKE_CASE = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(A__ ): {"""name""": str(A__ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def UpperCamelCase ( self , A__ , A__ = "rb" , **A__ , ) -> Optional[int]: if not isinstance(self.repo_info , A__ ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) _SCREAMING_SNAKE_CASE = hf_hub_url(self.repo_info.id , A__ , revision=self.repo_info.sha ) return fsspec.open( A__ , mode=A__ , headers=get_authentication_headers_for_url(A__ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def UpperCamelCase ( self , A__ , **A__ ) -> str: self._get_dirs() _SCREAMING_SNAKE_CASE = self._strip_protocol(A__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(A__ ) def UpperCamelCase ( self , A__ , A__=False , **A__ ) -> List[Any]: self._get_dirs() _SCREAMING_SNAKE_CASE = PurePosixPath(path.strip("""/""" ) ) _SCREAMING_SNAKE_CASE = {} for p, f in self.dir_cache.items(): _SCREAMING_SNAKE_CASE = PurePosixPath(p.strip("""/""" ) ) _SCREAMING_SNAKE_CASE = p.parent if root == path: _SCREAMING_SNAKE_CASE = f _SCREAMING_SNAKE_CASE = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
0
1
'''simple docstring''' from __future__ import annotations from math import pi def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
0
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features _SCREAMING_SNAKE_CASE = ( Features({feature: Value(SCREAMING_SNAKE_CASE_ ) for feature, dtype in features.items()} ) if features is not None else None ) _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = parquet_path elif issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = [parquet_path] _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=("train",) ) -> List[str]: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for split in splits: _SCREAMING_SNAKE_CASE = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _SCREAMING_SNAKE_CASE = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features _SCREAMING_SNAKE_CASE = ( Features({feature: Value(SCREAMING_SNAKE_CASE_ ) for feature, dtype in features.items()} ) if features is not None else None ) _SCREAMING_SNAKE_CASE = ParquetDatasetReader({"""train""": parquet_path} , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" if split: _SCREAMING_SNAKE_CASE = {split: parquet_path} else: _SCREAMING_SNAKE_CASE = """train""" _SCREAMING_SNAKE_CASE = {"""train""": parquet_path, """test""": parquet_path} _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ParquetDatasetWriter(SCREAMING_SNAKE_CASE_ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _SCREAMING_SNAKE_CASE = pq.ParquetFile(tmp_path / """foo.parquet""" ) _SCREAMING_SNAKE_CASE = pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = str(shared_datadir / """test_image_rgb.jpg""" ) _SCREAMING_SNAKE_CASE = {"""image""": [image_path]} _SCREAMING_SNAKE_CASE = Features({"""image""": Image()} ) _SCREAMING_SNAKE_CASE = Dataset.from_dict(SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = ParquetDatasetWriter(SCREAMING_SNAKE_CASE_ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _SCREAMING_SNAKE_CASE = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _SCREAMING_SNAKE_CASE = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=SCREAMING_SNAKE_CASE_ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" assert get_writer_batch_size(SCREAMING_SNAKE_CASE_ ) == expected
0
1
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> list[list]: """simple docstring""" _SCREAMING_SNAKE_CASE = current_set.copy() for row_index, row in enumerate(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = row[0] for column_index, column in enumerate(SCREAMING_SNAKE_CASE_ ): if magnitude == 0: _SCREAMING_SNAKE_CASE = column continue _SCREAMING_SNAKE_CASE = column / magnitude # Subtract to cancel term _SCREAMING_SNAKE_CASE = current_set[0] _SCREAMING_SNAKE_CASE = [first_row] _SCREAMING_SNAKE_CASE = current_set[1::] for row in current_set: _SCREAMING_SNAKE_CASE = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(SCREAMING_SNAKE_CASE_ ) continue for column_index in range(len(SCREAMING_SNAKE_CASE_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(SCREAMING_SNAKE_CASE_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _SCREAMING_SNAKE_CASE = final_set[0] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _SCREAMING_SNAKE_CASE = simplify(SCREAMING_SNAKE_CASE_ ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = resultant return final_set def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> list: """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) _SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) + 1 if any(len(SCREAMING_SNAKE_CASE_ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(SCREAMING_SNAKE_CASE_ ) == 1: return [equations[0][-1] / equations[0][0]] _SCREAMING_SNAKE_CASE = equations.copy() if any(0 in row for row in data_set ): _SCREAMING_SNAKE_CASE = data_set.copy() _SCREAMING_SNAKE_CASE = [] for row_index, row in enumerate(SCREAMING_SNAKE_CASE_ ): if 0 not in row: _SCREAMING_SNAKE_CASE = data_set.pop(SCREAMING_SNAKE_CASE_ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = data_set.copy() _SCREAMING_SNAKE_CASE = simplify(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = simplified[::-1] _SCREAMING_SNAKE_CASE = [] for row in simplified: _SCREAMING_SNAKE_CASE = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _SCREAMING_SNAKE_CASE = row.copy()[: len(SCREAMING_SNAKE_CASE_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(SCREAMING_SNAKE_CASE_ ) == 0: solutions.append(0 ) continue _SCREAMING_SNAKE_CASE = temp_row[1::] _SCREAMING_SNAKE_CASE = temp_row[::-1] for column_index, column in enumerate(SCREAMING_SNAKE_CASE_ ): current_solution -= column * solutions[column_index] solutions.append(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = [] for item in solutions: final.append(float(round(SCREAMING_SNAKE_CASE_ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
0
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: _SCREAMING_SNAKE_CASE = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] _SCREAMING_SNAKE_CASE = 1 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total *= numbers[i] _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: _SCREAMING_SNAKE_CASE = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] _SCREAMING_SNAKE_CASE = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total += numbers[i] _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
0
1
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="attention" ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = params[F"{prefix}/layers_{i}/{layer_name}/key/kernel"] _SCREAMING_SNAKE_CASE = params[F"{prefix}/layers_{i}/{layer_name}/out/kernel"] _SCREAMING_SNAKE_CASE = params[F"{prefix}/layers_{i}/{layer_name}/query/kernel"] _SCREAMING_SNAKE_CASE = params[F"{prefix}/layers_{i}/{layer_name}/value/kernel"] return k, o, q, v def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> Dict: """simple docstring""" if split_mlp_wi: _SCREAMING_SNAKE_CASE = params[F"{prefix}/layers_{i}/mlp/wi_0/kernel"] _SCREAMING_SNAKE_CASE = params[F"{prefix}/layers_{i}/mlp/wi_1/kernel"] _SCREAMING_SNAKE_CASE = (wi_a, wi_a) else: _SCREAMING_SNAKE_CASE = params[F"{prefix}/layers_{i}/mlp/wi/kernel"] _SCREAMING_SNAKE_CASE = params[F"{prefix}/layers_{i}/mlp/wo/kernel"] return wi, wo def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" return params[F"{prefix}/layers_{i}/{layer_name}/scale"] def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , *, SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = traverse_util.flatten_dict(variables["""target"""] ) _SCREAMING_SNAKE_CASE = {"""/""".join(SCREAMING_SNAKE_CASE_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _SCREAMING_SNAKE_CASE = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = collections.OrderedDict() # Shared embeddings. _SCREAMING_SNAKE_CASE = old["""token_embedder/embedding"""] # Encoder. for i in range(SCREAMING_SNAKE_CASE_ ): # Block i, layer 0 (Self Attention). _SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """encoder""" , """pre_attention_layer_norm""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tax_attention_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """encoder""" , """attention""" ) _SCREAMING_SNAKE_CASE = layer_norm _SCREAMING_SNAKE_CASE = k.T _SCREAMING_SNAKE_CASE = o.T _SCREAMING_SNAKE_CASE = q.T _SCREAMING_SNAKE_CASE = v.T # Block i, layer 1 (MLP). _SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """encoder""" , """pre_mlp_layer_norm""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tax_mlp_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """encoder""" , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = layer_norm if split_mlp_wi: _SCREAMING_SNAKE_CASE = wi[0].T _SCREAMING_SNAKE_CASE = wi[1].T else: _SCREAMING_SNAKE_CASE = wi.T _SCREAMING_SNAKE_CASE = wo.T _SCREAMING_SNAKE_CASE = old[ """encoder/relpos_bias/rel_embedding""" ].T _SCREAMING_SNAKE_CASE = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE_ ): # Block i, layer 0 (Self Attention). _SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """decoder""" , """pre_self_attention_layer_norm""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tax_attention_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """decoder""" , """self_attention""" ) _SCREAMING_SNAKE_CASE = layer_norm _SCREAMING_SNAKE_CASE = k.T _SCREAMING_SNAKE_CASE = o.T _SCREAMING_SNAKE_CASE = q.T _SCREAMING_SNAKE_CASE = v.T # Block i, layer 1 (Cross Attention). _SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """decoder""" , """pre_cross_attention_layer_norm""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tax_attention_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """decoder""" , """encoder_decoder_attention""" ) _SCREAMING_SNAKE_CASE = layer_norm _SCREAMING_SNAKE_CASE = k.T _SCREAMING_SNAKE_CASE = o.T _SCREAMING_SNAKE_CASE = q.T _SCREAMING_SNAKE_CASE = v.T # Block i, layer 2 (MLP). _SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """decoder""" , """pre_mlp_layer_norm""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tax_mlp_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """decoder""" , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = layer_norm if split_mlp_wi: _SCREAMING_SNAKE_CASE = wi[0].T _SCREAMING_SNAKE_CASE = wi[1].T else: _SCREAMING_SNAKE_CASE = wi.T _SCREAMING_SNAKE_CASE = wo.T _SCREAMING_SNAKE_CASE = old["""decoder/decoder_norm/scale"""] _SCREAMING_SNAKE_CASE = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _SCREAMING_SNAKE_CASE = old["""decoder/logits_dense/kernel"""].T return new def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _SCREAMING_SNAKE_CASE = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _SCREAMING_SNAKE_CASE = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) _SCREAMING_SNAKE_CASE = state_dict["""shared.weight"""] return state_dict def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = convert_tax_to_pytorch(SCREAMING_SNAKE_CASE_ , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = make_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = TaConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _SCREAMING_SNAKE_CASE = TaEncoderModel(SCREAMING_SNAKE_CASE_ ) else: _SCREAMING_SNAKE_CASE = TaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE_ ) print("""Done""" ) if __name__ == "__main__": UpperCamelCase__ : Optional[Any] = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) UpperCamelCase__ : int = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
0
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase__ : Tuple = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) UpperCamelCase__ : Union[str, Any] = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase__ : str = "sshleifer/tiny-mbart" @require_torch class _a (_lowerCamelCase): """simple docstring""" def UpperCamelCase ( self , A__=False , A__=None , A__=True , A__=True , A__=True , A__=True , ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.run_trainer( eval_steps=1 , max_len=12 , model_name=A__ , num_train_epochs=1 , distributed=A__ , extra_args_str=A__ , predict_with_generate=A__ , do_train=A__ , do_eval=A__ , do_predict=A__ , ) _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(os.path.join(A__ , """trainer_state.json""" ) ).log_history if not do_eval: return _SCREAMING_SNAKE_CASE = [log for log in logs if """eval_loss""" in log.keys()] _SCREAMING_SNAKE_CASE = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats _SCREAMING_SNAKE_CASE = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , A__ ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def UpperCamelCase ( self ) -> Optional[int]: self.run_seqaseq_quick() @require_torch_multi_gpu def UpperCamelCase ( self ) -> Optional[Any]: self.run_seqaseq_quick(distributed=A__ ) @require_torch_multi_gpu def UpperCamelCase ( self ) -> Union[str, Any]: self.run_seqaseq_quick(distributed=A__ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> Any: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> Tuple: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> str: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=A__ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> List[str]: self.run_seqaseq_quick( distributed=A__ , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=A__ ) @require_apex @require_torch_gpu def UpperCamelCase ( self ) -> Optional[Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def UpperCamelCase ( self , A__ ) -> List[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout _SCREAMING_SNAKE_CASE = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } _SCREAMING_SNAKE_CASE = experiments[experiment_id] _SCREAMING_SNAKE_CASE = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} _SCREAMING_SNAKE_CASE = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**A__ , extra_args_str=data["""extra_args_str"""] ) _SCREAMING_SNAKE_CASE = len(re.findall(A__ , cl.err ) ) self.assertEqual(A__ , data["""n_matches"""] ) @slow def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=A__ , learning_rate=3E-4 , num_train_epochs=10 , distributed=A__ , ) # Check metrics _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(os.path.join(A__ , """trainer_state.json""" ) ).log_history _SCREAMING_SNAKE_CASE = [log for log in logs if """eval_loss""" in log.keys()] _SCREAMING_SNAKE_CASE = eval_metrics[0] _SCREAMING_SNAKE_CASE = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , A__ ) # test if do_predict saves generations and metrics _SCREAMING_SNAKE_CASE = os.listdir(A__ ) _SCREAMING_SNAKE_CASE = {os.path.basename(A__ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def UpperCamelCase ( self ) -> Dict: from transformers.training_args import OptimizerNames def train_and_return_metrics(A__ ) -> Tuple[int, float]: _SCREAMING_SNAKE_CASE = """--skip_memory_metrics 0""" _SCREAMING_SNAKE_CASE = self.run_trainer( max_len=1_28 , model_name=A__ , learning_rate=3E-4 , num_train_epochs=1 , optim=A__ , distributed=A__ , extra_args_str=A__ , do_eval=A__ , do_predict=A__ , n_gpus_to_use=1 , ) # Check metrics _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(Path(A__ , """trainer_state.json""" ) ).log_history _SCREAMING_SNAKE_CASE = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) _SCREAMING_SNAKE_CASE = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) _SCREAMING_SNAKE_CASE = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) _SCREAMING_SNAKE_CASE = gpu_alloc_mem_orig - gpu_alloc_mem_bnb _SCREAMING_SNAKE_CASE = gpu_peak_mem_orig + gpu_alloc_mem_orig _SCREAMING_SNAKE_CASE = gpu_peak_mem_bnb + gpu_alloc_mem_bnb _SCREAMING_SNAKE_CASE = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings _SCREAMING_SNAKE_CASE = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( A__ , A__ , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" F" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" F" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( A__ , A__ , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" F" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" F" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( A__ , A__ , F"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}" ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ = 3E-3 , A__ = "adafactor" , A__ = False , A__ = None , A__ = 0 , A__ = True , A__ = True , A__ = True , A__ = True , A__ = None , ) -> Dict: _SCREAMING_SNAKE_CASE = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" _SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() _SCREAMING_SNAKE_CASE = F"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(A__ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(A__ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() _SCREAMING_SNAKE_CASE = F"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(A__ )}\n ".split() _SCREAMING_SNAKE_CASE = """ --do_predict """.split() _SCREAMING_SNAKE_CASE = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: _SCREAMING_SNAKE_CASE = get_gpu_count() _SCREAMING_SNAKE_CASE = get_torch_dist_unique_port() _SCREAMING_SNAKE_CASE = F"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() _SCREAMING_SNAKE_CASE = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A__ , env=self.get_env() ) else: _SCREAMING_SNAKE_CASE = ["""run_translation.py"""] + args with patch.object(A__ , """argv""" , A__ ): main() return output_dir
0
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _a (unittest.TestCase): """simple docstring""" def __init__( self , A__ , A__=7 , A__=3 , A__=30 , A__=4_00 , A__=True , A__=None , A__=True , A__=[0.5, 0.5, 0.5] , A__=[0.5, 0.5, 0.5] , A__=True , A__=1 / 2_55 , A__=True , ) -> Optional[int]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = min_resolution _SCREAMING_SNAKE_CASE = max_resolution _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = image_mean _SCREAMING_SNAKE_CASE = image_std _SCREAMING_SNAKE_CASE = do_rescale _SCREAMING_SNAKE_CASE = rescale_factor _SCREAMING_SNAKE_CASE = do_pad def UpperCamelCase ( self ) -> List[str]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase ( self , A__ , A__=False ) -> List[str]: if not batched: _SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(A__ , Image.Image ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.size else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: _SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * h / w ) _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] elif w > h: _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] _SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * w / h ) else: _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] else: _SCREAMING_SNAKE_CASE = [] for image in image_inputs: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _SCREAMING_SNAKE_CASE = max(A__ , key=lambda A__ : item[0] )[0] _SCREAMING_SNAKE_CASE = max(A__ , key=lambda A__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a (_lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = DetaImageProcessor if is_vision_available() else None def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = DetaImageProcessingTester(self ) @property def UpperCamelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , """image_mean""" ) ) self.assertTrue(hasattr(A__ , """image_std""" ) ) self.assertTrue(hasattr(A__ , """do_normalize""" ) ) self.assertTrue(hasattr(A__ , """do_resize""" ) ) self.assertTrue(hasattr(A__ , """do_rescale""" ) ) self.assertTrue(hasattr(A__ , """do_pad""" ) ) self.assertTrue(hasattr(A__ , """size""" ) ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , A__ ) def UpperCamelCase ( self ) -> List[str]: pass def UpperCamelCase ( self ) -> List[str]: # Initialize image_processing _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ ) for image in image_inputs: self.assertIsInstance(A__ , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) _SCREAMING_SNAKE_CASE = image_processing(A__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self ) -> Optional[int]: # Initialize image_processing _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , numpify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(A__ , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self ) -> List[Any]: # Initialize image_processing _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , torchify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(A__ , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase ( self ) -> Tuple: # prepare image and target _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: _SCREAMING_SNAKE_CASE = json.loads(f.read() ) _SCREAMING_SNAKE_CASE = {"""image_id""": 3_97_69, """annotations""": target} # encode them _SCREAMING_SNAKE_CASE = DetaImageProcessor() _SCREAMING_SNAKE_CASE = image_processing(images=A__ , annotations=A__ , return_tensors="""pt""" ) # verify pixel values _SCREAMING_SNAKE_CASE = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , A__ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A__ , atol=1E-4 ) ) # verify area _SCREAMING_SNAKE_CASE = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A__ ) ) # verify boxes _SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A__ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A__ , atol=1E-3 ) ) # verify image_id _SCREAMING_SNAKE_CASE = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A__ ) ) # verify is_crowd _SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A__ ) ) # verify class_labels _SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A__ ) ) # verify orig_size _SCREAMING_SNAKE_CASE = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A__ ) ) # verify size _SCREAMING_SNAKE_CASE = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A__ ) ) @slow def UpperCamelCase ( self ) -> List[str]: # prepare image, target and masks_path _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: _SCREAMING_SNAKE_CASE = json.loads(f.read() ) _SCREAMING_SNAKE_CASE = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} _SCREAMING_SNAKE_CASE = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them _SCREAMING_SNAKE_CASE = DetaImageProcessor(format="""coco_panoptic""" ) _SCREAMING_SNAKE_CASE = image_processing(images=A__ , annotations=A__ , masks_path=A__ , return_tensors="""pt""" ) # verify pixel values _SCREAMING_SNAKE_CASE = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , A__ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A__ , atol=1E-4 ) ) # verify area _SCREAMING_SNAKE_CASE = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A__ ) ) # verify boxes _SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A__ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A__ , atol=1E-3 ) ) # verify image_id _SCREAMING_SNAKE_CASE = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A__ ) ) # verify is_crowd _SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A__ ) ) # verify class_labels _SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A__ ) ) # verify masks _SCREAMING_SNAKE_CASE = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , A__ ) # verify orig_size _SCREAMING_SNAKE_CASE = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A__ ) ) # verify size _SCREAMING_SNAKE_CASE = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A__ ) )
0
'''simple docstring''' import sys UpperCamelCase__ : int = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = N ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = -sys.maxsize - 1 for i in range(len(SCREAMING_SNAKE_CASE_ ) - 12 ): _SCREAMING_SNAKE_CASE = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _SCREAMING_SNAKE_CASE = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
0
1
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration UpperCamelCase__ : List[Any] = pytest.mark.integration UpperCamelCase__ : Optional[Any] = {"comet"} UpperCamelCase__ : Any = importlib.util.find_spec("fairseq") is not None UpperCamelCase__ : Optional[Any] = {"code_eval"} UpperCamelCase__ : List[str] = os.name == "nt" UpperCamelCase__ : Union[str, Any] = {"bertscore", "frugalscore", "perplexity"} UpperCamelCase__ : int = importlib.util.find_spec("transformers") is not None def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" @wraps(SCREAMING_SNAKE_CASE_ ) def wrapper(self , SCREAMING_SNAKE_CASE_ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE_ ) return wrapper def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: """simple docstring""" @wraps(SCREAMING_SNAKE_CASE_ ) def wrapper(self , SCREAMING_SNAKE_CASE_ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE_ ) return wrapper def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" @wraps(SCREAMING_SNAKE_CASE_ ) def wrapper(self , SCREAMING_SNAKE_CASE_ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE_ ) return wrapper def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names()) @for_all_test_methods( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) @local class _a (parameterized.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def UpperCamelCase ( self , A__ ) -> Dict: _SCREAMING_SNAKE_CASE = """[...]""" _SCREAMING_SNAKE_CASE = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , A__ ) ).module_path ) _SCREAMING_SNAKE_CASE = datasets.load.import_main_class(metric_module.__name__ , dataset=A__ ) # check parameters _SCREAMING_SNAKE_CASE = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(A__ , metric_module.__name__ ): with self.use_local_metrics(): try: _SCREAMING_SNAKE_CASE = doctest.testmod(A__ , verbose=A__ , raise_on_error=A__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def UpperCamelCase ( self , A__ ) -> str: _SCREAMING_SNAKE_CASE = """[...]""" _SCREAMING_SNAKE_CASE = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , A__ ) ).module_path ) # run doctest with self.use_local_metrics(): _SCREAMING_SNAKE_CASE = doctest.testmod(A__ , verbose=A__ , raise_on_error=A__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def UpperCamelCase ( self , A__ , A__ ) -> Dict: if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](A__ ): yield else: yield @contextmanager def UpperCamelCase ( self ) -> Any: def load_local_metric(A__ , *A__ , **A__ ): return load_metric(os.path.join("""metrics""" , A__ ) , *A__ , **A__ ) with patch("""datasets.load_metric""" ) as mock_load_metric: _SCREAMING_SNAKE_CASE = load_local_metric yield @classmethod def UpperCamelCase ( cls , A__ ) -> List[Any]: def wrapper(A__ ): _SCREAMING_SNAKE_CASE = contextmanager(A__ ) _SCREAMING_SNAKE_CASE = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class _a (_lowerCamelCase): """simple docstring""" def UpperCamelCase ( self , A__ ) -> List[str]: assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: _SCREAMING_SNAKE_CASE = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" import torch def bert_cos_score_idf(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(SCREAMING_SNAKE_CASE_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: _SCREAMING_SNAKE_CASE = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" def load_from_checkpoint(SCREAMING_SNAKE_CASE_ ): class _a : """simple docstring""" def UpperCamelCase ( self , A__ , *A__ , **A__ ) -> Optional[int]: assert len(A__ ) == 2 _SCREAMING_SNAKE_CASE = [0.19, 0.92] return scores, sum(A__ ) / len(A__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: _SCREAMING_SNAKE_CASE = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: _SCREAMING_SNAKE_CASE = load_from_checkpoint yield def lowerCAmelCase_ ( ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) _SCREAMING_SNAKE_CASE = """ERROR""" _SCREAMING_SNAKE_CASE = F"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}" with pytest.raises(SCREAMING_SNAKE_CASE_ , match=re.escape(SCREAMING_SNAKE_CASE_ ) ): metric.compute(predictions=[] , references=[] , scheme=SCREAMING_SNAKE_CASE_ )
0
'''simple docstring''' UpperCamelCase__ : Dict = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } UpperCamelCase__ : str = {value: key for key, value in encode_dict.items()} def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" if set(SCREAMING_SNAKE_CASE_ ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) _SCREAMING_SNAKE_CASE = """""" for word in coded.split(): while len(SCREAMING_SNAKE_CASE_ ) != 0: decoded += decode_dict[word[:5]] _SCREAMING_SNAKE_CASE = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
0
1
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> Optional[Any]: """simple docstring""" try: _SCREAMING_SNAKE_CASE = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _SCREAMING_SNAKE_CASE = default else: # KEY is set, convert it to True or False. try: _SCREAMING_SNAKE_CASE = strtobool(SCREAMING_SNAKE_CASE_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value UpperCamelCase__ : Union[str, Any] = parse_flag_from_env("RUN_SLOW", default=False) UpperCamelCase__ : int = parse_flag_from_env("RUN_REMOTE", default=False) UpperCamelCase__ : List[Any] = parse_flag_from_env("RUN_LOCAL", default=True) UpperCamelCase__ : List[Any] = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression UpperCamelCase__ : List[str] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") UpperCamelCase__ : int = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") UpperCamelCase__ : List[str] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio UpperCamelCase__ : List[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ", ) # Beam UpperCamelCase__ : str = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility UpperCamelCase__ : Optional[int] = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows UpperCamelCase__ : List[str] = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" try: import faiss # noqa except ImportError: _SCREAMING_SNAKE_CASE = unittest.skip("""test requires faiss""" )(SCREAMING_SNAKE_CASE_ ) return test_case def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" try: import regex # noqa except ImportError: _SCREAMING_SNAKE_CASE = unittest.skip("""test requires regex""" )(SCREAMING_SNAKE_CASE_ ) return test_case def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" try: import elasticsearch # noqa except ImportError: _SCREAMING_SNAKE_CASE = unittest.skip("""test requires elasticsearch""" )(SCREAMING_SNAKE_CASE_ ) return test_case def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" try: import sqlalchemy # noqa except ImportError: _SCREAMING_SNAKE_CASE = unittest.skip("""test requires sqlalchemy""" )(SCREAMING_SNAKE_CASE_ ) return test_case def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" if not config.TORCH_AVAILABLE: _SCREAMING_SNAKE_CASE = unittest.skip("""test requires PyTorch""" )(SCREAMING_SNAKE_CASE_ ) return test_case def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: """simple docstring""" if not config.TF_AVAILABLE: _SCREAMING_SNAKE_CASE = unittest.skip("""test requires TensorFlow""" )(SCREAMING_SNAKE_CASE_ ) return test_case def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" if not config.JAX_AVAILABLE: _SCREAMING_SNAKE_CASE = unittest.skip("""test requires JAX""" )(SCREAMING_SNAKE_CASE_ ) return test_case def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not config.PIL_AVAILABLE: _SCREAMING_SNAKE_CASE = unittest.skip("""test requires Pillow""" )(SCREAMING_SNAKE_CASE_ ) return test_case def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(SCREAMING_SNAKE_CASE_ ) else: return test_case def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(SCREAMING_SNAKE_CASE_ ) else: return test_case def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(SCREAMING_SNAKE_CASE_ ) else: return test_case def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" def _require_spacy_model(SCREAMING_SNAKE_CASE_ ): try: import spacy # noqa F401 spacy.load(SCREAMING_SNAKE_CASE_ ) except ImportError: return unittest.skip("""test requires spacy""" )(SCREAMING_SNAKE_CASE_ ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(SCREAMING_SNAKE_CASE_ ) )(SCREAMING_SNAKE_CASE_ ) else: return test_case return _require_spacy_model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(SCREAMING_SNAKE_CASE_ ) else: return test_case def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(SCREAMING_SNAKE_CASE_ ) else: return test_case def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: _SCREAMING_SNAKE_CASE = unittest.skip("""test is slow""" )(SCREAMING_SNAKE_CASE_ ) return test_case def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" if not _run_local_tests or _run_local_tests == 0: _SCREAMING_SNAKE_CASE = unittest.skip("""test is local""" )(SCREAMING_SNAKE_CASE_ ) return test_case def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: _SCREAMING_SNAKE_CASE = unittest.skip("""test is packaged""" )(SCREAMING_SNAKE_CASE_ ) return test_case def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: _SCREAMING_SNAKE_CASE = unittest.skip("""test requires remote""" )(SCREAMING_SNAKE_CASE_ ) return test_case def lowerCAmelCase_ ( *SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(SCREAMING_SNAKE_CASE_ ) and name.startswith("""test""" ): for decorator in decorators: _SCREAMING_SNAKE_CASE = decorator(SCREAMING_SNAKE_CASE_ ) setattr(cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return cls return decorate class _a (_lowerCamelCase): """simple docstring""" pass class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 @contextmanager def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_=OfflineSimulationMode.CONNECTION_FAILS , SCREAMING_SNAKE_CASE_=1e-16 ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = requests.Session().request def timeout_request(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): # Change the url to an invalid url so that the connection hangs _SCREAMING_SNAKE_CASE = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( F"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) _SCREAMING_SNAKE_CASE = timeout try: return online_request(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _SCREAMING_SNAKE_CASE = url _SCREAMING_SNAKE_CASE = e.args[0] _SCREAMING_SNAKE_CASE = (max_retry_error.args[0].replace("""10.255.255.1""" , F"OfflineMock[{url}]" ),) _SCREAMING_SNAKE_CASE = (max_retry_error,) raise def raise_connection_error(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): raise requests.ConnectionError("""Offline mode is enabled.""" , request=SCREAMING_SNAKE_CASE_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" , SCREAMING_SNAKE_CASE_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" , SCREAMING_SNAKE_CASE_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" , SCREAMING_SNAKE_CASE_ ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def lowerCAmelCase_ ( *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = str(Path().resolve() ) with tempfile.TemporaryDirectory(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) as tmp_dir: try: os.chdir(SCREAMING_SNAKE_CASE_ ) yield finally: os.chdir(SCREAMING_SNAKE_CASE_ ) @contextmanager def lowerCAmelCase_ ( ) -> str: """simple docstring""" import gc gc.collect() _SCREAMING_SNAKE_CASE = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" import gc gc.collect() _SCREAMING_SNAKE_CASE = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" return deepcopy(SCREAMING_SNAKE_CASE_ ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(SCREAMING_SNAKE_CASE_ ).integers(0 , 1_00 , 10 ).tolist() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): try: return func(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) except HTTPError as err: if str(SCREAMING_SNAKE_CASE_ ).startswith("""500""" ) or str(SCREAMING_SNAKE_CASE_ ).startswith("""502""" ): pytest.xfail(str(SCREAMING_SNAKE_CASE_ ) ) raise err return decorator.decorator(_wrapper , SCREAMING_SNAKE_CASE_ ) class _a : """simple docstring""" def __init__( self , A__ , A__ , A__ ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = returncode _SCREAMING_SNAKE_CASE = stdout _SCREAMING_SNAKE_CASE = stderr async def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = await stream.readline() if line: callback(SCREAMING_SNAKE_CASE_ ) else: break async def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ) -> _RunOutput: """simple docstring""" if echo: print("""\nRunning: """ , """ """.join(SCREAMING_SNAKE_CASE_ ) ) _SCREAMING_SNAKE_CASE = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=SCREAMING_SNAKE_CASE_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=SCREAMING_SNAKE_CASE_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] def tee(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="" ): _SCREAMING_SNAKE_CASE = line.decode("""utf-8""" ).rstrip() sink.append(SCREAMING_SNAKE_CASE_ ) if not quiet: print(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , file=SCREAMING_SNAKE_CASE_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda SCREAMING_SNAKE_CASE_ : tee(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sys.stdout , label="""stdout:""" ) ), _read_stream(p.stderr , lambda SCREAMING_SNAKE_CASE_ : tee(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sys.stderr , label="""stderr:""" ) ), ] , timeout=SCREAMING_SNAKE_CASE_ , ) return _RunOutput(await p.wait() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1_80 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True ) -> _RunOutput: """simple docstring""" _SCREAMING_SNAKE_CASE = asyncio.get_event_loop() _SCREAMING_SNAKE_CASE = loop.run_until_complete( _stream_subprocess(SCREAMING_SNAKE_CASE_ , env=SCREAMING_SNAKE_CASE_ , stdin=SCREAMING_SNAKE_CASE_ , timeout=SCREAMING_SNAKE_CASE_ , quiet=SCREAMING_SNAKE_CASE_ , echo=SCREAMING_SNAKE_CASE_ ) ) _SCREAMING_SNAKE_CASE = """ """.join(SCREAMING_SNAKE_CASE_ ) if result.returncode > 0: _SCREAMING_SNAKE_CASE = """\n""".join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"'{cmd_str}' produced no output." ) return result def lowerCAmelCase_ ( ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" ) _SCREAMING_SNAKE_CASE = re.sub(r"""^gw""" , """""" , SCREAMING_SNAKE_CASE_ , 0 , re.M ) return int(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = 2_95_00 _SCREAMING_SNAKE_CASE = pytest_xdist_worker_id() return port + uniq_delta
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = emb.weight.shape _SCREAMING_SNAKE_CASE = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" ) _SCREAMING_SNAKE_CASE = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] _SCREAMING_SNAKE_CASE = mam_aaa["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = state_dict["""encoder.embed_tokens.weight"""].shape[0] _SCREAMING_SNAKE_CASE = MaMaaaConfig( vocab_size=SCREAMING_SNAKE_CASE_ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) _SCREAMING_SNAKE_CASE = state_dict["""decoder.embed_tokens.weight"""] _SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) model.model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : Any = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
0
1
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" # Initialise PyTorch model _SCREAMING_SNAKE_CASE = BigBirdConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(F"Building PyTorch model from configuration: {config}" ) if is_trivia_qa: _SCREAMING_SNAKE_CASE = BigBirdForQuestionAnswering(SCREAMING_SNAKE_CASE_ ) else: _SCREAMING_SNAKE_CASE = BigBirdForPreTraining(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , is_trivia_qa=SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCamelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) UpperCamelCase__ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : str = { "configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"], "tokenization_canine": ["CanineTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : str = logging.get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"transformer.blocks.{i}.norm1.weight", F"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"transformer.blocks.{i}.norm1.bias", F"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"transformer.blocks.{i}.attn.proj.weight", F"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"transformer.blocks.{i}.attn.proj.bias", F"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"transformer.blocks.{i}.norm2.weight", F"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"transformer.blocks.{i}.norm2.bias", F"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (F"transformer.blocks.{i}.mlp.fc1.weight", F"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"transformer.blocks.{i}.mlp.fc1.bias", F"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"transformer.blocks.{i}.mlp.fc2.weight", F"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"transformer.blocks.{i}.mlp.fc2.bias", F"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""), ( """text_embeddings.position_embeddings.weight""", """vilt.embeddings.text_embeddings.position_embeddings.weight""", ), ("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""), ( """text_embeddings.token_type_embeddings.weight""", """vilt.embeddings.text_embeddings.token_type_embeddings.weight""", ), ("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""), ("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""), # patch embeddings ("""transformer.cls_token""", """vilt.embeddings.cls_token"""), ("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""), ("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""), ("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""), # token type embeddings ("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""), ] ) # final layernorm + pooler rename_keys.extend( [ ("""transformer.norm.weight""", """vilt.layernorm.weight"""), ("""transformer.norm.bias""", """vilt.layernorm.bias"""), ("""pooler.dense.weight""", """vilt.pooler.dense.weight"""), ("""pooler.dense.bias""", """vilt.pooler.dense.bias"""), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("""vqa_classifier.0.weight""", """classifier.0.weight"""), ("""vqa_classifier.0.bias""", """classifier.0.bias"""), ("""vqa_classifier.1.weight""", """classifier.1.weight"""), ("""vqa_classifier.1.bias""", """classifier.1.bias"""), ("""vqa_classifier.3.weight""", """classifier.3.weight"""), ("""vqa_classifier.3.bias""", """classifier.3.bias"""), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("""nlvr2_classifier.0.weight""", """classifier.0.weight"""), ("""nlvr2_classifier.0.bias""", """classifier.0.bias"""), ("""nlvr2_classifier.1.weight""", """classifier.1.weight"""), ("""nlvr2_classifier.1.bias""", """classifier.1.bias"""), ("""nlvr2_classifier.3.weight""", """classifier.3.weight"""), ("""nlvr2_classifier.3.bias""", """classifier.3.bias"""), ] ) else: pass return rename_keys def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" for i in range(config.num_hidden_layers ): _SCREAMING_SNAKE_CASE = """vilt.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _SCREAMING_SNAKE_CASE = state_dict.pop(F"transformer.blocks.{i}.attn.qkv.weight" ) _SCREAMING_SNAKE_CASE = state_dict.pop(F"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] _SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = dct.pop(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = val @torch.no_grad() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False if "vqa" in checkpoint_url: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 31_29 _SCREAMING_SNAKE_CASE = """huggingface/label-files""" _SCREAMING_SNAKE_CASE = """vqa2-id2label.json""" _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="""dataset""" ) , """r""" ) ) _SCREAMING_SNAKE_CASE = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = ViltForQuestionAnswering(SCREAMING_SNAKE_CASE_ ) elif "nlvr" in checkpoint_url: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = {0: """False""", 1: """True"""} _SCREAMING_SNAKE_CASE = {v: k for k, v in config.idalabel.items()} _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = ViltForImagesAndTextClassification(SCREAMING_SNAKE_CASE_ ) elif "irtr" in checkpoint_url: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = ViltForImageAndTextRetrieval(SCREAMING_SNAKE_CASE_ ) elif "mlm_itm" in checkpoint_url: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = ViltForMaskedLM(SCREAMING_SNAKE_CASE_ ) else: raise ValueError("""Unknown model type""" ) # load state_dict of original model, remove and rename some keys _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" )["""state_dict"""] _SCREAMING_SNAKE_CASE = create_rename_keys(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if mlm_model or irtr_model: _SCREAMING_SNAKE_CASE = ["""itm_score.fc.weight""", """itm_score.fc.bias"""] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load state dict into HuggingFace model model.eval() if mlm_model: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Define processor _SCREAMING_SNAKE_CASE = ViltImageProcessor(size=3_84 ) _SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _SCREAMING_SNAKE_CASE = ViltProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Forward pass on example inputs (image + text) if nlvr_model: _SCREAMING_SNAKE_CASE = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=SCREAMING_SNAKE_CASE_ ).raw ) _SCREAMING_SNAKE_CASE = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=SCREAMING_SNAKE_CASE_ ).raw ) _SCREAMING_SNAKE_CASE = ( """The left image contains twice the number of dogs as the right image, and at least two dogs in total are""" """ standing.""" ) _SCREAMING_SNAKE_CASE = processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _SCREAMING_SNAKE_CASE = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=SCREAMING_SNAKE_CASE_ ).raw ) if mlm_model: _SCREAMING_SNAKE_CASE = """a bunch of [MASK] laying on a [MASK].""" else: _SCREAMING_SNAKE_CASE = """How many cats are there?""" _SCREAMING_SNAKE_CASE = processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) # Verify outputs if mlm_model: _SCREAMING_SNAKE_CASE = torch.Size([1, 11, 3_05_22] ) _SCREAMING_SNAKE_CASE = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) # verify masked token prediction equals "cats" _SCREAMING_SNAKE_CASE = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _SCREAMING_SNAKE_CASE = torch.Size([1, 31_29] ) _SCREAMING_SNAKE_CASE = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) # verify vqa prediction equals "2" _SCREAMING_SNAKE_CASE = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _SCREAMING_SNAKE_CASE = torch.Size([1, 2] ) _SCREAMING_SNAKE_CASE = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCamelCase__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCamelCase__ : str = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE = 'ChineseCLIPImageProcessor' SCREAMING_SNAKE_CASE = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , A__=None , A__=None , **A__ ) -> int: _SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A__ , ) _SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) _SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.image_processor def __call__( self , A__=None , A__=None , A__=None , **A__ ) -> Optional[int]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _SCREAMING_SNAKE_CASE = self.tokenizer(A__ , return_tensors=A__ , **A__ ) if images is not None: _SCREAMING_SNAKE_CASE = self.image_processor(A__ , return_tensors=A__ , **A__ ) if text is not None and images is not None: _SCREAMING_SNAKE_CASE = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A__ ) , tensor_type=A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Dict: return self.tokenizer.batch_decode(*A__ , **A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Optional[Any]: return self.tokenizer.decode(*A__ , **A__ ) @property def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase ( self ) -> Optional[int]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A__ , ) return self.image_processor_class
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available UpperCamelCase__ : int = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets UpperCamelCase__ : List[str] = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCamelCase__ : List[Any] = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCamelCase__ : Any = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a (datasets.Metric): """simple docstring""" def UpperCamelCase ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def UpperCamelCase ( self , A__ , A__ , A__=None ) -> List[str]: return { "matthews_correlation": float(matthews_corrcoef(A__ , A__ , sample_weight=A__ ) ), }
0
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: _SCREAMING_SNAKE_CASE = s_dict.pop(SCREAMING_SNAKE_CASE_ ) elif "subsample" in key: _SCREAMING_SNAKE_CASE = s_dict.pop(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = emb.weight.shape _SCREAMING_SNAKE_CASE = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" ) _SCREAMING_SNAKE_CASE = mam_aaa["""args"""] _SCREAMING_SNAKE_CASE = mam_aaa["""model"""] _SCREAMING_SNAKE_CASE = state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) rename_keys(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = state_dict["""decoder.embed_tokens.weight"""].shape[0] _SCREAMING_SNAKE_CASE = args.share_decoder_input_output_embed _SCREAMING_SNAKE_CASE = [int(SCREAMING_SNAKE_CASE_ ) for i in args.conv_kernel_sizes.split(""",""" )] _SCREAMING_SNAKE_CASE = SpeechaTextConfig( vocab_size=SCREAMING_SNAKE_CASE_ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(SCREAMING_SNAKE_CASE_ ) , conv_channels=args.conv_channels , conv_kernel_sizes=SCREAMING_SNAKE_CASE_ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=SCREAMING_SNAKE_CASE_ , num_beams=5 , max_length=2_00 , use_cache=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=2 , early_stopping=SCREAMING_SNAKE_CASE_ , ) _SCREAMING_SNAKE_CASE = SpeechaTextForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model.model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0 and not set(SCREAMING_SNAKE_CASE_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F" but all the following weights are missing {missing}" ) if tie_embeds: _SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _SCREAMING_SNAKE_CASE = lm_head_weights model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCamelCase__ : Dict = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(SCREAMING_SNAKE_CASE_ ): print(F"{i}\t\t{d}" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" for j in range(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: return True return False def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[float]: """simple docstring""" _SCREAMING_SNAKE_CASE = [float("""inf""" )] * vertex_count _SCREAMING_SNAKE_CASE = 0.0 for _ in range(vertex_count - 1 ): for j in range(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: _SCREAMING_SNAKE_CASE = distance[u] + w _SCREAMING_SNAKE_CASE = check_negative_cycle(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if negative_cycle_exists: raise Exception("""Negative cycle found""" ) return distance if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : int = int(input("Enter number of vertices: ").strip()) UpperCamelCase__ : int = int(input("Enter number of edges: ").strip()) UpperCamelCase__ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Dict = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) UpperCamelCase__ : Optional[Any] = {"src": src, "dst": dest, "weight": weight} UpperCamelCase__ : Optional[Any] = int(input("\nEnter shortest path source:").strip()) UpperCamelCase__ : Any = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase__ : Optional[int] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _a : """simple docstring""" def __init__( self , A__ , A__=13 , A__=7 , A__=True , A__=True , A__=True , A__=True , A__=99 , A__=32 , A__=2 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=5_12 , A__=16 , A__=2 , A__=0.02 , A__=3 , A__=4 , A__=None , ) -> int: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 99 _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 37 _SCREAMING_SNAKE_CASE = """gelu""" _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 5_12 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 0.02 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = TFRoFormerModel(config=A__ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(A__ ) _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> str: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = TFRoFormerForCausalLM(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Dict: _SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFRoFormerForSequenceClassification(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Any: _SCREAMING_SNAKE_CASE = self.num_choices _SCREAMING_SNAKE_CASE = TFRoFormerForMultipleChoice(config=A__ ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFRoFormerForTokenClassification(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Tuple: _SCREAMING_SNAKE_CASE = TFRoFormerForQuestionAnswering(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _a (_lowerCamelCase , _lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ ) -> str: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = TFRoFormerModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A__ , hidden_size=37 ) def UpperCamelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__ ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A__ ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__ ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__ ) @slow def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(A__ ) @require_tf class _a (unittest.TestCase): """simple docstring""" @slow def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(A__ )[0] # TODO Replace vocab size _SCREAMING_SNAKE_CASE = 5_00_00 _SCREAMING_SNAKE_CASE = [1, 6, vocab_size] self.assertEqual(output.shape , A__ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A__ , atol=1E-4 ) @require_tf class _a (unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = 1E-4 def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = tf.constant([[4, 10]] ) _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) _SCREAMING_SNAKE_CASE = emba(input_ids.shape ) _SCREAMING_SNAKE_CASE = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) _SCREAMING_SNAKE_CASE = emba.weight[:3, :5] tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) @require_tf class _a (unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = 1E-4 def UpperCamelCase ( self ) -> int: # 2,12,16,64 _SCREAMING_SNAKE_CASE = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 _SCREAMING_SNAKE_CASE = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) _SCREAMING_SNAKE_CASE = embed_positions([2, 16, 7_68] )[None, None, :, :] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = TFRoFormerSelfAttention.apply_rotary_position_embeddings( A__ , A__ , A__ ) _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A__ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A__ , atol=self.tolerance )
0
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = 'gptj' SCREAMING_SNAKE_CASE = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , A__=5_04_00 , A__=20_48 , A__=40_96 , A__=28 , A__=16 , A__=64 , A__=None , A__="gelu_new" , A__=0.0 , A__=0.0 , A__=0.0 , A__=1E-5 , A__=0.02 , A__=True , A__=5_02_56 , A__=5_02_56 , A__=False , **A__ , ) -> Tuple: _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = n_positions _SCREAMING_SNAKE_CASE = n_embd _SCREAMING_SNAKE_CASE = n_layer _SCREAMING_SNAKE_CASE = n_head _SCREAMING_SNAKE_CASE = n_inner _SCREAMING_SNAKE_CASE = rotary_dim _SCREAMING_SNAKE_CASE = activation_function _SCREAMING_SNAKE_CASE = resid_pdrop _SCREAMING_SNAKE_CASE = embd_pdrop _SCREAMING_SNAKE_CASE = attn_pdrop _SCREAMING_SNAKE_CASE = layer_norm_epsilon _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = eos_token_id super().__init__( bos_token_id=A__ , eos_token_id=A__ , tie_word_embeddings=A__ , **A__ ) class _a (_lowerCamelCase): """simple docstring""" def __init__( self , A__ , A__ = "default" , A__ = None , A__ = False , ) -> int: super().__init__(A__ , task=A__ , patching_specs=A__ , use_past=A__ ) if not getattr(self._config , """pad_token_id""" , A__ ): # TODO: how to do that better? _SCREAMING_SNAKE_CASE = 0 @property def UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: _SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(A__ , direction="""inputs""" ) _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """past_sequence + sequence"""} else: _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCamelCase ( self ) -> int: return self._config.n_layer @property def UpperCamelCase ( self ) -> int: return self._config.n_head def UpperCamelCase ( self , A__ , A__ = -1 , A__ = -1 , A__ = False , A__ = None , ) -> Mapping[str, Any]: _SCREAMING_SNAKE_CASE = super(A__ , self ).generate_dummy_inputs( A__ , batch_size=A__ , seq_length=A__ , is_pair=A__ , framework=A__ ) # We need to order the input in the way they appears in the forward() _SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _SCREAMING_SNAKE_CASE = seqlen + 2 _SCREAMING_SNAKE_CASE = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _SCREAMING_SNAKE_CASE = [ (torch.zeros(A__ ), torch.zeros(A__ )) for _ in range(self.num_layers ) ] _SCREAMING_SNAKE_CASE = common_inputs["""attention_mask"""] if self.use_past: _SCREAMING_SNAKE_CASE = ordered_inputs["""attention_mask"""].dtype _SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(A__ , A__ , dtype=A__ )] , dim=1 ) return ordered_inputs @property def UpperCamelCase ( self ) -> int: return 13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available UpperCamelCase__ : int = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
1
'''simple docstring''' import sys UpperCamelCase__ : int = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = N ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = -sys.maxsize - 1 for i in range(len(SCREAMING_SNAKE_CASE_ ) - 12 ): _SCREAMING_SNAKE_CASE = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _SCREAMING_SNAKE_CASE = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
0
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = XCLIPTextConfig() # derive patch size from model name _SCREAMING_SNAKE_CASE = model_name.find("""patch""" ) _SCREAMING_SNAKE_CASE = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) _SCREAMING_SNAKE_CASE = XCLIPVisionConfig(patch_size=SCREAMING_SNAKE_CASE_ , num_frames=SCREAMING_SNAKE_CASE_ ) if "large" in model_name: _SCREAMING_SNAKE_CASE = 7_68 _SCREAMING_SNAKE_CASE = 30_72 _SCREAMING_SNAKE_CASE = 12 _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = 40_96 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 7_68 _SCREAMING_SNAKE_CASE = 30_72 if model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE = 3_36 _SCREAMING_SNAKE_CASE = XCLIPConfig.from_text_vision_configs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "large" in model_name: _SCREAMING_SNAKE_CASE = 7_68 return config def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" # text encoder if name == "token_embedding.weight": _SCREAMING_SNAKE_CASE = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: _SCREAMING_SNAKE_CASE = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""c_proj""" , """fc2""" ) if name.startswith("""transformer.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: _SCREAMING_SNAKE_CASE = name.replace("""attn.out_proj""" , """self_attn.out_proj""" ) if "ln_final" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_final""" , """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": _SCREAMING_SNAKE_CASE = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" ) if "visual.conv1" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" ) if "visual.proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.proj""" , """visual_projection.weight""" ) if "text_projection" in name: _SCREAMING_SNAKE_CASE = name.replace("""text_projection""" , """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" ) if "prompts_visual_ln" in name: _SCREAMING_SNAKE_CASE = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""positional""" , """position""" ) if name.startswith("""mit.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""mit.resblocks""" , """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): _SCREAMING_SNAKE_CASE = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" ) return name def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "attn.in_proj" in key: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if key.startswith("""visual""" ): _SCREAMING_SNAKE_CASE = key_split[3] _SCREAMING_SNAKE_CASE = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: _SCREAMING_SNAKE_CASE = val[ :dim, : ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE = val[ :dim ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[ -dim: ] else: if "weight" in key: _SCREAMING_SNAKE_CASE = val[ :dim, : ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[-dim:] elif key.startswith("""mit""" ): _SCREAMING_SNAKE_CASE = key_split[2] _SCREAMING_SNAKE_CASE = config.vision_config.mit_hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[dim : dim * 2] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = key_split[2] _SCREAMING_SNAKE_CASE = config.text_config.hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = rename_key(SCREAMING_SNAKE_CASE_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: _SCREAMING_SNAKE_CASE = val.T _SCREAMING_SNAKE_CASE = val return orig_state_dict def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" if num_frames == 8: _SCREAMING_SNAKE_CASE = """eating_spaghetti_8_frames.npy""" elif num_frames == 16: _SCREAMING_SNAKE_CASE = """eating_spaghetti.npy""" elif num_frames == 32: _SCREAMING_SNAKE_CASE = """eating_spaghetti_32_frames.npy""" _SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename=SCREAMING_SNAKE_CASE_ , repo_type="""dataset""" , ) _SCREAMING_SNAKE_CASE = np.load(SCREAMING_SNAKE_CASE_ ) return list(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } _SCREAMING_SNAKE_CASE = model_to_url[model_name] _SCREAMING_SNAKE_CASE = 8 if "16-frames" in model_name: _SCREAMING_SNAKE_CASE = 16 elif "shot" in model_name: _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = get_xclip_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = XCLIPModel(SCREAMING_SNAKE_CASE_ ) model.eval() if "drive" in checkpoint_url: _SCREAMING_SNAKE_CASE = """pytorch_model.bin""" gdown.cached_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , quiet=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" )["""model"""] else: _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ )["""model"""] _SCREAMING_SNAKE_CASE = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = XCLIPModel(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() _SCREAMING_SNAKE_CASE = 3_36 if model_name == """xclip-large-patch14-16-frames""" else 2_24 _SCREAMING_SNAKE_CASE = VideoMAEImageProcessor(size=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) _SCREAMING_SNAKE_CASE = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) _SCREAMING_SNAKE_CASE = XCLIPProcessor(image_processor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = prepare_video(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , padding=SCREAMING_SNAKE_CASE_ ) print("""Shape of pixel values:""" , inputs.pixel_values.shape ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) # Verify outputs _SCREAMING_SNAKE_CASE = outputs.logits_per_video _SCREAMING_SNAKE_CASE = logits_per_video.softmax(dim=1 ) print("""Probs:""" , SCREAMING_SNAKE_CASE_ ) # kinetics-400 if model_name == "xclip-base-patch32": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F"Model name {model_name} not supported" ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) slow_tokenizer.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase__ : str = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
1
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> tuple: """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _a (_lowerCamelCase): """simple docstring""" def __init__( self , A__ , A__ ) -> Any: _SCREAMING_SNAKE_CASE = params _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array([len(A__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , A__ ) -> Dict: return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Tuple: return len(self.lengths ) def UpperCamelCase ( self ) -> Dict: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.params.max_model_input_size _SCREAMING_SNAKE_CASE = self.lengths > max_len logger.info(F"Splitting {sum(A__ )} too long sequences." ) def divide_chunks(A__ , A__ ): return [l[i : i + n] for i in range(0 , len(A__ ) , A__ )] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] if self.params.mlm: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _SCREAMING_SNAKE_CASE = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , 0 , A__ ) if sub_s[-1] != sep_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , len(A__ ) , A__ ) assert len(A__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(A__ ) new_tok_ids.extend(A__ ) new_lengths.extend([len(A__ ) for l in sub_seqs] ) _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array(A__ ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = self.lengths > 11 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def UpperCamelCase ( self ) -> int: if "unk_token" not in self.params.special_tok_ids: return else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _SCREAMING_SNAKE_CASE = (unk_occs / self.lengths) < 0.5 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def UpperCamelCase ( self ) -> Optional[Any]: if not self.params.is_master: return logger.info(F"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCamelCase ( self , A__ ) -> Any: _SCREAMING_SNAKE_CASE = [t[0] for t in batch] _SCREAMING_SNAKE_CASE = [t[1] for t in batch] assert len(A__ ) == len(A__ ) # Max for paddings _SCREAMING_SNAKE_CASE = max(A__ ) # Pad token ids if self.params.mlm: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""pad_token"""] else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = [list(t.astype(A__ ) ) + [pad_idx] * (max_seq_len_ - len(A__ )) for t in token_ids] assert len(tk_ ) == len(A__ ) assert all(len(A__ ) == max_seq_len_ for t in tk_ ) _SCREAMING_SNAKE_CASE = torch.tensor(tk_ ) # (bs, max_seq_len_) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) # (bs) return tk_t, lg_t
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase__ : List[Any] = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : Any = "▁" UpperCamelCase__ : Any = {"vocab_file": "spiece.model"} UpperCamelCase__ : int = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } UpperCamelCase__ : Optional[int] = { "google/reformer-crime-and-punishment": 524_288, } class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , A__ , A__="</s>" , A__="<unk>" , A__=[] , A__ = None , **A__ , ) -> None: _SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A__ , unk_token=A__ , additional_special_tokens=A__ , sp_model_kwargs=self.sp_model_kwargs , **A__ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A__ ) @property def UpperCamelCase ( self ) -> Any: return self.sp_model.get_piece_size() def UpperCamelCase ( self ) -> Dict[str, int]: _SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: _SCREAMING_SNAKE_CASE = self.__dict__.copy() _SCREAMING_SNAKE_CASE = None return state def __setstate__( self , A__ ) -> str: _SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self , A__ ) -> List[str]: return self.sp_model.encode(A__ , out_type=A__ ) def UpperCamelCase ( self , A__ ) -> Union[str, Any]: return self.sp_model.piece_to_id(A__ ) def UpperCamelCase ( self , A__ ) -> List[Any]: if index < self.sp_model.get_piece_size(): _SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(A__ ) return token def UpperCamelCase ( self , A__ ) -> str: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A__ ) + token _SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(A__ ) out_string += self.sp_model.decode(A__ ) return out_string.strip() def UpperCamelCase ( self , A__ , A__ = None ) -> Tuple[str]: if not os.path.isdir(A__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _SCREAMING_SNAKE_CASE = os.path.join( A__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , """wb""" ) as fi: _SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,)
0
1
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _SCREAMING_SNAKE_CASE = [p / w for p, w in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] # Creating a copy of the list and sorting profit/weight in ascending order _SCREAMING_SNAKE_CASE = sorted(SCREAMING_SNAKE_CASE_ ) # declaring useful variables _SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _SCREAMING_SNAKE_CASE = sorted_profit_by_weight[length - i - 1] _SCREAMING_SNAKE_CASE = profit_by_weight.index(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( "Input profits, weights, and then max_weight (all positive ints) separated by " "spaces." ) UpperCamelCase__ : Optional[Any] = [int(x) for x in input("Input profits separated by spaces: ").split()] UpperCamelCase__ : Union[str, Any] = [int(x) for x in input("Input weights separated by spaces: ").split()] UpperCamelCase__ : List[Any] = int(input("Max weight allowed: ")) # Function Call calc_profit(profit, weight, max_weight)
0
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _a (_lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = MobileBertTokenizer SCREAMING_SNAKE_CASE = MobileBertTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = filter_non_english SCREAMING_SNAKE_CASE = 'google/mobilebert-uncased' def UpperCamelCase ( self ) -> Any: super().setUp() _SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _SCREAMING_SNAKE_CASE = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCamelCase ( self , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = """unwanted, running""" return input_text, output_text def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(A__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [9, 6, 7, 12, 10, 11] ) def UpperCamelCase ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) # With lower casing _SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=A__ ) _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _SCREAMING_SNAKE_CASE = {} for i, token in enumerate(A__ ): _SCREAMING_SNAKE_CASE = i _SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=A__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def UpperCamelCase ( self ) -> str: self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def UpperCamelCase ( self ) -> Union[str, Any]: self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def UpperCamelCase ( self ) -> Dict: self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A__ , A__ ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def UpperCamelCase ( self ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." _SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( A__ , return_attention_mask=A__ , return_token_type_ids=A__ , return_offsets_mapping=A__ , add_special_tokens=A__ , ) _SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(A__ , """do_lower_case""" ) else False _SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] _SCREAMING_SNAKE_CASE = """""".join(A__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that only the first Chinese character is not preceded by "##". _SCREAMING_SNAKE_CASE = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(A__ ) ] self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ )
0
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCamelCase__ : Any = TypeVar("T") UpperCamelCase__ : Optional[int] = TypeVar("U") class _a (Generic[T, U]): """simple docstring""" def __init__( self , A__ , A__ ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = key _SCREAMING_SNAKE_CASE = val _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None def __repr__( self ) -> str: return ( F"Node: key: {self.key}, val: {self.val}, " F"has next: {bool(self.next )}, has prev: {bool(self.prev )}" ) class _a (Generic[T, U]): """simple docstring""" def __init__( self ) -> None: _SCREAMING_SNAKE_CASE = DoubleLinkedListNode(A__ , A__ ) _SCREAMING_SNAKE_CASE = DoubleLinkedListNode(A__ , A__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.rear, self.head def __repr__( self ) -> str: _SCREAMING_SNAKE_CASE = ["""DoubleLinkedList"""] _SCREAMING_SNAKE_CASE = self.head while node.next is not None: rep.append(str(A__ ) ) _SCREAMING_SNAKE_CASE = node.next rep.append(str(self.rear ) ) return ",\n ".join(A__ ) def UpperCamelCase ( self , A__ ) -> None: _SCREAMING_SNAKE_CASE = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _SCREAMING_SNAKE_CASE = node _SCREAMING_SNAKE_CASE = previous _SCREAMING_SNAKE_CASE = node _SCREAMING_SNAKE_CASE = self.rear def UpperCamelCase ( self , A__ ) -> DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None _SCREAMING_SNAKE_CASE = node.next _SCREAMING_SNAKE_CASE = node.prev _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None return node class _a (Generic[T, U]): """simple docstring""" SCREAMING_SNAKE_CASE = {} def __init__( self , A__ ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = DoubleLinkedList() _SCREAMING_SNAKE_CASE = capacity _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = {} def __repr__( self ) -> str: return ( F"CacheInfo(hits={self.hits}, misses={self.miss}, " F"capacity={self.capacity}, current size={self.num_keys})" ) def __contains__( self , A__ ) -> bool: return key in self.cache def UpperCamelCase ( self , A__ ) -> U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 _SCREAMING_SNAKE_CASE = self.cache[key] _SCREAMING_SNAKE_CASE = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(A__ ) return node.val self.miss += 1 return None def UpperCamelCase ( self , A__ , A__ ) -> None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _SCREAMING_SNAKE_CASE = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(A__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _SCREAMING_SNAKE_CASE = DoubleLinkedListNode(A__ , A__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _SCREAMING_SNAKE_CASE = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _SCREAMING_SNAKE_CASE = value self.list.add(A__ ) @classmethod def UpperCamelCase ( cls , A__ = 1_28 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(A__ ) -> Callable[..., U]: def cache_decorator_wrapper(*A__ ) -> U: if func not in cls.decorator_function_to_instance_map: _SCREAMING_SNAKE_CASE = LRUCache(A__ ) _SCREAMING_SNAKE_CASE = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _SCREAMING_SNAKE_CASE = func(*A__ ) cls.decorator_function_to_instance_map[func].put(args[0] , A__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(A__ , """cache_info""" , A__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
0
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput UpperCamelCase__ : Tuple = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a (_lowerCamelCase): """simple docstring""" def __init__( self , *A__ , A__=None , A__=None , A__=None , **A__ ) -> Optional[int]: super().__init__(*A__ , **A__ ) _SCREAMING_SNAKE_CASE = eval_examples _SCREAMING_SNAKE_CASE = post_process_function _SCREAMING_SNAKE_CASE = quant_trainer_args _SCREAMING_SNAKE_CASE = 1_28 # default number of calibration samples def UpperCamelCase ( self , A__=None ) -> Union[str, Any]: if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) _SCREAMING_SNAKE_CASE = calib_dataset if calib_dataset is not None else self.calib_dataset _SCREAMING_SNAKE_CASE = self._remove_unused_columns(A__ , description="""Calibration""" ) return DataLoader( A__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=A__ , ) def UpperCamelCase ( self , A__=None ) -> str: _SCREAMING_SNAKE_CASE = self.train_dataset if calib_dataset is None else calib_dataset _SCREAMING_SNAKE_CASE = self.get_calib_dataloader(A__ ) _SCREAMING_SNAKE_CASE = self.model quant_trainer.configure_model(A__ , self.quant_trainer_args , calib=A__ ) model.eval() quant_trainer.enable_calibration(A__ ) logger.info("""***** Running calibration *****""" ) logger.info(F" Num examples = {self.calib_num}" ) logger.info(F" Batch size = {calib_dataloader.batch_size}" ) for step, inputs in enumerate(A__ ): # Prediction step _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.prediction_step(A__ , A__ , prediction_loss_only=A__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(A__ , self.quant_trainer_args ) _SCREAMING_SNAKE_CASE = model def UpperCamelCase ( self , A__=None , A__=None , A__=None , A__ = "eval" ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset _SCREAMING_SNAKE_CASE = self.get_eval_dataloader(A__ ) _SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) self.log(A__ ) else: _SCREAMING_SNAKE_CASE = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , A__ ) return metrics def UpperCamelCase ( self , A__ , A__ , A__=None , A__ = "test" ) -> List[str]: _SCREAMING_SNAKE_CASE = self.get_test_dataloader(A__ ) # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions , """predict""" ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A__ ) def UpperCamelCase ( self , A__="./" ) -> Tuple: _SCREAMING_SNAKE_CASE = self.eval_dataset _SCREAMING_SNAKE_CASE = self.get_eval_dataloader(A__ ) _SCREAMING_SNAKE_CASE = next(iter(A__ ) ) # saving device - to make it consistent _SCREAMING_SNAKE_CASE = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple _SCREAMING_SNAKE_CASE = tuple(v.to(A__ ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = self.model.to(A__ ) model.eval() model.float() _SCREAMING_SNAKE_CASE = model.module if hasattr(A__ , """module""" ) else model quant_trainer.configure_model(A__ , self.quant_trainer_args ) _SCREAMING_SNAKE_CASE = os.path.join(A__ , """model.onnx""" ) logger.info(F"exporting model to {output_model_file}" ) _SCREAMING_SNAKE_CASE = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( A__ , A__ , A__ , export_params=A__ , opset_version=13 , do_constant_folding=A__ , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=A__ , ) logger.info("""onnx export finished""" )
0
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _a (unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 1_28, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 1_42, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } _SCREAMING_SNAKE_CASE = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 1_28, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 1_42, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(A__ ) , A__ ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(A__ ) , x.transpose() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , transpose(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , transpose(A__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , transpose(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , transpose(A__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , np.asarray(transpose(A__ ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , np.asarray(transpose(A__ , axes=(1, 2, 0) ) ) ) ) def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , np.reshape(A__ , (4, 3) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , np.reshape(A__ , (12, 5) ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , reshape(A__ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , reshape(A__ , (12, 5) ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , reshape(A__ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , reshape(A__ , (12, 5) ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , np.asarray(reshape(A__ , (4, 3) ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , np.asarray(reshape(A__ , (12, 5) ) ) ) ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(A__ ) , np.squeeze(A__ ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , np.squeeze(A__ , axis=2 ) ) ) @require_torch def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , squeeze(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , squeeze(A__ , axis=2 ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , squeeze(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , squeeze(A__ , axis=2 ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , np.asarray(squeeze(A__ ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , np.asarray(squeeze(A__ , axis=2 ) ) ) ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , np.expand_dims(A__ , axis=1 ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , expand_dims(A__ , axis=1 ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , expand_dims(A__ , axis=1 ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , np.asarray(expand_dims(A__ , axis=1 ) ) ) )
0
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bytes: """simple docstring""" # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
0
1
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = False, False, False @dataclass class _a : """simple docstring""" SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = None # Automatically constructed SCREAMING_SNAKE_CASE = "dict" SCREAMING_SNAKE_CASE = pa.struct({'bytes': pa.binary(), 'path': pa.string()}) SCREAMING_SNAKE_CASE = field(default='Audio' , init=_lowerCamelCase , repr=_lowerCamelCase) def __call__( self ) -> Dict: return self.pa_type def UpperCamelCase ( self , A__ ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(A__ , A__ ): return {"bytes": None, "path": value} elif isinstance(A__ , A__ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _SCREAMING_SNAKE_CASE = BytesIO() sf.write(A__ , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _SCREAMING_SNAKE_CASE = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 3_27_67 else: _SCREAMING_SNAKE_CASE = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 3_27_67 _SCREAMING_SNAKE_CASE = BytesIO(bytes() ) sf.write(A__ , A__ , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def UpperCamelCase ( self , A__ , A__ = None ) -> dict: if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(F"An audio sample should have one of 'path' or 'bytes' but both are None in {value}." ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err _SCREAMING_SNAKE_CASE = xsplitext(A__ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: _SCREAMING_SNAKE_CASE = token_per_repo_id or {} _SCREAMING_SNAKE_CASE = path.split("""::""" )[-1] try: _SCREAMING_SNAKE_CASE = string_to_dict(A__ , config.HUB_DATASETS_URL )["""repo_id"""] _SCREAMING_SNAKE_CASE = token_per_repo_id[repo_id] except (ValueError, KeyError): _SCREAMING_SNAKE_CASE = None with xopen(A__ , """rb""" , use_auth_token=A__ ) as f: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = sf.read(A__ ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = sf.read(A__ ) _SCREAMING_SNAKE_CASE = array.T if self.mono: _SCREAMING_SNAKE_CASE = librosa.to_mono(A__ ) if self.sampling_rate and self.sampling_rate != sampling_rate: _SCREAMING_SNAKE_CASE = librosa.resample(A__ , orig_sr=A__ , target_sr=self.sampling_rate ) _SCREAMING_SNAKE_CASE = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCamelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def UpperCamelCase ( self , A__ ) -> pa.StructArray: if pa.types.is_string(storage.type ): _SCREAMING_SNAKE_CASE = pa.array([None] * len(A__ ) , type=pa.binary() ) _SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _SCREAMING_SNAKE_CASE = pa.array([None] * len(A__ ) , type=pa.string() ) _SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): _SCREAMING_SNAKE_CASE = pa.array([Audio().encode_example(A__ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: _SCREAMING_SNAKE_CASE = storage.field("""bytes""" ) else: _SCREAMING_SNAKE_CASE = pa.array([None] * len(A__ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: _SCREAMING_SNAKE_CASE = storage.field("""path""" ) else: _SCREAMING_SNAKE_CASE = pa.array([None] * len(A__ ) , type=pa.string() ) _SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(A__ , self.pa_type ) def UpperCamelCase ( self , A__ ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(A__ ): with xopen(A__ , """rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() return bytes_ _SCREAMING_SNAKE_CASE = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _SCREAMING_SNAKE_CASE = pa.array( [os.path.basename(A__ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) _SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(A__ , self.pa_type )
0
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def lowerCAmelCase_ ( ) -> int: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("""https://huggingface.co""" )
0
1
'''simple docstring''' from math import sqrt def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 for i in range(1 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE_ ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE_ ): total += i return total - n def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = 1_00_00 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = sum( i for i in range(1 , SCREAMING_SNAKE_CASE_ ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE_ ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
0
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> Iterator[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 2 while True: if is_prime(SCREAMING_SNAKE_CASE_ ): yield num num += 1 def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = 2_00_00_00 ) -> int: """simple docstring""" return sum(takewhile(lambda SCREAMING_SNAKE_CASE_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
0
1
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets UpperCamelCase__ : int = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCamelCase__ : str = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" UpperCamelCase__ : Optional[int] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a (datasets.Metric): """simple docstring""" def UpperCamelCase ( self ) -> Dict: if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def UpperCamelCase ( self , A__ , A__ , A__ = False , A__ = False , A__ = False , A__ = False , ) -> Dict: _SCREAMING_SNAKE_CASE = len(references[0] ) if any(len(A__ ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) _SCREAMING_SNAKE_CASE = [[refs[i] for refs in references] for i in range(A__ )] _SCREAMING_SNAKE_CASE = TER( normalized=A__ , no_punct=A__ , asian_support=A__ , case_sensitive=A__ , ) _SCREAMING_SNAKE_CASE = sb_ter.corpus_score(A__ , A__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _a (unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 1_28, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 1_42, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } _SCREAMING_SNAKE_CASE = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 1_28, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 1_42, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(A__ ) , A__ ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(A__ ) , x.transpose() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , transpose(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , transpose(A__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , transpose(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , transpose(A__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , np.asarray(transpose(A__ ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , np.asarray(transpose(A__ , axes=(1, 2, 0) ) ) ) ) def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , np.reshape(A__ , (4, 3) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , np.reshape(A__ , (12, 5) ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , reshape(A__ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , reshape(A__ , (12, 5) ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , reshape(A__ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , reshape(A__ , (12, 5) ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , np.asarray(reshape(A__ , (4, 3) ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , np.asarray(reshape(A__ , (12, 5) ) ) ) ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(A__ ) , np.squeeze(A__ ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , np.squeeze(A__ , axis=2 ) ) ) @require_torch def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , squeeze(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , squeeze(A__ , axis=2 ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , squeeze(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , squeeze(A__ , axis=2 ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , np.asarray(squeeze(A__ ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , np.asarray(squeeze(A__ , axis=2 ) ) ) ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , np.expand_dims(A__ , axis=1 ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , expand_dims(A__ , axis=1 ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , expand_dims(A__ , axis=1 ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , np.asarray(expand_dims(A__ , axis=1 ) ) ) )
0
1
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : """simple docstring""" def __init__( self , A__ , A__=13 , A__=30 , A__=2 , A__=3 , A__=True , A__=True , A__=32 , A__=2 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=10 , A__=0.02 , A__=3 , A__=0.6 , A__=None , ) -> List[str]: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = mask_ratio _SCREAMING_SNAKE_CASE = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 _SCREAMING_SNAKE_CASE = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ) -> List[Any]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCamelCase ( self , A__ , A__ , A__ ) -> Tuple: _SCREAMING_SNAKE_CASE = TFViTMAEModel(config=A__ ) _SCREAMING_SNAKE_CASE = model(A__ , training=A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self , A__ , A__ , A__ ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = TFViTMAEForPreTraining(A__ ) _SCREAMING_SNAKE_CASE = model(A__ , training=A__ ) # expected sequence length = num_patches _SCREAMING_SNAKE_CASE = (self.image_size // self.patch_size) ** 2 _SCREAMING_SNAKE_CASE = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = TFViTMAEForPreTraining(A__ ) _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE = model(A__ , training=A__ ) _SCREAMING_SNAKE_CASE = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _a (_lowerCamelCase , _lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () SCREAMING_SNAKE_CASE = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = TFViTMAEModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A__ , has_text_modality=A__ , hidden_size=37 ) def UpperCamelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def UpperCamelCase ( self ) -> List[Any]: pass def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(A__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ , tf.keras.layers.Layer ) ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(A__ ) _SCREAMING_SNAKE_CASE = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A__ ) def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: # make the mask reproducible np.random.seed(2 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = int((config.image_size // config.patch_size) ** 2 ) _SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(A__ ) _SCREAMING_SNAKE_CASE = self._prepare_for_class(A__ , A__ ) _SCREAMING_SNAKE_CASE = model(A__ , noise=A__ ) _SCREAMING_SNAKE_CASE = copy.deepcopy(self._prepare_for_class(A__ , A__ ) ) _SCREAMING_SNAKE_CASE = model(**A__ , noise=A__ ) _SCREAMING_SNAKE_CASE = outputs_dict[0].numpy() _SCREAMING_SNAKE_CASE = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def UpperCamelCase ( self ) -> Optional[Any]: # make the mask reproducible np.random.seed(2 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = int((config.image_size // config.patch_size) ** 2 ) _SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(A__ ): _SCREAMING_SNAKE_CASE = {} for k, v in inputs_dict.items(): if tf.is_tensor(A__ ): _SCREAMING_SNAKE_CASE = v.numpy() else: _SCREAMING_SNAKE_CASE = np.array(A__ ) return inputs_np_dict for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(A__ ) _SCREAMING_SNAKE_CASE = self._prepare_for_class(A__ , A__ ) _SCREAMING_SNAKE_CASE = prepare_numpy_arrays(A__ ) _SCREAMING_SNAKE_CASE = model(A__ , noise=A__ ) _SCREAMING_SNAKE_CASE = model(**A__ , noise=A__ ) self.assert_outputs_same(A__ , A__ ) def UpperCamelCase ( self , A__ , A__ , A__ ) -> Any: # make masks reproducible np.random.seed(2 ) _SCREAMING_SNAKE_CASE = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) _SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _SCREAMING_SNAKE_CASE = tf_noise super().check_pt_tf_models(A__ , A__ , A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: # make mask reproducible np.random.seed(2 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(A__ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(A__ , A__ ),) if isinstance(A__ , A__ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(A__ , """_keras_serializable""" , A__ ) } _SCREAMING_SNAKE_CASE = int((config.image_size // config.patch_size) ** 2 ) _SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _SCREAMING_SNAKE_CASE = tf.convert_to_tensor(A__ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: _SCREAMING_SNAKE_CASE = main_layer_class(A__ ) _SCREAMING_SNAKE_CASE = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } _SCREAMING_SNAKE_CASE = tf.keras.Model(A__ , outputs=main_layer(A__ ) ) _SCREAMING_SNAKE_CASE = model(A__ ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE = os.path.join(A__ , """keras_model.h5""" ) model.save(A__ ) _SCREAMING_SNAKE_CASE = tf.keras.models.load_model( A__ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(A__ , tf.keras.Model ) _SCREAMING_SNAKE_CASE = model(A__ ) self.assert_outputs_same(A__ , A__ ) @slow def UpperCamelCase ( self ) -> int: # make mask reproducible np.random.seed(2 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = int((config.image_size // config.patch_size) ** 2 ) _SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(A__ ) _SCREAMING_SNAKE_CASE = self._prepare_for_class(A__ , A__ ) _SCREAMING_SNAKE_CASE = model(A__ , noise=A__ ) if model_class.__name__ == "TFViTMAEModel": _SCREAMING_SNAKE_CASE = outputs.last_hidden_state.numpy() _SCREAMING_SNAKE_CASE = 0 else: _SCREAMING_SNAKE_CASE = outputs.logits.numpy() _SCREAMING_SNAKE_CASE = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A__ , saved_model=A__ ) _SCREAMING_SNAKE_CASE = model_class.from_pretrained(A__ ) _SCREAMING_SNAKE_CASE = model(A__ , noise=A__ ) if model_class.__name__ == "TFViTMAEModel": _SCREAMING_SNAKE_CASE = after_outputs["""last_hidden_state"""].numpy() _SCREAMING_SNAKE_CASE = 0 else: _SCREAMING_SNAKE_CASE = after_outputs["""logits"""].numpy() _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A__ , 1E-5 ) def UpperCamelCase ( self ) -> Dict: # make mask reproducible np.random.seed(2 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = int((config.image_size // config.patch_size) ** 2 ) _SCREAMING_SNAKE_CASE = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(A__ ) _SCREAMING_SNAKE_CASE = self._prepare_for_class(A__ , A__ ) _SCREAMING_SNAKE_CASE = model(A__ , noise=A__ ) _SCREAMING_SNAKE_CASE = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(A__ ) _SCREAMING_SNAKE_CASE = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config _SCREAMING_SNAKE_CASE = model_class.from_config(model.config ) _SCREAMING_SNAKE_CASE = new_model(A__ ) # Build model new_model.set_weights(model.get_weights() ) _SCREAMING_SNAKE_CASE = new_model(A__ , noise=A__ ) self.assert_outputs_same(A__ , A__ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def UpperCamelCase ( self ) -> Any: pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def UpperCamelCase ( self ) -> Tuple: pass @slow def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(A__ ) def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _a (unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase ( self ) -> Optional[Any]: return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def UpperCamelCase ( self ) -> List[Any]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) _SCREAMING_SNAKE_CASE = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) _SCREAMING_SNAKE_CASE = self.default_image_processor _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = image_processor(images=A__ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _SCREAMING_SNAKE_CASE = ViTMAEConfig() _SCREAMING_SNAKE_CASE = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _SCREAMING_SNAKE_CASE = np.random.uniform(size=(1, num_patches) ) # forward pass _SCREAMING_SNAKE_CASE = model(**A__ , noise=A__ ) # verify the logits _SCREAMING_SNAKE_CASE = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape , A__ ) _SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , A__ , atol=1E-4 )
0
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , A__ = None , A__ = None , **A__ , ) -> Optional[int]: super().__init__(self , **A__ ) _SCREAMING_SNAKE_CASE = repo_info _SCREAMING_SNAKE_CASE = token _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> Tuple: if self.dir_cache is None: _SCREAMING_SNAKE_CASE = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _SCREAMING_SNAKE_CASE = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(A__ ): {"""name""": str(A__ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def UpperCamelCase ( self , A__ , A__ = "rb" , **A__ , ) -> Optional[int]: if not isinstance(self.repo_info , A__ ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) _SCREAMING_SNAKE_CASE = hf_hub_url(self.repo_info.id , A__ , revision=self.repo_info.sha ) return fsspec.open( A__ , mode=A__ , headers=get_authentication_headers_for_url(A__ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def UpperCamelCase ( self , A__ , **A__ ) -> str: self._get_dirs() _SCREAMING_SNAKE_CASE = self._strip_protocol(A__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(A__ ) def UpperCamelCase ( self , A__ , A__=False , **A__ ) -> List[Any]: self._get_dirs() _SCREAMING_SNAKE_CASE = PurePosixPath(path.strip("""/""" ) ) _SCREAMING_SNAKE_CASE = {} for p, f in self.dir_cache.items(): _SCREAMING_SNAKE_CASE = PurePosixPath(p.strip("""/""" ) ) _SCREAMING_SNAKE_CASE = p.parent if root == path: _SCREAMING_SNAKE_CASE = f _SCREAMING_SNAKE_CASE = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
0
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Tuple = logging.get_logger(__name__) UpperCamelCase__ : int = {"vocab_file": "spiece.model"} UpperCamelCase__ : Tuple = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } UpperCamelCase__ : Dict = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } UpperCamelCase__ : Dict = "▁" class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A__ , A__=True , A__=True , A__=False , A__="[CLS]" , A__="[SEP]" , A__="<unk>" , A__="[SEP]" , A__="<pad>" , A__="[CLS]" , A__="[MASK]" , A__ = None , **A__ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _SCREAMING_SNAKE_CASE = ( AddedToken(A__ , lstrip=A__ , rstrip=A__ , normalized=A__ ) if isinstance(A__ , A__ ) else mask_token ) _SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , bos_token=A__ , eos_token=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , sp_model_kwargs=self.sp_model_kwargs , **A__ , ) _SCREAMING_SNAKE_CASE = do_lower_case _SCREAMING_SNAKE_CASE = remove_space _SCREAMING_SNAKE_CASE = keep_accents _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A__ ) @property def UpperCamelCase ( self ) -> int: return len(self.sp_model ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: _SCREAMING_SNAKE_CASE = self.__dict__.copy() _SCREAMING_SNAKE_CASE = None return state def __setstate__( self , A__ ) -> str: _SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self , A__ ) -> Union[str, Any]: if self.remove_space: _SCREAMING_SNAKE_CASE = """ """.join(inputs.strip().split() ) else: _SCREAMING_SNAKE_CASE = inputs _SCREAMING_SNAKE_CASE = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _SCREAMING_SNAKE_CASE = unicodedata.normalize("""NFKD""" , A__ ) _SCREAMING_SNAKE_CASE = """""".join([c for c in outputs if not unicodedata.combining(A__ )] ) if self.do_lower_case: _SCREAMING_SNAKE_CASE = outputs.lower() return outputs def UpperCamelCase ( self , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = self.preprocess_text(A__ ) _SCREAMING_SNAKE_CASE = self.sp_model.encode(A__ , out_type=A__ ) _SCREAMING_SNAKE_CASE = [] for piece in pieces: if len(A__ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _SCREAMING_SNAKE_CASE = self.sp_model.EncodeAsPieces(piece[:-1].replace(A__ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _SCREAMING_SNAKE_CASE = cur_pieces[1:] else: _SCREAMING_SNAKE_CASE = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(A__ ) else: new_pieces.append(A__ ) return new_pieces def UpperCamelCase ( self , A__ ) -> Tuple: return self.sp_model.PieceToId(A__ ) def UpperCamelCase ( self , A__ ) -> List[str]: return self.sp_model.IdToPiece(A__ ) def UpperCamelCase ( self , A__ ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = """""" _SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A__ ) + token _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(A__ ) _SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(A__ ) return out_string.strip() def UpperCamelCase ( self , A__ , A__ = None ) -> List[int]: _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self , A__ , A__ = None , A__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) if token_ids_a is not None: return [1] + ([0] * len(A__ )) + [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1] def UpperCamelCase ( self , A__ , A__ = None ) -> List[int]: _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self , A__ , A__ = None ) -> Tuple[str]: if not os.path.isdir(A__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _SCREAMING_SNAKE_CASE = os.path.join( A__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , """wb""" ) as fi: _SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,)
0
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features _SCREAMING_SNAKE_CASE = ( Features({feature: Value(SCREAMING_SNAKE_CASE_ ) for feature, dtype in features.items()} ) if features is not None else None ) _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = parquet_path elif issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = [parquet_path] _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=("train",) ) -> List[str]: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for split in splits: _SCREAMING_SNAKE_CASE = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _SCREAMING_SNAKE_CASE = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features _SCREAMING_SNAKE_CASE = ( Features({feature: Value(SCREAMING_SNAKE_CASE_ ) for feature, dtype in features.items()} ) if features is not None else None ) _SCREAMING_SNAKE_CASE = ParquetDatasetReader({"""train""": parquet_path} , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" if split: _SCREAMING_SNAKE_CASE = {split: parquet_path} else: _SCREAMING_SNAKE_CASE = """train""" _SCREAMING_SNAKE_CASE = {"""train""": parquet_path, """test""": parquet_path} _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ParquetDatasetWriter(SCREAMING_SNAKE_CASE_ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _SCREAMING_SNAKE_CASE = pq.ParquetFile(tmp_path / """foo.parquet""" ) _SCREAMING_SNAKE_CASE = pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = str(shared_datadir / """test_image_rgb.jpg""" ) _SCREAMING_SNAKE_CASE = {"""image""": [image_path]} _SCREAMING_SNAKE_CASE = Features({"""image""": Image()} ) _SCREAMING_SNAKE_CASE = Dataset.from_dict(SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = ParquetDatasetWriter(SCREAMING_SNAKE_CASE_ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _SCREAMING_SNAKE_CASE = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _SCREAMING_SNAKE_CASE = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=SCREAMING_SNAKE_CASE_ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" assert get_writer_batch_size(SCREAMING_SNAKE_CASE_ ) == expected
0
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = 'markuplm' def __init__( self , A__=3_05_22 , A__=7_68 , A__=12 , A__=12 , A__=30_72 , A__="gelu" , A__=0.1 , A__=0.1 , A__=5_12 , A__=2 , A__=0.02 , A__=1E-12 , A__=0 , A__=0 , A__=2 , A__=2_56 , A__=10_24 , A__=2_16 , A__=10_01 , A__=32 , A__=50 , A__="absolute" , A__=True , A__=None , **A__ , ) -> int: super().__init__( pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ , ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = position_embedding_type _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = classifier_dropout # additional properties _SCREAMING_SNAKE_CASE = max_depth _SCREAMING_SNAKE_CASE = max_xpath_tag_unit_embeddings _SCREAMING_SNAKE_CASE = max_xpath_subs_unit_embeddings _SCREAMING_SNAKE_CASE = tag_pad_id _SCREAMING_SNAKE_CASE = subs_pad_id _SCREAMING_SNAKE_CASE = xpath_unit_hidden_size
0
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: _SCREAMING_SNAKE_CASE = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] _SCREAMING_SNAKE_CASE = 1 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total *= numbers[i] _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: _SCREAMING_SNAKE_CASE = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] _SCREAMING_SNAKE_CASE = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total += numbers[i] _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
0
1
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = F"Input value of [number={number}] must be an integer" raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 0: return False _SCREAMING_SNAKE_CASE = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
0
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase__ : Tuple = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) UpperCamelCase__ : Union[str, Any] = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase__ : str = "sshleifer/tiny-mbart" @require_torch class _a (_lowerCamelCase): """simple docstring""" def UpperCamelCase ( self , A__=False , A__=None , A__=True , A__=True , A__=True , A__=True , ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.run_trainer( eval_steps=1 , max_len=12 , model_name=A__ , num_train_epochs=1 , distributed=A__ , extra_args_str=A__ , predict_with_generate=A__ , do_train=A__ , do_eval=A__ , do_predict=A__ , ) _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(os.path.join(A__ , """trainer_state.json""" ) ).log_history if not do_eval: return _SCREAMING_SNAKE_CASE = [log for log in logs if """eval_loss""" in log.keys()] _SCREAMING_SNAKE_CASE = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats _SCREAMING_SNAKE_CASE = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , A__ ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def UpperCamelCase ( self ) -> Optional[int]: self.run_seqaseq_quick() @require_torch_multi_gpu def UpperCamelCase ( self ) -> Optional[Any]: self.run_seqaseq_quick(distributed=A__ ) @require_torch_multi_gpu def UpperCamelCase ( self ) -> Union[str, Any]: self.run_seqaseq_quick(distributed=A__ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> Any: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> Tuple: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> str: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=A__ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> List[str]: self.run_seqaseq_quick( distributed=A__ , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=A__ ) @require_apex @require_torch_gpu def UpperCamelCase ( self ) -> Optional[Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def UpperCamelCase ( self , A__ ) -> List[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout _SCREAMING_SNAKE_CASE = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } _SCREAMING_SNAKE_CASE = experiments[experiment_id] _SCREAMING_SNAKE_CASE = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} _SCREAMING_SNAKE_CASE = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**A__ , extra_args_str=data["""extra_args_str"""] ) _SCREAMING_SNAKE_CASE = len(re.findall(A__ , cl.err ) ) self.assertEqual(A__ , data["""n_matches"""] ) @slow def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=A__ , learning_rate=3E-4 , num_train_epochs=10 , distributed=A__ , ) # Check metrics _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(os.path.join(A__ , """trainer_state.json""" ) ).log_history _SCREAMING_SNAKE_CASE = [log for log in logs if """eval_loss""" in log.keys()] _SCREAMING_SNAKE_CASE = eval_metrics[0] _SCREAMING_SNAKE_CASE = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , A__ ) # test if do_predict saves generations and metrics _SCREAMING_SNAKE_CASE = os.listdir(A__ ) _SCREAMING_SNAKE_CASE = {os.path.basename(A__ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def UpperCamelCase ( self ) -> Dict: from transformers.training_args import OptimizerNames def train_and_return_metrics(A__ ) -> Tuple[int, float]: _SCREAMING_SNAKE_CASE = """--skip_memory_metrics 0""" _SCREAMING_SNAKE_CASE = self.run_trainer( max_len=1_28 , model_name=A__ , learning_rate=3E-4 , num_train_epochs=1 , optim=A__ , distributed=A__ , extra_args_str=A__ , do_eval=A__ , do_predict=A__ , n_gpus_to_use=1 , ) # Check metrics _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(Path(A__ , """trainer_state.json""" ) ).log_history _SCREAMING_SNAKE_CASE = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) _SCREAMING_SNAKE_CASE = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) _SCREAMING_SNAKE_CASE = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) _SCREAMING_SNAKE_CASE = gpu_alloc_mem_orig - gpu_alloc_mem_bnb _SCREAMING_SNAKE_CASE = gpu_peak_mem_orig + gpu_alloc_mem_orig _SCREAMING_SNAKE_CASE = gpu_peak_mem_bnb + gpu_alloc_mem_bnb _SCREAMING_SNAKE_CASE = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings _SCREAMING_SNAKE_CASE = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( A__ , A__ , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" F" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" F" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( A__ , A__ , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" F" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" F" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( A__ , A__ , F"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}" ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ = 3E-3 , A__ = "adafactor" , A__ = False , A__ = None , A__ = 0 , A__ = True , A__ = True , A__ = True , A__ = True , A__ = None , ) -> Dict: _SCREAMING_SNAKE_CASE = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" _SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() _SCREAMING_SNAKE_CASE = F"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(A__ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(A__ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() _SCREAMING_SNAKE_CASE = F"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(A__ )}\n ".split() _SCREAMING_SNAKE_CASE = """ --do_predict """.split() _SCREAMING_SNAKE_CASE = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: _SCREAMING_SNAKE_CASE = get_gpu_count() _SCREAMING_SNAKE_CASE = get_torch_dist_unique_port() _SCREAMING_SNAKE_CASE = F"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() _SCREAMING_SNAKE_CASE = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A__ , env=self.get_env() ) else: _SCREAMING_SNAKE_CASE = ["""run_translation.py"""] + args with patch.object(A__ , """argv""" , A__ ): main() return output_dir
0
1
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore UpperCamelCase__ : Union[str, Any] = namedtuple("covid_data", "cases deaths recovered") def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = "https://www.worldometers.info/coronavirus/" ) -> covid_data: """simple docstring""" _SCREAMING_SNAKE_CASE = """//div[@class = \"maincounter-number\"]/span/text()""" return covid_data(*html.fromstring(requests.get(SCREAMING_SNAKE_CASE_ ).content ).xpath(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ : Tuple = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
0
'''simple docstring''' import sys UpperCamelCase__ : int = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = N ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = -sys.maxsize - 1 for i in range(len(SCREAMING_SNAKE_CASE_ ) - 12 ): _SCREAMING_SNAKE_CASE = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _SCREAMING_SNAKE_CASE = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
0
1
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = 1_00_00_00 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = {1: 1} for inputa in range(2 , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _SCREAMING_SNAKE_CASE = (3 * number) + 1 counter += 1 if inputa not in counters: _SCREAMING_SNAKE_CASE = counter if counter > pre_counter: _SCREAMING_SNAKE_CASE = inputa _SCREAMING_SNAKE_CASE = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
0
'''simple docstring''' UpperCamelCase__ : Dict = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } UpperCamelCase__ : str = {value: key for key, value in encode_dict.items()} def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" if set(SCREAMING_SNAKE_CASE_ ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) _SCREAMING_SNAKE_CASE = """""" for word in coded.split(): while len(SCREAMING_SNAKE_CASE_ ) != 0: decoded += decode_dict[word[:5]] _SCREAMING_SNAKE_CASE = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
0
1
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False ) -> bool: """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis _SCREAMING_SNAKE_CASE = [ 20_47, 1_37_36_53, 25_32_60_01, 32_15_03_17_51, 2_15_23_02_89_87_47, 3_47_47_49_66_03_83, 3_41_55_00_71_72_83_21, 1, 3_82_51_23_05_65_46_41_30_51, 1, 1, 31_86_65_85_78_34_03_11_51_16_74_61, 3_31_70_44_06_46_79_88_73_85_96_19_81, ] _SCREAMING_SNAKE_CASE = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(SCREAMING_SNAKE_CASE_ , 1 ): if n < _p: # then we have our last prime to check _SCREAMING_SNAKE_CASE = primes[:idx] break _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: _SCREAMING_SNAKE_CASE = False for r in range(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = pow(SCREAMING_SNAKE_CASE_ , d * 2**r , SCREAMING_SNAKE_CASE_ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): _SCREAMING_SNAKE_CASE = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowerCAmelCase_ ( ) -> None: """simple docstring""" assert not miller_rabin(5_61 ) assert miller_rabin(5_63 ) # 2047 assert not miller_rabin(83_82_01 ) assert miller_rabin(83_82_07 ) # 1_373_653 assert not miller_rabin(17_31_60_01 ) assert miller_rabin(17_31_60_17 ) # 25_326_001 assert not miller_rabin(30_78_38_66_41 ) assert miller_rabin(30_78_38_66_53 ) # 3_215_031_751 assert not miller_rabin(1_71_30_45_57_48_01 ) assert miller_rabin(1_71_30_45_57_48_19 ) # 2_152_302_898_747 assert not miller_rabin(2_77_97_99_72_83_07 ) assert miller_rabin(2_77_97_99_72_83_27 ) # 3_474_749_660_383 assert not miller_rabin(1_13_85_00_23_90_94_41 ) assert miller_rabin(1_13_85_00_23_90_95_27 ) # 341_550_071_728_321 assert not miller_rabin(1_27_50_41_01_88_48_80_43_51 ) assert miller_rabin(1_27_50_41_01_88_48_80_43_91 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67 ) assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33 ) assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = emb.weight.shape _SCREAMING_SNAKE_CASE = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" ) _SCREAMING_SNAKE_CASE = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] _SCREAMING_SNAKE_CASE = mam_aaa["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = state_dict["""encoder.embed_tokens.weight"""].shape[0] _SCREAMING_SNAKE_CASE = MaMaaaConfig( vocab_size=SCREAMING_SNAKE_CASE_ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) _SCREAMING_SNAKE_CASE = state_dict["""decoder.embed_tokens.weight"""] _SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) model.model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : Any = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
0
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a (_lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = KandinskyVaaPipeline SCREAMING_SNAKE_CASE = [ 'image_embeds', 'negative_image_embeds', ] SCREAMING_SNAKE_CASE = ['image_embeds', 'negative_image_embeds'] SCREAMING_SNAKE_CASE = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE = False @property def UpperCamelCase ( self ) -> Dict: return 32 @property def UpperCamelCase ( self ) -> List[Any]: return 32 @property def UpperCamelCase ( self ) -> List[str]: return self.time_input_dim @property def UpperCamelCase ( self ) -> List[Any]: return self.time_input_dim * 4 @property def UpperCamelCase ( self ) -> Any: return 1_00 @property def UpperCamelCase ( self ) -> Any: torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _SCREAMING_SNAKE_CASE = UNetaDConditionModel(**A__ ) return model @property def UpperCamelCase ( self ) -> List[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.dummy_unet _SCREAMING_SNAKE_CASE = self.dummy_movq _SCREAMING_SNAKE_CASE = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=A__ , set_alpha_to_one=A__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=A__ , ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCamelCase ( self , A__ , A__=0 ) -> Tuple: _SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A__ ) ).to(A__ ) _SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A__ ) if str(A__ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(A__ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=A__ ).manual_seed(A__ ) _SCREAMING_SNAKE_CASE = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = """cpu""" _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**A__ ) _SCREAMING_SNAKE_CASE = pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) _SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(A__ ) ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(A__ ) , return_dict=A__ , )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE = np.array( [0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _a (unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy""" ) _SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(A__ ) _SCREAMING_SNAKE_CASE = KandinskyVaaPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = pipeline.to(A__ ) pipeline.set_progress_bar_config(disable=A__ ) _SCREAMING_SNAKE_CASE = """red cat, 4k photo""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cuda""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = pipe_prior( A__ , generator=A__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _SCREAMING_SNAKE_CASE = torch.Generator(device="""cuda""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipeline( image_embeds=A__ , negative_image_embeds=A__ , generator=A__ , num_inference_steps=1_00 , output_type="""np""" , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(A__ , A__ )
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : str = { "configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"], "tokenization_canine": ["CanineTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
1
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union UpperCamelCase__ : str = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _a : """simple docstring""" SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Optional[Any]: return F"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def UpperCamelCase ( self ) -> Any: return self.major, self.minor, self.patch def UpperCamelCase ( self , A__ ) -> Dict: if isinstance(A__ , A__ ): return Version(A__ ) elif isinstance(A__ , A__ ): return other raise TypeError(F"{other} (type {type(A__ )}) cannot be compared to version." ) def __eq__( self , A__ ) -> Union[str, Any]: try: _SCREAMING_SNAKE_CASE = self._validate_operand(A__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , A__ ) -> Optional[int]: _SCREAMING_SNAKE_CASE = self._validate_operand(A__ ) return self.tuple < other.tuple def __hash__( self ) -> List[str]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def UpperCamelCase ( cls , A__ ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def UpperCamelCase ( self ) -> str: return self.version_str def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = _VERSION_REG.match(SCREAMING_SNAKE_CASE_ ) if not res: raise ValueError(F"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits." ) return tuple(int(SCREAMING_SNAKE_CASE_ ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: """simple docstring""" return ".".join(str(SCREAMING_SNAKE_CASE_ ) for v in version_tuple )
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE = 'ChineseCLIPImageProcessor' SCREAMING_SNAKE_CASE = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , A__=None , A__=None , **A__ ) -> int: _SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A__ , ) _SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) _SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.image_processor def __call__( self , A__=None , A__=None , A__=None , **A__ ) -> Optional[int]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _SCREAMING_SNAKE_CASE = self.tokenizer(A__ , return_tensors=A__ , **A__ ) if images is not None: _SCREAMING_SNAKE_CASE = self.image_processor(A__ , return_tensors=A__ , **A__ ) if text is not None and images is not None: _SCREAMING_SNAKE_CASE = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A__ ) , tensor_type=A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Dict: return self.tokenizer.batch_decode(*A__ , **A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Optional[Any]: return self.tokenizer.decode(*A__ , **A__ ) @property def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase ( self ) -> Optional[int]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A__ , ) return self.image_processor_class
0
1
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a (_lowerCamelCase): """simple docstring""" def __init__( self , *A__ , A__=None , A__=None , **A__ ) -> Union[str, Any]: super().__init__(*A__ , **A__ ) _SCREAMING_SNAKE_CASE = eval_examples _SCREAMING_SNAKE_CASE = post_process_function def UpperCamelCase ( self , A__=None , A__=None , A__=None , A__ = "eval" ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset _SCREAMING_SNAKE_CASE = self.get_eval_dataloader(A__ ) _SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _SCREAMING_SNAKE_CASE = time.time() try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , metric_key_prefix=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics _SCREAMING_SNAKE_CASE = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( A__ , A__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) metrics.update(output.metrics ) else: _SCREAMING_SNAKE_CASE = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(A__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , A__ ) return metrics def UpperCamelCase ( self , A__ , A__ , A__=None , A__ = "test" ) -> List[str]: _SCREAMING_SNAKE_CASE = self.get_test_dataloader(A__ ) # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _SCREAMING_SNAKE_CASE = time.time() try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , metric_key_prefix=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics _SCREAMING_SNAKE_CASE = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( A__ , A__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions , """predict""" ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A__ )
0
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets UpperCamelCase__ : List[str] = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCamelCase__ : List[Any] = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCamelCase__ : Any = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a (datasets.Metric): """simple docstring""" def UpperCamelCase ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def UpperCamelCase ( self , A__ , A__ , A__=None ) -> List[str]: return { "matthews_correlation": float(matthews_corrcoef(A__ , A__ , sample_weight=A__ ) ), }
0
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = 3_84 _SCREAMING_SNAKE_CASE = 7 if "tiny" in model_name: _SCREAMING_SNAKE_CASE = 96 _SCREAMING_SNAKE_CASE = (2, 2, 6, 2) _SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif "small" in model_name: _SCREAMING_SNAKE_CASE = 96 _SCREAMING_SNAKE_CASE = (2, 2, 18, 2) _SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif "base" in model_name: _SCREAMING_SNAKE_CASE = 1_28 _SCREAMING_SNAKE_CASE = (2, 2, 18, 2) _SCREAMING_SNAKE_CASE = (4, 8, 16, 32) _SCREAMING_SNAKE_CASE = 12 _SCREAMING_SNAKE_CASE = 5_12 elif "large" in model_name: _SCREAMING_SNAKE_CASE = 1_92 _SCREAMING_SNAKE_CASE = (2, 2, 18, 2) _SCREAMING_SNAKE_CASE = (6, 12, 24, 48) _SCREAMING_SNAKE_CASE = 12 _SCREAMING_SNAKE_CASE = 7_68 # set label information _SCREAMING_SNAKE_CASE = 1_50 _SCREAMING_SNAKE_CASE = """huggingface/label-files""" _SCREAMING_SNAKE_CASE = """ade20k-id2label.json""" _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="""dataset""" ) , """r""" ) ) _SCREAMING_SNAKE_CASE = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = SwinConfig( embed_dim=SCREAMING_SNAKE_CASE_ , depths=SCREAMING_SNAKE_CASE_ , num_heads=SCREAMING_SNAKE_CASE_ , window_size=SCREAMING_SNAKE_CASE_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) _SCREAMING_SNAKE_CASE = UperNetConfig( backbone_config=SCREAMING_SNAKE_CASE_ , auxiliary_in_channels=SCREAMING_SNAKE_CASE_ , num_labels=SCREAMING_SNAKE_CASE_ , idalabel=SCREAMING_SNAKE_CASE_ , labelaid=SCREAMING_SNAKE_CASE_ , ) return config def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm1.weight", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm1.bias", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table", F"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index", F"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight", F"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias", F"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm2.weight", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm2.bias", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight", F"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias", F"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight", F"backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias", F"backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.stages.{i}.downsample.reduction.weight", F"backbone.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.stages.{i}.downsample.norm.weight", F"backbone.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.stages.{i}.downsample.norm.bias", F"backbone.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = dct.pop(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = val def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _SCREAMING_SNAKE_CASE = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _SCREAMING_SNAKE_CASE = state_dict.pop(F"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight" ) _SCREAMING_SNAKE_CASE = state_dict.pop(F"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _SCREAMING_SNAKE_CASE = in_proj_weight[:dim, :] _SCREAMING_SNAKE_CASE = in_proj_bias[: dim] _SCREAMING_SNAKE_CASE = in_proj_weight[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = in_proj_weight[ -dim :, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[-dim :] # fmt: on def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = x.shape _SCREAMING_SNAKE_CASE = x.reshape(SCREAMING_SNAKE_CASE_ , 4 , in_channel // 4 ) _SCREAMING_SNAKE_CASE = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return x def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = x.shape _SCREAMING_SNAKE_CASE = x.reshape(SCREAMING_SNAKE_CASE_ , in_channel // 4 , 4 ) _SCREAMING_SNAKE_CASE = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return x def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = x.shape[0] _SCREAMING_SNAKE_CASE = x.reshape(4 , in_channel // 4 ) _SCREAMING_SNAKE_CASE = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE_ ) return x def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = x.shape[0] _SCREAMING_SNAKE_CASE = x.reshape(in_channel // 4 , 4 ) _SCREAMING_SNAKE_CASE = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE_ ) return x def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } _SCREAMING_SNAKE_CASE = model_name_to_url[model_name] _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" , file_name=SCREAMING_SNAKE_CASE_ )[ """state_dict""" ] for name, param in state_dict.items(): print(SCREAMING_SNAKE_CASE_ , param.shape ) _SCREAMING_SNAKE_CASE = get_upernet_config(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _SCREAMING_SNAKE_CASE = state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "bn" in key: _SCREAMING_SNAKE_CASE = key.replace("""bn""" , """batch_norm""" ) _SCREAMING_SNAKE_CASE = val # rename keys _SCREAMING_SNAKE_CASE = create_rename_keys(SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: _SCREAMING_SNAKE_CASE = reverse_correct_unfold_reduction_order(SCREAMING_SNAKE_CASE_ ) if "norm" in key: _SCREAMING_SNAKE_CASE = reverse_correct_unfold_norm_order(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify on image _SCREAMING_SNAKE_CASE = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _SCREAMING_SNAKE_CASE = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ).convert("""RGB""" ) _SCREAMING_SNAKE_CASE = SegformerImageProcessor() _SCREAMING_SNAKE_CASE = processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = outputs.logits print(logits.shape ) print("""First values of logits:""" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": _SCREAMING_SNAKE_CASE = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": _SCREAMING_SNAKE_CASE = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": _SCREAMING_SNAKE_CASE = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": _SCREAMING_SNAKE_CASE = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print(F"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(F"openmmlab/{model_name}" ) processor.push_to_hub(F"openmmlab/{model_name}" ) if __name__ == "__main__": UpperCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[f"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase__ : Union[str, Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(SCREAMING_SNAKE_CASE_ ): print(F"{i}\t\t{d}" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" for j in range(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: return True return False def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[float]: """simple docstring""" _SCREAMING_SNAKE_CASE = [float("""inf""" )] * vertex_count _SCREAMING_SNAKE_CASE = 0.0 for _ in range(vertex_count - 1 ): for j in range(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: _SCREAMING_SNAKE_CASE = distance[u] + w _SCREAMING_SNAKE_CASE = check_negative_cycle(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if negative_cycle_exists: raise Exception("""Negative cycle found""" ) return distance if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : int = int(input("Enter number of vertices: ").strip()) UpperCamelCase__ : int = int(input("Enter number of edges: ").strip()) UpperCamelCase__ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Dict = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) UpperCamelCase__ : Optional[Any] = {"src": src, "dst": dest, "weight": weight} UpperCamelCase__ : Optional[Any] = int(input("\nEnter shortest path source:").strip()) UpperCamelCase__ : Any = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
0
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 def __init__( self , A__ , A__ ) -> List[str]: super().__init__() self.register_modules(unet=A__ , scheduler=A__ ) @torch.no_grad() def __call__( self , A__ = 1 , A__ = 50 , A__ = None , A__ = "pil" , A__ = True , **A__ , ) -> Union[Tuple, ImagePipelineOutput]: _SCREAMING_SNAKE_CASE = self.unet.config.sample_size _SCREAMING_SNAKE_CASE = (batch_size, 3, img_size, img_size) _SCREAMING_SNAKE_CASE = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _SCREAMING_SNAKE_CASE = randn_tensor(A__ , generator=A__ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(A__ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _SCREAMING_SNAKE_CASE = self.scheduler.schedule[t] _SCREAMING_SNAKE_CASE = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.scheduler.add_noise_to_input(A__ , A__ , generator=A__ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _SCREAMING_SNAKE_CASE = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _SCREAMING_SNAKE_CASE = self.scheduler.step(A__ , A__ , A__ , A__ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _SCREAMING_SNAKE_CASE = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _SCREAMING_SNAKE_CASE = self.scheduler.step_correct( A__ , A__ , A__ , A__ , step_output.prev_sample , step_output["""derivative"""] , ) _SCREAMING_SNAKE_CASE = step_output.prev_sample _SCREAMING_SNAKE_CASE = (sample / 2 + 0.5).clamp(0 , 1 ) _SCREAMING_SNAKE_CASE = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _a : """simple docstring""" def __init__( self , A__ , A__=13 , A__=7 , A__=True , A__=True , A__=True , A__=True , A__=99 , A__=32 , A__=2 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=5_12 , A__=16 , A__=2 , A__=0.02 , A__=3 , A__=4 , A__=None , ) -> int: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 99 _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 37 _SCREAMING_SNAKE_CASE = """gelu""" _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 5_12 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 0.02 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = TFRoFormerModel(config=A__ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(A__ ) _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> str: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = TFRoFormerForCausalLM(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Dict: _SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFRoFormerForSequenceClassification(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Any: _SCREAMING_SNAKE_CASE = self.num_choices _SCREAMING_SNAKE_CASE = TFRoFormerForMultipleChoice(config=A__ ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFRoFormerForTokenClassification(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Tuple: _SCREAMING_SNAKE_CASE = TFRoFormerForQuestionAnswering(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _a (_lowerCamelCase , _lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ ) -> str: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = TFRoFormerModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A__ , hidden_size=37 ) def UpperCamelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__ ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A__ ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__ ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__ ) @slow def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(A__ ) @require_tf class _a (unittest.TestCase): """simple docstring""" @slow def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(A__ )[0] # TODO Replace vocab size _SCREAMING_SNAKE_CASE = 5_00_00 _SCREAMING_SNAKE_CASE = [1, 6, vocab_size] self.assertEqual(output.shape , A__ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A__ , atol=1E-4 ) @require_tf class _a (unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = 1E-4 def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = tf.constant([[4, 10]] ) _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) _SCREAMING_SNAKE_CASE = emba(input_ids.shape ) _SCREAMING_SNAKE_CASE = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) _SCREAMING_SNAKE_CASE = emba.weight[:3, :5] tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) @require_tf class _a (unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = 1E-4 def UpperCamelCase ( self ) -> int: # 2,12,16,64 _SCREAMING_SNAKE_CASE = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 _SCREAMING_SNAKE_CASE = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) _SCREAMING_SNAKE_CASE = embed_positions([2, 16, 7_68] )[None, None, :, :] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = TFRoFormerSelfAttention.apply_rotary_position_embeddings( A__ , A__ , A__ ) _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A__ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A__ , atol=self.tolerance )
0
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_lowerCamelCase) class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True}) SCREAMING_SNAKE_CASE = Features({'question': Value('string'), 'context': Value('string')}) SCREAMING_SNAKE_CASE = Features( { 'answers': Sequence( { 'text': Value('string'), 'answer_start': Value('int32'), }) }) SCREAMING_SNAKE_CASE = "question" SCREAMING_SNAKE_CASE = "context" SCREAMING_SNAKE_CASE = "answers" @property def UpperCamelCase ( self ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available UpperCamelCase__ : int = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
1
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput UpperCamelCase__ : Tuple = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a (_lowerCamelCase): """simple docstring""" def __init__( self , *A__ , A__=None , A__=None , A__=None , **A__ ) -> Optional[int]: super().__init__(*A__ , **A__ ) _SCREAMING_SNAKE_CASE = eval_examples _SCREAMING_SNAKE_CASE = post_process_function _SCREAMING_SNAKE_CASE = quant_trainer_args _SCREAMING_SNAKE_CASE = 1_28 # default number of calibration samples def UpperCamelCase ( self , A__=None ) -> Union[str, Any]: if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) _SCREAMING_SNAKE_CASE = calib_dataset if calib_dataset is not None else self.calib_dataset _SCREAMING_SNAKE_CASE = self._remove_unused_columns(A__ , description="""Calibration""" ) return DataLoader( A__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=A__ , ) def UpperCamelCase ( self , A__=None ) -> str: _SCREAMING_SNAKE_CASE = self.train_dataset if calib_dataset is None else calib_dataset _SCREAMING_SNAKE_CASE = self.get_calib_dataloader(A__ ) _SCREAMING_SNAKE_CASE = self.model quant_trainer.configure_model(A__ , self.quant_trainer_args , calib=A__ ) model.eval() quant_trainer.enable_calibration(A__ ) logger.info("""***** Running calibration *****""" ) logger.info(F" Num examples = {self.calib_num}" ) logger.info(F" Batch size = {calib_dataloader.batch_size}" ) for step, inputs in enumerate(A__ ): # Prediction step _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.prediction_step(A__ , A__ , prediction_loss_only=A__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(A__ , self.quant_trainer_args ) _SCREAMING_SNAKE_CASE = model def UpperCamelCase ( self , A__=None , A__=None , A__=None , A__ = "eval" ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset _SCREAMING_SNAKE_CASE = self.get_eval_dataloader(A__ ) _SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) self.log(A__ ) else: _SCREAMING_SNAKE_CASE = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , A__ ) return metrics def UpperCamelCase ( self , A__ , A__ , A__=None , A__ = "test" ) -> List[str]: _SCREAMING_SNAKE_CASE = self.get_test_dataloader(A__ ) # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions , """predict""" ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A__ ) def UpperCamelCase ( self , A__="./" ) -> Tuple: _SCREAMING_SNAKE_CASE = self.eval_dataset _SCREAMING_SNAKE_CASE = self.get_eval_dataloader(A__ ) _SCREAMING_SNAKE_CASE = next(iter(A__ ) ) # saving device - to make it consistent _SCREAMING_SNAKE_CASE = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple _SCREAMING_SNAKE_CASE = tuple(v.to(A__ ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = self.model.to(A__ ) model.eval() model.float() _SCREAMING_SNAKE_CASE = model.module if hasattr(A__ , """module""" ) else model quant_trainer.configure_model(A__ , self.quant_trainer_args ) _SCREAMING_SNAKE_CASE = os.path.join(A__ , """model.onnx""" ) logger.info(F"exporting model to {output_model_file}" ) _SCREAMING_SNAKE_CASE = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( A__ , A__ , A__ , export_params=A__ , opset_version=13 , do_constant_folding=A__ , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=A__ , ) logger.info("""onnx export finished""" )
0
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = XCLIPTextConfig() # derive patch size from model name _SCREAMING_SNAKE_CASE = model_name.find("""patch""" ) _SCREAMING_SNAKE_CASE = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) _SCREAMING_SNAKE_CASE = XCLIPVisionConfig(patch_size=SCREAMING_SNAKE_CASE_ , num_frames=SCREAMING_SNAKE_CASE_ ) if "large" in model_name: _SCREAMING_SNAKE_CASE = 7_68 _SCREAMING_SNAKE_CASE = 30_72 _SCREAMING_SNAKE_CASE = 12 _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = 40_96 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 7_68 _SCREAMING_SNAKE_CASE = 30_72 if model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE = 3_36 _SCREAMING_SNAKE_CASE = XCLIPConfig.from_text_vision_configs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "large" in model_name: _SCREAMING_SNAKE_CASE = 7_68 return config def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" # text encoder if name == "token_embedding.weight": _SCREAMING_SNAKE_CASE = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: _SCREAMING_SNAKE_CASE = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""c_proj""" , """fc2""" ) if name.startswith("""transformer.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: _SCREAMING_SNAKE_CASE = name.replace("""attn.out_proj""" , """self_attn.out_proj""" ) if "ln_final" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_final""" , """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": _SCREAMING_SNAKE_CASE = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" ) if "visual.conv1" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" ) if "visual.proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.proj""" , """visual_projection.weight""" ) if "text_projection" in name: _SCREAMING_SNAKE_CASE = name.replace("""text_projection""" , """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" ) if "prompts_visual_ln" in name: _SCREAMING_SNAKE_CASE = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""positional""" , """position""" ) if name.startswith("""mit.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""mit.resblocks""" , """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): _SCREAMING_SNAKE_CASE = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" ) return name def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "attn.in_proj" in key: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if key.startswith("""visual""" ): _SCREAMING_SNAKE_CASE = key_split[3] _SCREAMING_SNAKE_CASE = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: _SCREAMING_SNAKE_CASE = val[ :dim, : ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE = val[ :dim ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[ -dim: ] else: if "weight" in key: _SCREAMING_SNAKE_CASE = val[ :dim, : ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[-dim:] elif key.startswith("""mit""" ): _SCREAMING_SNAKE_CASE = key_split[2] _SCREAMING_SNAKE_CASE = config.vision_config.mit_hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[dim : dim * 2] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = key_split[2] _SCREAMING_SNAKE_CASE = config.text_config.hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = rename_key(SCREAMING_SNAKE_CASE_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: _SCREAMING_SNAKE_CASE = val.T _SCREAMING_SNAKE_CASE = val return orig_state_dict def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" if num_frames == 8: _SCREAMING_SNAKE_CASE = """eating_spaghetti_8_frames.npy""" elif num_frames == 16: _SCREAMING_SNAKE_CASE = """eating_spaghetti.npy""" elif num_frames == 32: _SCREAMING_SNAKE_CASE = """eating_spaghetti_32_frames.npy""" _SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename=SCREAMING_SNAKE_CASE_ , repo_type="""dataset""" , ) _SCREAMING_SNAKE_CASE = np.load(SCREAMING_SNAKE_CASE_ ) return list(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } _SCREAMING_SNAKE_CASE = model_to_url[model_name] _SCREAMING_SNAKE_CASE = 8 if "16-frames" in model_name: _SCREAMING_SNAKE_CASE = 16 elif "shot" in model_name: _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = get_xclip_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = XCLIPModel(SCREAMING_SNAKE_CASE_ ) model.eval() if "drive" in checkpoint_url: _SCREAMING_SNAKE_CASE = """pytorch_model.bin""" gdown.cached_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , quiet=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" )["""model"""] else: _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ )["""model"""] _SCREAMING_SNAKE_CASE = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = XCLIPModel(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() _SCREAMING_SNAKE_CASE = 3_36 if model_name == """xclip-large-patch14-16-frames""" else 2_24 _SCREAMING_SNAKE_CASE = VideoMAEImageProcessor(size=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) _SCREAMING_SNAKE_CASE = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) _SCREAMING_SNAKE_CASE = XCLIPProcessor(image_processor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = prepare_video(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , padding=SCREAMING_SNAKE_CASE_ ) print("""Shape of pixel values:""" , inputs.pixel_values.shape ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) # Verify outputs _SCREAMING_SNAKE_CASE = outputs.logits_per_video _SCREAMING_SNAKE_CASE = logits_per_video.softmax(dim=1 ) print("""Probs:""" , SCREAMING_SNAKE_CASE_ ) # kinetics-400 if model_name == "xclip-base-patch32": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F"Model name {model_name} not supported" ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) slow_tokenizer.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase__ : str = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
1
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> float: """simple docstring""" _validate_point(SCREAMING_SNAKE_CASE_ ) _validate_point(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> None: """simple docstring""" if point: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for item in point: if not isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ): _SCREAMING_SNAKE_CASE = ( """Expected a list of numbers as input, found """ F"{type(SCREAMING_SNAKE_CASE_ ).__name__}" ) raise TypeError(SCREAMING_SNAKE_CASE_ ) else: _SCREAMING_SNAKE_CASE = F"Expected a list of numbers as input, found {type(SCREAMING_SNAKE_CASE_ ).__name__}" raise TypeError(SCREAMING_SNAKE_CASE_ ) else: raise ValueError("""Missing an input""" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> float: """simple docstring""" _validate_point(SCREAMING_SNAKE_CASE_ ) _validate_point(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _a (_lowerCamelCase): """simple docstring""" def __init__( self , A__ , A__ ) -> Any: _SCREAMING_SNAKE_CASE = params _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array([len(A__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , A__ ) -> Dict: return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Tuple: return len(self.lengths ) def UpperCamelCase ( self ) -> Dict: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.params.max_model_input_size _SCREAMING_SNAKE_CASE = self.lengths > max_len logger.info(F"Splitting {sum(A__ )} too long sequences." ) def divide_chunks(A__ , A__ ): return [l[i : i + n] for i in range(0 , len(A__ ) , A__ )] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] if self.params.mlm: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _SCREAMING_SNAKE_CASE = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , 0 , A__ ) if sub_s[-1] != sep_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , len(A__ ) , A__ ) assert len(A__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(A__ ) new_tok_ids.extend(A__ ) new_lengths.extend([len(A__ ) for l in sub_seqs] ) _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array(A__ ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = self.lengths > 11 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def UpperCamelCase ( self ) -> int: if "unk_token" not in self.params.special_tok_ids: return else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _SCREAMING_SNAKE_CASE = (unk_occs / self.lengths) < 0.5 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def UpperCamelCase ( self ) -> Optional[Any]: if not self.params.is_master: return logger.info(F"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCamelCase ( self , A__ ) -> Any: _SCREAMING_SNAKE_CASE = [t[0] for t in batch] _SCREAMING_SNAKE_CASE = [t[1] for t in batch] assert len(A__ ) == len(A__ ) # Max for paddings _SCREAMING_SNAKE_CASE = max(A__ ) # Pad token ids if self.params.mlm: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""pad_token"""] else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = [list(t.astype(A__ ) ) + [pad_idx] * (max_seq_len_ - len(A__ )) for t in token_ids] assert len(tk_ ) == len(A__ ) assert all(len(A__ ) == max_seq_len_ for t in tk_ ) _SCREAMING_SNAKE_CASE = torch.tensor(tk_ ) # (bs, max_seq_len_) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) # (bs) return tk_t, lg_t
0
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 def __init__( self , A__ , A__ ) -> Union[str, Any]: super().__init__() self.register_modules(unet=A__ , scheduler=A__ ) @torch.no_grad() def __call__( self , A__ = 1 , A__ = 20_00 , A__ = None , A__ = "pil" , A__ = True , **A__ , ) -> Union[ImagePipelineOutput, Tuple]: _SCREAMING_SNAKE_CASE = self.unet.config.sample_size _SCREAMING_SNAKE_CASE = (batch_size, 3, img_size, img_size) _SCREAMING_SNAKE_CASE = self.unet _SCREAMING_SNAKE_CASE = randn_tensor(A__ , generator=A__ ) * self.scheduler.init_noise_sigma _SCREAMING_SNAKE_CASE = sample.to(self.device ) self.scheduler.set_timesteps(A__ ) self.scheduler.set_sigmas(A__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _SCREAMING_SNAKE_CASE = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): _SCREAMING_SNAKE_CASE = self.unet(A__ , A__ ).sample _SCREAMING_SNAKE_CASE = self.scheduler.step_correct(A__ , A__ , generator=A__ ).prev_sample # prediction step _SCREAMING_SNAKE_CASE = model(A__ , A__ ).sample _SCREAMING_SNAKE_CASE = self.scheduler.step_pred(A__ , A__ , A__ , generator=A__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = output.prev_sample, output.prev_sample_mean _SCREAMING_SNAKE_CASE = sample_mean.clamp(0 , 1 ) _SCREAMING_SNAKE_CASE = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE = self.numpy_to_pil(A__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=A__ )
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : Any = "▁" UpperCamelCase__ : Any = {"vocab_file": "spiece.model"} UpperCamelCase__ : int = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } UpperCamelCase__ : Optional[int] = { "google/reformer-crime-and-punishment": 524_288, } class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , A__ , A__="</s>" , A__="<unk>" , A__=[] , A__ = None , **A__ , ) -> None: _SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A__ , unk_token=A__ , additional_special_tokens=A__ , sp_model_kwargs=self.sp_model_kwargs , **A__ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A__ ) @property def UpperCamelCase ( self ) -> Any: return self.sp_model.get_piece_size() def UpperCamelCase ( self ) -> Dict[str, int]: _SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: _SCREAMING_SNAKE_CASE = self.__dict__.copy() _SCREAMING_SNAKE_CASE = None return state def __setstate__( self , A__ ) -> str: _SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self , A__ ) -> List[str]: return self.sp_model.encode(A__ , out_type=A__ ) def UpperCamelCase ( self , A__ ) -> Union[str, Any]: return self.sp_model.piece_to_id(A__ ) def UpperCamelCase ( self , A__ ) -> List[Any]: if index < self.sp_model.get_piece_size(): _SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(A__ ) return token def UpperCamelCase ( self , A__ ) -> str: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A__ ) + token _SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(A__ ) out_string += self.sp_model.decode(A__ ) return out_string.strip() def UpperCamelCase ( self , A__ , A__ = None ) -> Tuple[str]: if not os.path.isdir(A__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _SCREAMING_SNAKE_CASE = os.path.join( A__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , """wb""" ) as fi: _SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,)
0
1
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = 'efficientformer' def __init__( self , A__ = [3, 2, 6, 4] , A__ = [48, 96, 2_24, 4_48] , A__ = [True, True, True, True] , A__ = 4_48 , A__ = 32 , A__ = 4 , A__ = 7 , A__ = 5 , A__ = 8 , A__ = 4 , A__ = 0.0 , A__ = 16 , A__ = 3 , A__ = 3 , A__ = 3 , A__ = 2 , A__ = 1 , A__ = 0.0 , A__ = 1 , A__ = True , A__ = True , A__ = 1E-5 , A__ = "gelu" , A__ = 0.02 , A__ = 1E-12 , A__ = 2_24 , A__ = 1E-05 , **A__ , ) -> None: super().__init__(**A__ ) _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = hidden_sizes _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = depths _SCREAMING_SNAKE_CASE = mlp_expansion_ratio _SCREAMING_SNAKE_CASE = downsamples _SCREAMING_SNAKE_CASE = dim _SCREAMING_SNAKE_CASE = key_dim _SCREAMING_SNAKE_CASE = attention_ratio _SCREAMING_SNAKE_CASE = resolution _SCREAMING_SNAKE_CASE = pool_size _SCREAMING_SNAKE_CASE = downsample_patch_size _SCREAMING_SNAKE_CASE = downsample_stride _SCREAMING_SNAKE_CASE = downsample_pad _SCREAMING_SNAKE_CASE = drop_path_rate _SCREAMING_SNAKE_CASE = num_metaad_blocks _SCREAMING_SNAKE_CASE = distillation _SCREAMING_SNAKE_CASE = use_layer_scale _SCREAMING_SNAKE_CASE = layer_scale_init_value _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = batch_norm_eps
0
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _a (_lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = MobileBertTokenizer SCREAMING_SNAKE_CASE = MobileBertTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = filter_non_english SCREAMING_SNAKE_CASE = 'google/mobilebert-uncased' def UpperCamelCase ( self ) -> Any: super().setUp() _SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _SCREAMING_SNAKE_CASE = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCamelCase ( self , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = """unwanted, running""" return input_text, output_text def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(A__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [9, 6, 7, 12, 10, 11] ) def UpperCamelCase ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) # With lower casing _SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=A__ ) _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _SCREAMING_SNAKE_CASE = {} for i, token in enumerate(A__ ): _SCREAMING_SNAKE_CASE = i _SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=A__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def UpperCamelCase ( self ) -> str: self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def UpperCamelCase ( self ) -> Union[str, Any]: self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def UpperCamelCase ( self ) -> Dict: self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A__ , A__ ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def UpperCamelCase ( self ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." _SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( A__ , return_attention_mask=A__ , return_token_type_ids=A__ , return_offsets_mapping=A__ , add_special_tokens=A__ , ) _SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(A__ , """do_lower_case""" ) else False _SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] _SCREAMING_SNAKE_CASE = """""".join(A__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that only the first Chinese character is not preceded by "##". _SCREAMING_SNAKE_CASE = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(A__ ) ] self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ )
0
1
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = FlaxAutoModelForSeqaSeqLM.from_config(config=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""] if config.model_type == "t5": _SCREAMING_SNAKE_CASE = """SelfAttention""" if config.model_type == "longt5" and config.encoder_attention_type == "local": _SCREAMING_SNAKE_CASE = """LocalSelfAttention""" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE = """TransientGlobalSelfAttention""" else: raise ValueError( """Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`""" """ attribute with a value from ['local', 'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): _SCREAMING_SNAKE_CASE = F"layers_{str(SCREAMING_SNAKE_CASE_ )}" # Self-Attention _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""] # Layer Normalization _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""] if split_mlp_wi: _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning _SCREAMING_SNAKE_CASE = flax_model.params["""encoder"""]["""block"""][str(SCREAMING_SNAKE_CASE_ )]["""layer"""] _SCREAMING_SNAKE_CASE = tax_attention_key _SCREAMING_SNAKE_CASE = tax_attention_out _SCREAMING_SNAKE_CASE = tax_attention_query _SCREAMING_SNAKE_CASE = tax_attention_value _SCREAMING_SNAKE_CASE = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE = tax_global_layer_norm if split_mlp_wi: _SCREAMING_SNAKE_CASE = tax_mlp_wi_a _SCREAMING_SNAKE_CASE = tax_mlp_wi_a else: _SCREAMING_SNAKE_CASE = tax_mlp_wi _SCREAMING_SNAKE_CASE = tax_mlp_wo _SCREAMING_SNAKE_CASE = tax_mlp_layer_norm _SCREAMING_SNAKE_CASE = flax_model_encoder_layer_block # Only for layer 0: _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T _SCREAMING_SNAKE_CASE = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T _SCREAMING_SNAKE_CASE = tax_encoder_global_rel_embedding # Assigning _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""] _SCREAMING_SNAKE_CASE = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _SCREAMING_SNAKE_CASE = F"layers_{str(SCREAMING_SNAKE_CASE_ )}" # Self-Attention _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""] # Layer Normalization _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][ """scale""" ] # Encoder-Decoder-Attention _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""] _SCREAMING_SNAKE_CASE = tax_enc_dec_attention_module["""key"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_enc_dec_attention_module["""out"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_enc_dec_attention_module["""query"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_enc_dec_attention_module["""value"""]["""kernel"""] # Layer Normalization _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""] # MLP if split_mlp_wi: _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning _SCREAMING_SNAKE_CASE = flax_model.params["""decoder"""]["""block"""][str(SCREAMING_SNAKE_CASE_ )]["""layer"""] _SCREAMING_SNAKE_CASE = tax_attention_key _SCREAMING_SNAKE_CASE = tax_attention_out _SCREAMING_SNAKE_CASE = tax_attention_query _SCREAMING_SNAKE_CASE = tax_attention_value _SCREAMING_SNAKE_CASE = tax_pre_attention_layer_norm _SCREAMING_SNAKE_CASE = tax_enc_dec_attention_key _SCREAMING_SNAKE_CASE = tax_enc_dec_attention_out _SCREAMING_SNAKE_CASE = tax_enc_dec_attention_query _SCREAMING_SNAKE_CASE = tax_enc_dec_attention_value _SCREAMING_SNAKE_CASE = tax_cross_layer_norm if split_mlp_wi: _SCREAMING_SNAKE_CASE = tax_mlp_wi_a _SCREAMING_SNAKE_CASE = tax_mlp_wi_a else: _SCREAMING_SNAKE_CASE = tax_mlp_wi _SCREAMING_SNAKE_CASE = tax_mlp_wo _SCREAMING_SNAKE_CASE = txa_mlp_layer_norm _SCREAMING_SNAKE_CASE = flax_model_decoder_layer_block # Decoder Normalization _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""] _SCREAMING_SNAKE_CASE = txa_decoder_norm # Only for layer 0: _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T _SCREAMING_SNAKE_CASE = tax_decoder_rel_embedding # Token Embeddings _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""token_embedder"""]["""embedding"""] _SCREAMING_SNAKE_CASE = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""] flax_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) UpperCamelCase__ : int = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
0
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput UpperCamelCase__ : Tuple = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a (_lowerCamelCase): """simple docstring""" def __init__( self , *A__ , A__=None , A__=None , A__=None , **A__ ) -> Optional[int]: super().__init__(*A__ , **A__ ) _SCREAMING_SNAKE_CASE = eval_examples _SCREAMING_SNAKE_CASE = post_process_function _SCREAMING_SNAKE_CASE = quant_trainer_args _SCREAMING_SNAKE_CASE = 1_28 # default number of calibration samples def UpperCamelCase ( self , A__=None ) -> Union[str, Any]: if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) _SCREAMING_SNAKE_CASE = calib_dataset if calib_dataset is not None else self.calib_dataset _SCREAMING_SNAKE_CASE = self._remove_unused_columns(A__ , description="""Calibration""" ) return DataLoader( A__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=A__ , ) def UpperCamelCase ( self , A__=None ) -> str: _SCREAMING_SNAKE_CASE = self.train_dataset if calib_dataset is None else calib_dataset _SCREAMING_SNAKE_CASE = self.get_calib_dataloader(A__ ) _SCREAMING_SNAKE_CASE = self.model quant_trainer.configure_model(A__ , self.quant_trainer_args , calib=A__ ) model.eval() quant_trainer.enable_calibration(A__ ) logger.info("""***** Running calibration *****""" ) logger.info(F" Num examples = {self.calib_num}" ) logger.info(F" Batch size = {calib_dataloader.batch_size}" ) for step, inputs in enumerate(A__ ): # Prediction step _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.prediction_step(A__ , A__ , prediction_loss_only=A__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(A__ , self.quant_trainer_args ) _SCREAMING_SNAKE_CASE = model def UpperCamelCase ( self , A__=None , A__=None , A__=None , A__ = "eval" ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset _SCREAMING_SNAKE_CASE = self.get_eval_dataloader(A__ ) _SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) self.log(A__ ) else: _SCREAMING_SNAKE_CASE = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , A__ ) return metrics def UpperCamelCase ( self , A__ , A__ , A__=None , A__ = "test" ) -> List[str]: _SCREAMING_SNAKE_CASE = self.get_test_dataloader(A__ ) # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions , """predict""" ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A__ ) def UpperCamelCase ( self , A__="./" ) -> Tuple: _SCREAMING_SNAKE_CASE = self.eval_dataset _SCREAMING_SNAKE_CASE = self.get_eval_dataloader(A__ ) _SCREAMING_SNAKE_CASE = next(iter(A__ ) ) # saving device - to make it consistent _SCREAMING_SNAKE_CASE = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple _SCREAMING_SNAKE_CASE = tuple(v.to(A__ ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = self.model.to(A__ ) model.eval() model.float() _SCREAMING_SNAKE_CASE = model.module if hasattr(A__ , """module""" ) else model quant_trainer.configure_model(A__ , self.quant_trainer_args ) _SCREAMING_SNAKE_CASE = os.path.join(A__ , """model.onnx""" ) logger.info(F"exporting model to {output_model_file}" ) _SCREAMING_SNAKE_CASE = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( A__ , A__ , A__ , export_params=A__ , opset_version=13 , do_constant_folding=A__ , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=A__ , ) logger.info("""onnx export finished""" )
0
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _a (unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = """laion/clap-htsat-unfused""" _SCREAMING_SNAKE_CASE = tempfile.mkdtemp() def UpperCamelCase ( self , **A__ ) -> Optional[int]: return RobertaTokenizer.from_pretrained(self.checkpoint , **A__ ) def UpperCamelCase ( self , **A__ ) -> int: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A__ ) def UpperCamelCase ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_feature_extractor() _SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=A__ , feature_extractor=A__ ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A__ ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _SCREAMING_SNAKE_CASE = self.get_feature_extractor(do_normalize=A__ , padding_value=1.0 ) _SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=A__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.get_feature_extractor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=A__ , feature_extractor=A__ ) _SCREAMING_SNAKE_CASE = floats_list((3, 10_00) ) _SCREAMING_SNAKE_CASE = feature_extractor(A__ , return_tensors="""np""" ) _SCREAMING_SNAKE_CASE = processor(audios=A__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.get_feature_extractor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=A__ , feature_extractor=A__ ) _SCREAMING_SNAKE_CASE = """This is a test string""" _SCREAMING_SNAKE_CASE = processor(text=A__ ) _SCREAMING_SNAKE_CASE = tokenizer(A__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.get_feature_extractor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=A__ , feature_extractor=A__ ) _SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE = processor.batch_decode(A__ ) _SCREAMING_SNAKE_CASE = tokenizer.batch_decode(A__ ) self.assertListEqual(A__ , A__ ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.get_feature_extractor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=A__ , feature_extractor=A__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
0
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bytes: """simple docstring""" # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
0
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _a (unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def UpperCamelCase ( self , A__ , A__ , A__ ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = TextaTextGenerationPipeline(model=A__ , tokenizer=A__ ) return generator, ["Something to write", "Something else"] def UpperCamelCase ( self , A__ , A__ ) -> Optional[int]: _SCREAMING_SNAKE_CASE = generator("""Something there""" ) self.assertEqual(A__ , [{"""generated_text""": ANY(A__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) _SCREAMING_SNAKE_CASE = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=A__ ) self.assertEqual( A__ , [ [{"""generated_text""": ANY(A__ )}, {"""generated_text""": ANY(A__ )}], [{"""generated_text""": ANY(A__ )}, {"""generated_text""": ANY(A__ )}], ] , ) _SCREAMING_SNAKE_CASE = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=A__ ) self.assertEqual( A__ , [ [{"""generated_text""": ANY(A__ )}, {"""generated_text""": ANY(A__ )}], [{"""generated_text""": ANY(A__ )}, {"""generated_text""": ANY(A__ )}], ] , ) with self.assertRaises(A__ ): generator(4 ) @require_torch def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility _SCREAMING_SNAKE_CASE = generator("""Something there""" , do_sample=A__ ) self.assertEqual(A__ , [{"""generated_text""": """"""}] ) _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = generator( """Something there""" , num_return_sequences=A__ , num_beams=A__ , ) _SCREAMING_SNAKE_CASE = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = generator("""This is a test""" , do_sample=A__ , num_return_sequences=2 , return_tensors=A__ ) self.assertEqual( A__ , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) _SCREAMING_SNAKE_CASE = generator.model.config.eos_token_id _SCREAMING_SNAKE_CASE = """<pad>""" _SCREAMING_SNAKE_CASE = generator( ["""This is a test""", """This is a second test"""] , do_sample=A__ , num_return_sequences=2 , batch_size=2 , return_tensors=A__ , ) self.assertEqual( A__ , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility _SCREAMING_SNAKE_CASE = generator("""Something there""" , do_sample=A__ ) self.assertEqual(A__ , [{"""generated_text""": """"""}] )
0
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def lowerCAmelCase_ ( ) -> int: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("""https://huggingface.co""" )
0
1
'''simple docstring''' from __future__ import annotations class _a : """simple docstring""" def __init__( self , A__ ) -> None: _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowerCAmelCase_ ( ) -> None: # Main function for testing. """simple docstring""" _SCREAMING_SNAKE_CASE = Node(1 ) _SCREAMING_SNAKE_CASE = Node(2 ) _SCREAMING_SNAKE_CASE = Node(3 ) _SCREAMING_SNAKE_CASE = Node(4 ) _SCREAMING_SNAKE_CASE = Node(5 ) _SCREAMING_SNAKE_CASE = Node(6 ) _SCREAMING_SNAKE_CASE = Node(7 ) _SCREAMING_SNAKE_CASE = Node(8 ) _SCREAMING_SNAKE_CASE = Node(9 ) print(is_full_binary_tree(SCREAMING_SNAKE_CASE_ ) ) print(depth_of_tree(SCREAMING_SNAKE_CASE_ ) ) print("""Tree is: """ ) display(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
0
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> Iterator[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 2 while True: if is_prime(SCREAMING_SNAKE_CASE_ ): yield num num += 1 def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = 2_00_00_00 ) -> int: """simple docstring""" return sum(takewhile(lambda SCREAMING_SNAKE_CASE_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
0
1
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : """simple docstring""" def __init__( self , A__ , A__=13 , A__=30 , A__=2 , A__=3 , A__=True , A__=True , A__=32 , A__=5 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=10 , A__=0.02 , A__=None , ) -> Optional[int]: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 _SCREAMING_SNAKE_CASE = num_patches + 1 def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ) -> Optional[Any]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase ( self , A__ , A__ , A__ ) -> List[Any]: _SCREAMING_SNAKE_CASE = ViTMSNModel(config=A__ ) model.to(A__ ) model.eval() _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self , A__ , A__ , A__ ) -> int: _SCREAMING_SNAKE_CASE = self.type_sequence_label_size _SCREAMING_SNAKE_CASE = ViTMSNForImageClassification(A__ ) model.to(A__ ) model.eval() _SCREAMING_SNAKE_CASE = model(A__ , labels=A__ ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = ViTMSNForImageClassification(A__ ) model.to(A__ ) model.eval() _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _a (_lowerCamelCase , _lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( {'feature-extraction': ViTMSNModel, 'image-classification': ViTMSNForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = ViTMSNModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A__ , has_text_modality=A__ , hidden_size=37 ) def UpperCamelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def UpperCamelCase ( self ) -> Dict: pass def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(A__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ , nn.Linear ) ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(A__ ) _SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A__ ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A__ ) @slow def UpperCamelCase ( self ) -> Optional[Any]: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = ViTMSNModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _a (unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase ( self ) -> int: return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def UpperCamelCase ( self ) -> str: torch.manual_seed(2 ) _SCREAMING_SNAKE_CASE = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(A__ ) _SCREAMING_SNAKE_CASE = self.default_image_processor _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = image_processor(images=A__ , return_tensors="""pt""" ).to(A__ ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**A__ ) # verify the logits _SCREAMING_SNAKE_CASE = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , A__ ) _SCREAMING_SNAKE_CASE = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(A__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A__ , atol=1E-4 ) )
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _a (unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 1_28, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 1_42, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } _SCREAMING_SNAKE_CASE = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 1_28, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 1_42, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(A__ ) , A__ ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(A__ ) , x.transpose() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , transpose(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , transpose(A__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , transpose(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , transpose(A__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , np.asarray(transpose(A__ ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , np.asarray(transpose(A__ , axes=(1, 2, 0) ) ) ) ) def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , np.reshape(A__ , (4, 3) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , np.reshape(A__ , (12, 5) ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , reshape(A__ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , reshape(A__ , (12, 5) ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , reshape(A__ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , reshape(A__ , (12, 5) ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , np.asarray(reshape(A__ , (4, 3) ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , np.asarray(reshape(A__ , (12, 5) ) ) ) ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(A__ ) , np.squeeze(A__ ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , np.squeeze(A__ , axis=2 ) ) ) @require_torch def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , squeeze(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , squeeze(A__ , axis=2 ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , squeeze(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , squeeze(A__ , axis=2 ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , np.asarray(squeeze(A__ ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , np.asarray(squeeze(A__ , axis=2 ) ) ) ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , np.expand_dims(A__ , axis=1 ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , expand_dims(A__ , axis=1 ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , expand_dims(A__ , axis=1 ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , np.asarray(expand_dims(A__ , axis=1 ) ) ) )
0
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _a (metaclass=_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = ['note_seq'] def __init__( self , *A__ , **A__ ) -> int: requires_backends(self , ["""note_seq"""] ) @classmethod def UpperCamelCase ( cls , *A__ , **A__ ) -> Union[str, Any]: requires_backends(cls , ["""note_seq"""] ) @classmethod def UpperCamelCase ( cls , *A__ , **A__ ) -> int: requires_backends(cls , ["""note_seq"""] )
0
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , A__ = None , A__ = None , **A__ , ) -> Optional[int]: super().__init__(self , **A__ ) _SCREAMING_SNAKE_CASE = repo_info _SCREAMING_SNAKE_CASE = token _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> Tuple: if self.dir_cache is None: _SCREAMING_SNAKE_CASE = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _SCREAMING_SNAKE_CASE = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(A__ ): {"""name""": str(A__ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def UpperCamelCase ( self , A__ , A__ = "rb" , **A__ , ) -> Optional[int]: if not isinstance(self.repo_info , A__ ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) _SCREAMING_SNAKE_CASE = hf_hub_url(self.repo_info.id , A__ , revision=self.repo_info.sha ) return fsspec.open( A__ , mode=A__ , headers=get_authentication_headers_for_url(A__ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def UpperCamelCase ( self , A__ , **A__ ) -> str: self._get_dirs() _SCREAMING_SNAKE_CASE = self._strip_protocol(A__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(A__ ) def UpperCamelCase ( self , A__ , A__=False , **A__ ) -> List[Any]: self._get_dirs() _SCREAMING_SNAKE_CASE = PurePosixPath(path.strip("""/""" ) ) _SCREAMING_SNAKE_CASE = {} for p, f in self.dir_cache.items(): _SCREAMING_SNAKE_CASE = PurePosixPath(p.strip("""/""" ) ) _SCREAMING_SNAKE_CASE = p.parent if root == path: _SCREAMING_SNAKE_CASE = f _SCREAMING_SNAKE_CASE = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
0
1
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError("""only integers accepted as input""" ) else: _SCREAMING_SNAKE_CASE = str(abs(SCREAMING_SNAKE_CASE_ ) ) _SCREAMING_SNAKE_CASE = [list(SCREAMING_SNAKE_CASE_ ) for char in range(len(SCREAMING_SNAKE_CASE_ ) )] for index in range(len(SCREAMING_SNAKE_CASE_ ) ): num_transpositions[index].pop(SCREAMING_SNAKE_CASE_ ) return max( int("""""".join(list(SCREAMING_SNAKE_CASE_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
0
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features _SCREAMING_SNAKE_CASE = ( Features({feature: Value(SCREAMING_SNAKE_CASE_ ) for feature, dtype in features.items()} ) if features is not None else None ) _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = parquet_path elif issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = [parquet_path] _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=("train",) ) -> List[str]: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for split in splits: _SCREAMING_SNAKE_CASE = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _SCREAMING_SNAKE_CASE = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features _SCREAMING_SNAKE_CASE = ( Features({feature: Value(SCREAMING_SNAKE_CASE_ ) for feature, dtype in features.items()} ) if features is not None else None ) _SCREAMING_SNAKE_CASE = ParquetDatasetReader({"""train""": parquet_path} , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" if split: _SCREAMING_SNAKE_CASE = {split: parquet_path} else: _SCREAMING_SNAKE_CASE = """train""" _SCREAMING_SNAKE_CASE = {"""train""": parquet_path, """test""": parquet_path} _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ParquetDatasetWriter(SCREAMING_SNAKE_CASE_ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _SCREAMING_SNAKE_CASE = pq.ParquetFile(tmp_path / """foo.parquet""" ) _SCREAMING_SNAKE_CASE = pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = str(shared_datadir / """test_image_rgb.jpg""" ) _SCREAMING_SNAKE_CASE = {"""image""": [image_path]} _SCREAMING_SNAKE_CASE = Features({"""image""": Image()} ) _SCREAMING_SNAKE_CASE = Dataset.from_dict(SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = ParquetDatasetWriter(SCREAMING_SNAKE_CASE_ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _SCREAMING_SNAKE_CASE = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _SCREAMING_SNAKE_CASE = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=SCREAMING_SNAKE_CASE_ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" assert get_writer_batch_size(SCREAMING_SNAKE_CASE_ ) == expected
0
1
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCamelCase__ : Union[str, Any] = get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ) -> int: """simple docstring""" os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _SCREAMING_SNAKE_CASE = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _SCREAMING_SNAKE_CASE = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" _SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if accelerator.process_index == 0: logger.info(F"Saving model to {output_model_file}" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _SCREAMING_SNAKE_CASE = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) _SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"Saving model to {output_model_file}" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , F"{MODEL_NAME}_{model_index}" ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(F"Saving model to {ckpt_dir}" ) _SCREAMING_SNAKE_CASE = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(F"Model saved to {ckpt_dir}" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ) -> Union[str, Any]: """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(SCREAMING_SNAKE_CASE_ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return _SCREAMING_SNAKE_CASE = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" _SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"Loading model from {input_model_file}" ) _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _SCREAMING_SNAKE_CASE = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) _SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"Loading model from {input_model_file}" ) _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _SCREAMING_SNAKE_CASE = ( os.path.join(SCREAMING_SNAKE_CASE_ , F"{MODEL_NAME}_{model_index}" ) if F"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(F"Loading model from {ckpt_dir}" ) _SCREAMING_SNAKE_CASE = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , planner=DefaultLoadPlanner() , ) _SCREAMING_SNAKE_CASE = state_dict["""model"""] logger.info(F"Model loaded from {ckpt_dir}" ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ) -> str: """simple docstring""" os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _SCREAMING_SNAKE_CASE = FSDP.optim_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: _SCREAMING_SNAKE_CASE = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) _SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"Saving Optimizer state to {output_optimizer_file}" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"Optimizer state saved in {output_optimizer_file}" ) else: _SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , F"{OPTIMIZER_NAME}_{optimizer_index}" ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(F"Saving Optimizer state to {ckpt_dir}" ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(F"Optimizer state saved in {ckpt_dir}" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ) -> List[Any]: """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _SCREAMING_SNAKE_CASE = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: _SCREAMING_SNAKE_CASE = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) _SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"Loading Optimizer state from {input_optimizer_file}" ) _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"Optimizer state loaded from {input_optimizer_file}" ) else: _SCREAMING_SNAKE_CASE = ( os.path.join(SCREAMING_SNAKE_CASE_ , F"{OPTIMIZER_NAME}_{optimizer_index}" ) if F"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(F"Loading Optimizer from {ckpt_dir}" ) _SCREAMING_SNAKE_CASE = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , ) _SCREAMING_SNAKE_CASE = optim_state["""optimizer"""] logger.info(F"Optimizer loaded from {ckpt_dir}" ) _SCREAMING_SNAKE_CASE = FSDP.optim_state_dict_to_load(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) optimizer.load_state_dict(SCREAMING_SNAKE_CASE_ )
0
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: _SCREAMING_SNAKE_CASE = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] _SCREAMING_SNAKE_CASE = 1 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total *= numbers[i] _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: _SCREAMING_SNAKE_CASE = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] _SCREAMING_SNAKE_CASE = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total += numbers[i] _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
0
1
'''simple docstring''' import math def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase__ : Dict = "Enter the base and the power separated by a comma: " UpperCamelCase__ , UpperCamelCase__ : Dict = map(int, input(prompt).split(",")) UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase__ : int = res(xa, ya) UpperCamelCase__ : Optional[Any] = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
0
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase__ : Tuple = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) UpperCamelCase__ : Union[str, Any] = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase__ : str = "sshleifer/tiny-mbart" @require_torch class _a (_lowerCamelCase): """simple docstring""" def UpperCamelCase ( self , A__=False , A__=None , A__=True , A__=True , A__=True , A__=True , ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.run_trainer( eval_steps=1 , max_len=12 , model_name=A__ , num_train_epochs=1 , distributed=A__ , extra_args_str=A__ , predict_with_generate=A__ , do_train=A__ , do_eval=A__ , do_predict=A__ , ) _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(os.path.join(A__ , """trainer_state.json""" ) ).log_history if not do_eval: return _SCREAMING_SNAKE_CASE = [log for log in logs if """eval_loss""" in log.keys()] _SCREAMING_SNAKE_CASE = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats _SCREAMING_SNAKE_CASE = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , A__ ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def UpperCamelCase ( self ) -> Optional[int]: self.run_seqaseq_quick() @require_torch_multi_gpu def UpperCamelCase ( self ) -> Optional[Any]: self.run_seqaseq_quick(distributed=A__ ) @require_torch_multi_gpu def UpperCamelCase ( self ) -> Union[str, Any]: self.run_seqaseq_quick(distributed=A__ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> Any: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> Tuple: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> str: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=A__ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> List[str]: self.run_seqaseq_quick( distributed=A__ , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=A__ ) @require_apex @require_torch_gpu def UpperCamelCase ( self ) -> Optional[Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def UpperCamelCase ( self , A__ ) -> List[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout _SCREAMING_SNAKE_CASE = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } _SCREAMING_SNAKE_CASE = experiments[experiment_id] _SCREAMING_SNAKE_CASE = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} _SCREAMING_SNAKE_CASE = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**A__ , extra_args_str=data["""extra_args_str"""] ) _SCREAMING_SNAKE_CASE = len(re.findall(A__ , cl.err ) ) self.assertEqual(A__ , data["""n_matches"""] ) @slow def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=A__ , learning_rate=3E-4 , num_train_epochs=10 , distributed=A__ , ) # Check metrics _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(os.path.join(A__ , """trainer_state.json""" ) ).log_history _SCREAMING_SNAKE_CASE = [log for log in logs if """eval_loss""" in log.keys()] _SCREAMING_SNAKE_CASE = eval_metrics[0] _SCREAMING_SNAKE_CASE = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , A__ ) # test if do_predict saves generations and metrics _SCREAMING_SNAKE_CASE = os.listdir(A__ ) _SCREAMING_SNAKE_CASE = {os.path.basename(A__ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def UpperCamelCase ( self ) -> Dict: from transformers.training_args import OptimizerNames def train_and_return_metrics(A__ ) -> Tuple[int, float]: _SCREAMING_SNAKE_CASE = """--skip_memory_metrics 0""" _SCREAMING_SNAKE_CASE = self.run_trainer( max_len=1_28 , model_name=A__ , learning_rate=3E-4 , num_train_epochs=1 , optim=A__ , distributed=A__ , extra_args_str=A__ , do_eval=A__ , do_predict=A__ , n_gpus_to_use=1 , ) # Check metrics _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(Path(A__ , """trainer_state.json""" ) ).log_history _SCREAMING_SNAKE_CASE = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) _SCREAMING_SNAKE_CASE = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) _SCREAMING_SNAKE_CASE = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) _SCREAMING_SNAKE_CASE = gpu_alloc_mem_orig - gpu_alloc_mem_bnb _SCREAMING_SNAKE_CASE = gpu_peak_mem_orig + gpu_alloc_mem_orig _SCREAMING_SNAKE_CASE = gpu_peak_mem_bnb + gpu_alloc_mem_bnb _SCREAMING_SNAKE_CASE = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings _SCREAMING_SNAKE_CASE = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( A__ , A__ , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" F" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" F" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( A__ , A__ , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" F" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" F" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( A__ , A__ , F"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}" ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ = 3E-3 , A__ = "adafactor" , A__ = False , A__ = None , A__ = 0 , A__ = True , A__ = True , A__ = True , A__ = True , A__ = None , ) -> Dict: _SCREAMING_SNAKE_CASE = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" _SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() _SCREAMING_SNAKE_CASE = F"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(A__ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(A__ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() _SCREAMING_SNAKE_CASE = F"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(A__ )}\n ".split() _SCREAMING_SNAKE_CASE = """ --do_predict """.split() _SCREAMING_SNAKE_CASE = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: _SCREAMING_SNAKE_CASE = get_gpu_count() _SCREAMING_SNAKE_CASE = get_torch_dist_unique_port() _SCREAMING_SNAKE_CASE = F"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() _SCREAMING_SNAKE_CASE = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A__ , env=self.get_env() ) else: _SCREAMING_SNAKE_CASE = ["""run_translation.py"""] + args with patch.object(A__ , """argv""" , A__ ): main() return output_dir
0
1
'''simple docstring''' from math import pi def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> float: """simple docstring""" return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
0
'''simple docstring''' import sys UpperCamelCase__ : int = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = N ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = -sys.maxsize - 1 for i in range(len(SCREAMING_SNAKE_CASE_ ) - 12 ): _SCREAMING_SNAKE_CASE = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _SCREAMING_SNAKE_CASE = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
0
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None ) -> None: """simple docstring""" if start is None: _SCREAMING_SNAKE_CASE = 0 if end is None: _SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) - 1 if start >= end: return _SCREAMING_SNAKE_CASE = (start + end) // 2 slowsort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) slowsort(SCREAMING_SNAKE_CASE_ , mid + 1 , SCREAMING_SNAKE_CASE_ ) if sequence[end] < sequence[mid]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = sequence[mid], sequence[end] slowsort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
0
'''simple docstring''' UpperCamelCase__ : Dict = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } UpperCamelCase__ : str = {value: key for key, value in encode_dict.items()} def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" if set(SCREAMING_SNAKE_CASE_ ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) _SCREAMING_SNAKE_CASE = """""" for word in coded.split(): while len(SCREAMING_SNAKE_CASE_ ) != 0: decoded += decode_dict[word[:5]] _SCREAMING_SNAKE_CASE = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
0
1
'''simple docstring''' import requests def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE = {"""Content-Type""": """application/json"""} _SCREAMING_SNAKE_CASE = requests.post(SCREAMING_SNAKE_CASE_ , json={"""text""": message_body} , headers=SCREAMING_SNAKE_CASE_ ) if response.status_code != 2_00: _SCREAMING_SNAKE_CASE = ( """Request to slack returned an error """ F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = emb.weight.shape _SCREAMING_SNAKE_CASE = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" ) _SCREAMING_SNAKE_CASE = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] _SCREAMING_SNAKE_CASE = mam_aaa["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = state_dict["""encoder.embed_tokens.weight"""].shape[0] _SCREAMING_SNAKE_CASE = MaMaaaConfig( vocab_size=SCREAMING_SNAKE_CASE_ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) _SCREAMING_SNAKE_CASE = state_dict["""decoder.embed_tokens.weight"""] _SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) model.model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : Any = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
0
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _a (_lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = CanineTokenizer SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self ) -> str: super().setUp() _SCREAMING_SNAKE_CASE = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase ( self ) -> str: return CanineTokenizer.from_pretrained("""google/canine-s""" ) def UpperCamelCase ( self , **A__ ) -> CanineTokenizer: _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(self.tmpdirname , **A__ ) _SCREAMING_SNAKE_CASE = 10_24 return tokenizer @require_torch def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.canine_tokenizer _SCREAMING_SNAKE_CASE = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off _SCREAMING_SNAKE_CASE = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on _SCREAMING_SNAKE_CASE = tokenizer(A__ , padding=A__ , return_tensors="""pt""" ) self.assertIsInstance(A__ , A__ ) _SCREAMING_SNAKE_CASE = list(batch.input_ids.numpy()[0] ) self.assertListEqual(A__ , A__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.canine_tokenizer _SCREAMING_SNAKE_CASE = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] _SCREAMING_SNAKE_CASE = tokenizer(A__ , padding=A__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , A__ ) self.assertIn("""attention_mask""" , A__ ) self.assertIn("""token_type_ids""" , A__ ) @require_torch def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.canine_tokenizer _SCREAMING_SNAKE_CASE = [ """What's the weater?""", """It's about 25 degrees.""", ] _SCREAMING_SNAKE_CASE = tokenizer( text_target=A__ , max_length=32 , padding="""max_length""" , truncation=A__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def UpperCamelCase ( self ) -> Optional[Any]: # safety check on max_len default value so we are sure the test works _SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _SCREAMING_SNAKE_CASE = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE = """ He is very happy, UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) tokenizer.save_pretrained(A__ ) _SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(A__ ) _SCREAMING_SNAKE_CASE = after_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) shutil.rmtree(A__ ) _SCREAMING_SNAKE_CASE = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _SCREAMING_SNAKE_CASE = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE = """ He is very happy, UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _SCREAMING_SNAKE_CASE = chr(0Xe_0_0_7 ) additional_special_tokens.append(A__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) tokenizer.save_pretrained(A__ ) _SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(A__ ) _SCREAMING_SNAKE_CASE = after_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) self.assertIn(A__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(A__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(A__ ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=A__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_clean_sequence(A__ ) # a special token for Canine can be defined as follows: _SCREAMING_SNAKE_CASE = 0Xe_0_0_5 _SCREAMING_SNAKE_CASE = chr(A__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertEqual(len(A__ ) , 1 ) _SCREAMING_SNAKE_CASE = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertEqual(A__ , input_encoded + special_token_id ) _SCREAMING_SNAKE_CASE = tokenizer.decode(A__ , skip_special_tokens=A__ ) self.assertTrue(special_token not in decoded ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=A__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): _SCREAMING_SNAKE_CASE = chr(0Xe_0_0_5 ) _SCREAMING_SNAKE_CASE = chr(0Xe_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=A__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) self.assertEqual(len(A__ ) , 1 ) self.assertEqual(len(A__ ) , 1 ) self.assertEqual(token_a[0] , A__ ) self.assertEqual(token_a[0] , A__ ) @require_tokenizers def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=A__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # a special token for Canine can be defined as follows: _SCREAMING_SNAKE_CASE = 0Xe_0_0_6 _SCREAMING_SNAKE_CASE = chr(A__ ) _SCREAMING_SNAKE_CASE = AddedToken(A__ , lstrip=A__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(A__ ) tokenizer.from_pretrained(A__ ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(A__ ) with open(os.path.join(A__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: _SCREAMING_SNAKE_CASE = json.load(A__ ) with open(os.path.join(A__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: _SCREAMING_SNAKE_CASE = json.load(A__ ) # a special token for Canine can be defined as follows: _SCREAMING_SNAKE_CASE = 0Xe_0_0_6 _SCREAMING_SNAKE_CASE = chr(A__ ) _SCREAMING_SNAKE_CASE = [new_token_a] _SCREAMING_SNAKE_CASE = [new_token_a] with open(os.path.join(A__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(A__ , A__ ) with open(os.path.join(A__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(A__ , A__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained(A__ , extra_ids=0 ) self.assertIn(A__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) _SCREAMING_SNAKE_CASE = 0Xe_0_0_7 _SCREAMING_SNAKE_CASE = chr(A__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _SCREAMING_SNAKE_CASE = [AddedToken(A__ , lstrip=A__ )] _SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained( A__ , additional_special_tokens=A__ , extra_ids=0 ) self.assertIn(A__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=A__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): _SCREAMING_SNAKE_CASE = """hello world""" if self.space_between_special_tokens: _SCREAMING_SNAKE_CASE = """[CLS] hello world [SEP]""" else: _SCREAMING_SNAKE_CASE = input _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.decode(A__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(A__ , [output, output.lower()] ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): _SCREAMING_SNAKE_CASE = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _SCREAMING_SNAKE_CASE = """a""" _SCREAMING_SNAKE_CASE = ord(A__ ) for attr in attributes_list: setattr(A__ , attr + """_id""" , A__ ) self.assertEqual(getattr(A__ , A__ ) , A__ ) self.assertEqual(getattr(A__ , attr + """_id""" ) , A__ ) setattr(A__ , attr + """_id""" , A__ ) self.assertEqual(getattr(A__ , A__ ) , A__ ) self.assertEqual(getattr(A__ , attr + """_id""" ) , A__ ) setattr(A__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(A__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(A__ , """additional_special_tokens_ids""" ) , [] ) _SCREAMING_SNAKE_CASE = 0Xe_0_0_6 _SCREAMING_SNAKE_CASE = chr(A__ ) setattr(A__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(A__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(A__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def UpperCamelCase ( self ) -> Union[str, Any]: pass def UpperCamelCase ( self ) -> List[str]: pass def UpperCamelCase ( self ) -> Optional[Any]: pass def UpperCamelCase ( self ) -> List[Any]: pass def UpperCamelCase ( self ) -> Optional[int]: pass def UpperCamelCase ( self ) -> List[Any]: pass def UpperCamelCase ( self ) -> int: pass def UpperCamelCase ( self ) -> Optional[int]: pass
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : str = { "configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"], "tokenization_canine": ["CanineTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
1
'''simple docstring''' import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class _a : """simple docstring""" def __init__( self , A__ , A__=13 , A__=7 , A__=True , A__=True , A__=True , A__=True , A__=99 , A__=32 , A__=5 , A__=4 , A__=4 , A__="gelu" , A__=0.0 , A__=0.1 , A__=True , A__=5_12 , A__=16 , A__=2 , A__=0.02 , A__=3 , A__=4 , A__=None , ) -> Dict: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_multiple_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout _SCREAMING_SNAKE_CASE = attention_dropout _SCREAMING_SNAKE_CASE = weight_tying _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, token_labels def UpperCamelCase ( self ) -> Any: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A__ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE = True return config, input_ids, input_mask, token_labels def UpperCamelCase ( self , A__ , A__ , A__ ) -> Dict: _SCREAMING_SNAKE_CASE = GPTNeoXJapaneseModel(config=A__ ) model.to(A__ ) model.eval() _SCREAMING_SNAKE_CASE = model(A__ , attention_mask=A__ ) _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self , A__ , A__ , A__ ) -> str: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = GPTNeoXJapaneseModel(A__ ) model.to(A__ ) model.eval() _SCREAMING_SNAKE_CASE = model(A__ , attention_mask=A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ ) -> Any: _SCREAMING_SNAKE_CASE = GPTNeoXJapaneseForCausalLM(config=A__ ) model.to(A__ ) model.eval() _SCREAMING_SNAKE_CASE = model(A__ , attention_mask=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self , A__ , A__ , A__ ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = GPTNeoXJapaneseForCausalLM(config=A__ ) model.to(A__ ) model.eval() # first forward pass _SCREAMING_SNAKE_CASE = model(A__ , attention_mask=A__ , use_cache=A__ ) _SCREAMING_SNAKE_CASE = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) _SCREAMING_SNAKE_CASE = torch.cat([input_mask, next_mask] , dim=-1 ) _SCREAMING_SNAKE_CASE = model(A__ , attention_mask=A__ , output_hidden_states=A__ ) _SCREAMING_SNAKE_CASE = output_from_no_past["""hidden_states"""][0] _SCREAMING_SNAKE_CASE = model( A__ , attention_mask=A__ , past_key_values=A__ , output_hidden_states=A__ , )["""hidden_states"""][0] # select random slice _SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() _SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() _SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A__ , A__ , atol=1E-3 ) ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a (_lowerCamelCase , _lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () SCREAMING_SNAKE_CASE = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = GPTNeoXJapaneseModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A__ , hidden_size=37 ) def UpperCamelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A__ , A__ , A__ ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(A__ , A__ , A__ ) def UpperCamelCase ( self ) -> List[Any]: # This regression test was failing with PyTorch < 1.3 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_decoder() _SCREAMING_SNAKE_CASE = None self.model_tester.create_and_check_model_as_decoder(A__ , A__ , A__ ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(A__ , A__ , A__ ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*A__ ) @slow def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = """abeja/gpt-neox-japanese-2.7b""" _SCREAMING_SNAKE_CASE = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] _SCREAMING_SNAKE_CASE = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] _SCREAMING_SNAKE_CASE = GPTNeoXJapaneseTokenizer.from_pretrained(A__ ) _SCREAMING_SNAKE_CASE = GPTNeoXJapaneseForCausalLM.from_pretrained(A__ ) _SCREAMING_SNAKE_CASE = [] for prompt in prompts: _SCREAMING_SNAKE_CASE = tokenizer(A__ , return_tensors="""pt""" ).input_ids _SCREAMING_SNAKE_CASE = model.generate(A__ , max_length=50 ) _SCREAMING_SNAKE_CASE = tokenizer.batch_decode(A__ , skip_special_tokens=A__ ) predicted_outputs += generated_string self.assertListEqual(A__ , A__ )
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE = 'ChineseCLIPImageProcessor' SCREAMING_SNAKE_CASE = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , A__=None , A__=None , **A__ ) -> int: _SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A__ , ) _SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) _SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.image_processor def __call__( self , A__=None , A__=None , A__=None , **A__ ) -> Optional[int]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _SCREAMING_SNAKE_CASE = self.tokenizer(A__ , return_tensors=A__ , **A__ ) if images is not None: _SCREAMING_SNAKE_CASE = self.image_processor(A__ , return_tensors=A__ , **A__ ) if text is not None and images is not None: _SCREAMING_SNAKE_CASE = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A__ ) , tensor_type=A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Dict: return self.tokenizer.batch_decode(*A__ , **A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Optional[Any]: return self.tokenizer.decode(*A__ , **A__ ) @property def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase ( self ) -> Optional[int]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A__ , ) return self.image_processor_class
0
1
'''simple docstring''' import numpy as np def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> np.array: """simple docstring""" return 1 / (1 + np.exp(-vector )) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> np.array: """simple docstring""" return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
0
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets UpperCamelCase__ : List[str] = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCamelCase__ : List[Any] = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCamelCase__ : Any = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a (datasets.Metric): """simple docstring""" def UpperCamelCase ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def UpperCamelCase ( self , A__ , A__ , A__=None ) -> List[str]: return { "matthews_correlation": float(matthews_corrcoef(A__ , A__ , sample_weight=A__ ) ), }
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase__ : str = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(SCREAMING_SNAKE_CASE_ ): print(F"{i}\t\t{d}" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" for j in range(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: return True return False def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[float]: """simple docstring""" _SCREAMING_SNAKE_CASE = [float("""inf""" )] * vertex_count _SCREAMING_SNAKE_CASE = 0.0 for _ in range(vertex_count - 1 ): for j in range(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: _SCREAMING_SNAKE_CASE = distance[u] + w _SCREAMING_SNAKE_CASE = check_negative_cycle(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if negative_cycle_exists: raise Exception("""Negative cycle found""" ) return distance if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : int = int(input("Enter number of vertices: ").strip()) UpperCamelCase__ : int = int(input("Enter number of edges: ").strip()) UpperCamelCase__ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Dict = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) UpperCamelCase__ : Optional[Any] = {"src": src, "dst": dest, "weight": weight} UpperCamelCase__ : Optional[Any] = int(input("\nEnter shortest path source:").strip()) UpperCamelCase__ : Any = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
0
1
'''simple docstring''' import os def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" with open(os.path.dirname(SCREAMING_SNAKE_CASE_ ) + """/grid.txt""" ) as f: _SCREAMING_SNAKE_CASE = [] # noqa: E741 for _ in range(20 ): l.append([int(SCREAMING_SNAKE_CASE_ ) for x in f.readline().split()] ) _SCREAMING_SNAKE_CASE = 0 # right for i in range(20 ): for j in range(17 ): _SCREAMING_SNAKE_CASE = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: _SCREAMING_SNAKE_CASE = temp # down for i in range(17 ): for j in range(20 ): _SCREAMING_SNAKE_CASE = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: _SCREAMING_SNAKE_CASE = temp # diagonal 1 for i in range(17 ): for j in range(17 ): _SCREAMING_SNAKE_CASE = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: _SCREAMING_SNAKE_CASE = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): _SCREAMING_SNAKE_CASE = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: _SCREAMING_SNAKE_CASE = temp return maximum if __name__ == "__main__": print(solution())
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _a : """simple docstring""" def __init__( self , A__ , A__=13 , A__=7 , A__=True , A__=True , A__=True , A__=True , A__=99 , A__=32 , A__=2 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=5_12 , A__=16 , A__=2 , A__=0.02 , A__=3 , A__=4 , A__=None , ) -> int: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 99 _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 37 _SCREAMING_SNAKE_CASE = """gelu""" _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 5_12 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 0.02 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = TFRoFormerModel(config=A__ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(A__ ) _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> str: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = TFRoFormerForCausalLM(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Dict: _SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFRoFormerForSequenceClassification(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Any: _SCREAMING_SNAKE_CASE = self.num_choices _SCREAMING_SNAKE_CASE = TFRoFormerForMultipleChoice(config=A__ ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFRoFormerForTokenClassification(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Tuple: _SCREAMING_SNAKE_CASE = TFRoFormerForQuestionAnswering(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _a (_lowerCamelCase , _lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ ) -> str: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = TFRoFormerModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A__ , hidden_size=37 ) def UpperCamelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__ ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A__ ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__ ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__ ) @slow def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(A__ ) @require_tf class _a (unittest.TestCase): """simple docstring""" @slow def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(A__ )[0] # TODO Replace vocab size _SCREAMING_SNAKE_CASE = 5_00_00 _SCREAMING_SNAKE_CASE = [1, 6, vocab_size] self.assertEqual(output.shape , A__ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A__ , atol=1E-4 ) @require_tf class _a (unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = 1E-4 def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = tf.constant([[4, 10]] ) _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) _SCREAMING_SNAKE_CASE = emba(input_ids.shape ) _SCREAMING_SNAKE_CASE = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) _SCREAMING_SNAKE_CASE = emba.weight[:3, :5] tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) @require_tf class _a (unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = 1E-4 def UpperCamelCase ( self ) -> int: # 2,12,16,64 _SCREAMING_SNAKE_CASE = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 _SCREAMING_SNAKE_CASE = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) _SCREAMING_SNAKE_CASE = embed_positions([2, 16, 7_68] )[None, None, :, :] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = TFRoFormerSelfAttention.apply_rotary_position_embeddings( A__ , A__ , A__ ) _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A__ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A__ , atol=self.tolerance )
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase__ : Any = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys UpperCamelCase__ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available UpperCamelCase__ : int = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(SCREAMING_SNAKE_CASE_ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE = [] depth_first_search([] , [] , [] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Print all the boards for board in boards: for column in board: print(SCREAMING_SNAKE_CASE_ ) print("""""" ) print(len(SCREAMING_SNAKE_CASE_ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
0
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = XCLIPTextConfig() # derive patch size from model name _SCREAMING_SNAKE_CASE = model_name.find("""patch""" ) _SCREAMING_SNAKE_CASE = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) _SCREAMING_SNAKE_CASE = XCLIPVisionConfig(patch_size=SCREAMING_SNAKE_CASE_ , num_frames=SCREAMING_SNAKE_CASE_ ) if "large" in model_name: _SCREAMING_SNAKE_CASE = 7_68 _SCREAMING_SNAKE_CASE = 30_72 _SCREAMING_SNAKE_CASE = 12 _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = 40_96 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 7_68 _SCREAMING_SNAKE_CASE = 30_72 if model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE = 3_36 _SCREAMING_SNAKE_CASE = XCLIPConfig.from_text_vision_configs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "large" in model_name: _SCREAMING_SNAKE_CASE = 7_68 return config def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" # text encoder if name == "token_embedding.weight": _SCREAMING_SNAKE_CASE = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: _SCREAMING_SNAKE_CASE = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""c_proj""" , """fc2""" ) if name.startswith("""transformer.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: _SCREAMING_SNAKE_CASE = name.replace("""attn.out_proj""" , """self_attn.out_proj""" ) if "ln_final" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_final""" , """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": _SCREAMING_SNAKE_CASE = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" ) if "visual.conv1" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" ) if "visual.proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.proj""" , """visual_projection.weight""" ) if "text_projection" in name: _SCREAMING_SNAKE_CASE = name.replace("""text_projection""" , """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" ) if "prompts_visual_ln" in name: _SCREAMING_SNAKE_CASE = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""positional""" , """position""" ) if name.startswith("""mit.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""mit.resblocks""" , """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): _SCREAMING_SNAKE_CASE = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" ) return name def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "attn.in_proj" in key: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if key.startswith("""visual""" ): _SCREAMING_SNAKE_CASE = key_split[3] _SCREAMING_SNAKE_CASE = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: _SCREAMING_SNAKE_CASE = val[ :dim, : ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE = val[ :dim ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[ -dim: ] else: if "weight" in key: _SCREAMING_SNAKE_CASE = val[ :dim, : ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[-dim:] elif key.startswith("""mit""" ): _SCREAMING_SNAKE_CASE = key_split[2] _SCREAMING_SNAKE_CASE = config.vision_config.mit_hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[dim : dim * 2] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = key_split[2] _SCREAMING_SNAKE_CASE = config.text_config.hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = rename_key(SCREAMING_SNAKE_CASE_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: _SCREAMING_SNAKE_CASE = val.T _SCREAMING_SNAKE_CASE = val return orig_state_dict def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" if num_frames == 8: _SCREAMING_SNAKE_CASE = """eating_spaghetti_8_frames.npy""" elif num_frames == 16: _SCREAMING_SNAKE_CASE = """eating_spaghetti.npy""" elif num_frames == 32: _SCREAMING_SNAKE_CASE = """eating_spaghetti_32_frames.npy""" _SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename=SCREAMING_SNAKE_CASE_ , repo_type="""dataset""" , ) _SCREAMING_SNAKE_CASE = np.load(SCREAMING_SNAKE_CASE_ ) return list(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } _SCREAMING_SNAKE_CASE = model_to_url[model_name] _SCREAMING_SNAKE_CASE = 8 if "16-frames" in model_name: _SCREAMING_SNAKE_CASE = 16 elif "shot" in model_name: _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = get_xclip_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = XCLIPModel(SCREAMING_SNAKE_CASE_ ) model.eval() if "drive" in checkpoint_url: _SCREAMING_SNAKE_CASE = """pytorch_model.bin""" gdown.cached_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , quiet=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" )["""model"""] else: _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ )["""model"""] _SCREAMING_SNAKE_CASE = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = XCLIPModel(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() _SCREAMING_SNAKE_CASE = 3_36 if model_name == """xclip-large-patch14-16-frames""" else 2_24 _SCREAMING_SNAKE_CASE = VideoMAEImageProcessor(size=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) _SCREAMING_SNAKE_CASE = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) _SCREAMING_SNAKE_CASE = XCLIPProcessor(image_processor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = prepare_video(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , padding=SCREAMING_SNAKE_CASE_ ) print("""Shape of pixel values:""" , inputs.pixel_values.shape ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) # Verify outputs _SCREAMING_SNAKE_CASE = outputs.logits_per_video _SCREAMING_SNAKE_CASE = logits_per_video.softmax(dim=1 ) print("""Probs:""" , SCREAMING_SNAKE_CASE_ ) # kinetics-400 if model_name == "xclip-base-patch32": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F"Model name {model_name} not supported" ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) slow_tokenizer.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase__ : str = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
1
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCamelCase__ : Tuple = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" inspect_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE_ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE_ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" inspect_metric(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE_ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = get_dataset_config_info(SCREAMING_SNAKE_CASE_ , config_name=SCREAMING_SNAKE_CASE_ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" with pytest.raises(SCREAMING_SNAKE_CASE_ ): get_dataset_config_info(SCREAMING_SNAKE_CASE_ , config_name=SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = get_dataset_config_names(SCREAMING_SNAKE_CASE_ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = get_dataset_infos(SCREAMING_SNAKE_CASE_ ) assert list(infos.keys() ) == expected_configs _SCREAMING_SNAKE_CASE = expected_configs[0] assert expected_config in infos _SCREAMING_SNAKE_CASE = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = get_dataset_infos(SCREAMING_SNAKE_CASE_ ) assert expected_config in infos _SCREAMING_SNAKE_CASE = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" with pytest.raises(SCREAMING_SNAKE_CASE_ ): get_dataset_split_names(SCREAMING_SNAKE_CASE_ , config_name=SCREAMING_SNAKE_CASE_ )
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _a (_lowerCamelCase): """simple docstring""" def __init__( self , A__ , A__ ) -> Any: _SCREAMING_SNAKE_CASE = params _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array([len(A__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , A__ ) -> Dict: return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Tuple: return len(self.lengths ) def UpperCamelCase ( self ) -> Dict: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.params.max_model_input_size _SCREAMING_SNAKE_CASE = self.lengths > max_len logger.info(F"Splitting {sum(A__ )} too long sequences." ) def divide_chunks(A__ , A__ ): return [l[i : i + n] for i in range(0 , len(A__ ) , A__ )] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] if self.params.mlm: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _SCREAMING_SNAKE_CASE = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , 0 , A__ ) if sub_s[-1] != sep_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , len(A__ ) , A__ ) assert len(A__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(A__ ) new_tok_ids.extend(A__ ) new_lengths.extend([len(A__ ) for l in sub_seqs] ) _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array(A__ ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = self.lengths > 11 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def UpperCamelCase ( self ) -> int: if "unk_token" not in self.params.special_tok_ids: return else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _SCREAMING_SNAKE_CASE = (unk_occs / self.lengths) < 0.5 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def UpperCamelCase ( self ) -> Optional[Any]: if not self.params.is_master: return logger.info(F"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCamelCase ( self , A__ ) -> Any: _SCREAMING_SNAKE_CASE = [t[0] for t in batch] _SCREAMING_SNAKE_CASE = [t[1] for t in batch] assert len(A__ ) == len(A__ ) # Max for paddings _SCREAMING_SNAKE_CASE = max(A__ ) # Pad token ids if self.params.mlm: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""pad_token"""] else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = [list(t.astype(A__ ) ) + [pad_idx] * (max_seq_len_ - len(A__ )) for t in token_ids] assert len(tk_ ) == len(A__ ) assert all(len(A__ ) == max_seq_len_ for t in tk_ ) _SCREAMING_SNAKE_CASE = torch.tensor(tk_ ) # (bs, max_seq_len_) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) # (bs) return tk_t, lg_t
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : int = { "configuration_poolformer": [ "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig", "PoolFormerOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[int] = ["PoolFormerFeatureExtractor"] UpperCamelCase__ : Dict = ["PoolFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys UpperCamelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : Any = "▁" UpperCamelCase__ : Any = {"vocab_file": "spiece.model"} UpperCamelCase__ : int = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } UpperCamelCase__ : Optional[int] = { "google/reformer-crime-and-punishment": 524_288, } class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , A__ , A__="</s>" , A__="<unk>" , A__=[] , A__ = None , **A__ , ) -> None: _SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A__ , unk_token=A__ , additional_special_tokens=A__ , sp_model_kwargs=self.sp_model_kwargs , **A__ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A__ ) @property def UpperCamelCase ( self ) -> Any: return self.sp_model.get_piece_size() def UpperCamelCase ( self ) -> Dict[str, int]: _SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: _SCREAMING_SNAKE_CASE = self.__dict__.copy() _SCREAMING_SNAKE_CASE = None return state def __setstate__( self , A__ ) -> str: _SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self , A__ ) -> List[str]: return self.sp_model.encode(A__ , out_type=A__ ) def UpperCamelCase ( self , A__ ) -> Union[str, Any]: return self.sp_model.piece_to_id(A__ ) def UpperCamelCase ( self , A__ ) -> List[Any]: if index < self.sp_model.get_piece_size(): _SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(A__ ) return token def UpperCamelCase ( self , A__ ) -> str: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A__ ) + token _SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(A__ ) out_string += self.sp_model.decode(A__ ) return out_string.strip() def UpperCamelCase ( self , A__ , A__ = None ) -> Tuple[str]: if not os.path.isdir(A__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _SCREAMING_SNAKE_CASE = os.path.join( A__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , """wb""" ) as fi: _SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,)
0
1
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 # if input_string is "aba" than new_input_string become "a|b|a" _SCREAMING_SNAKE_CASE = """""" _SCREAMING_SNAKE_CASE = """""" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(SCREAMING_SNAKE_CASE_ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0, 0 # length[i] shows the length of palindromic substring with center i _SCREAMING_SNAKE_CASE = [1 for i in range(len(SCREAMING_SNAKE_CASE_ ) )] # for each character in new_string find corresponding palindromic string _SCREAMING_SNAKE_CASE = 0 for j in range(len(SCREAMING_SNAKE_CASE_ ) ): _SCREAMING_SNAKE_CASE = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(SCREAMING_SNAKE_CASE_ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _SCREAMING_SNAKE_CASE = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _SCREAMING_SNAKE_CASE = j - k + 1 # noqa: E741 _SCREAMING_SNAKE_CASE = j + k - 1 # update max_length and start position if max_length < length[j]: _SCREAMING_SNAKE_CASE = length[j] _SCREAMING_SNAKE_CASE = j # create that string _SCREAMING_SNAKE_CASE = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
0
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _a (_lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = MobileBertTokenizer SCREAMING_SNAKE_CASE = MobileBertTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = filter_non_english SCREAMING_SNAKE_CASE = 'google/mobilebert-uncased' def UpperCamelCase ( self ) -> Any: super().setUp() _SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _SCREAMING_SNAKE_CASE = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCamelCase ( self , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = """unwanted, running""" return input_text, output_text def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(A__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [9, 6, 7, 12, 10, 11] ) def UpperCamelCase ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) # With lower casing _SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=A__ ) _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _SCREAMING_SNAKE_CASE = {} for i, token in enumerate(A__ ): _SCREAMING_SNAKE_CASE = i _SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=A__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def UpperCamelCase ( self ) -> str: self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def UpperCamelCase ( self ) -> Union[str, Any]: self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def UpperCamelCase ( self ) -> Dict: self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A__ , A__ ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def UpperCamelCase ( self ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." _SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( A__ , return_attention_mask=A__ , return_token_type_ids=A__ , return_offsets_mapping=A__ , add_special_tokens=A__ , ) _SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(A__ , """do_lower_case""" ) else False _SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] _SCREAMING_SNAKE_CASE = """""".join(A__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that only the first Chinese character is not preceded by "##". _SCREAMING_SNAKE_CASE = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(A__ ) ] self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ )
0
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = emb.weight.shape _SCREAMING_SNAKE_CASE = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" ) _SCREAMING_SNAKE_CASE = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] _SCREAMING_SNAKE_CASE = mam_aaa["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = state_dict["""encoder.embed_tokens.weight"""].shape[0] _SCREAMING_SNAKE_CASE = MaMaaaConfig( vocab_size=SCREAMING_SNAKE_CASE_ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) _SCREAMING_SNAKE_CASE = state_dict["""decoder.embed_tokens.weight"""] _SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) model.model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : Any = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
0
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput UpperCamelCase__ : Tuple = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a (_lowerCamelCase): """simple docstring""" def __init__( self , *A__ , A__=None , A__=None , A__=None , **A__ ) -> Optional[int]: super().__init__(*A__ , **A__ ) _SCREAMING_SNAKE_CASE = eval_examples _SCREAMING_SNAKE_CASE = post_process_function _SCREAMING_SNAKE_CASE = quant_trainer_args _SCREAMING_SNAKE_CASE = 1_28 # default number of calibration samples def UpperCamelCase ( self , A__=None ) -> Union[str, Any]: if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) _SCREAMING_SNAKE_CASE = calib_dataset if calib_dataset is not None else self.calib_dataset _SCREAMING_SNAKE_CASE = self._remove_unused_columns(A__ , description="""Calibration""" ) return DataLoader( A__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=A__ , ) def UpperCamelCase ( self , A__=None ) -> str: _SCREAMING_SNAKE_CASE = self.train_dataset if calib_dataset is None else calib_dataset _SCREAMING_SNAKE_CASE = self.get_calib_dataloader(A__ ) _SCREAMING_SNAKE_CASE = self.model quant_trainer.configure_model(A__ , self.quant_trainer_args , calib=A__ ) model.eval() quant_trainer.enable_calibration(A__ ) logger.info("""***** Running calibration *****""" ) logger.info(F" Num examples = {self.calib_num}" ) logger.info(F" Batch size = {calib_dataloader.batch_size}" ) for step, inputs in enumerate(A__ ): # Prediction step _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.prediction_step(A__ , A__ , prediction_loss_only=A__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(A__ , self.quant_trainer_args ) _SCREAMING_SNAKE_CASE = model def UpperCamelCase ( self , A__=None , A__=None , A__=None , A__ = "eval" ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset _SCREAMING_SNAKE_CASE = self.get_eval_dataloader(A__ ) _SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) self.log(A__ ) else: _SCREAMING_SNAKE_CASE = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , A__ ) return metrics def UpperCamelCase ( self , A__ , A__ , A__=None , A__ = "test" ) -> List[str]: _SCREAMING_SNAKE_CASE = self.get_test_dataloader(A__ ) # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions , """predict""" ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A__ ) def UpperCamelCase ( self , A__="./" ) -> Tuple: _SCREAMING_SNAKE_CASE = self.eval_dataset _SCREAMING_SNAKE_CASE = self.get_eval_dataloader(A__ ) _SCREAMING_SNAKE_CASE = next(iter(A__ ) ) # saving device - to make it consistent _SCREAMING_SNAKE_CASE = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple _SCREAMING_SNAKE_CASE = tuple(v.to(A__ ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = self.model.to(A__ ) model.eval() model.float() _SCREAMING_SNAKE_CASE = model.module if hasattr(A__ , """module""" ) else model quant_trainer.configure_model(A__ , self.quant_trainer_args ) _SCREAMING_SNAKE_CASE = os.path.join(A__ , """model.onnx""" ) logger.info(F"exporting model to {output_model_file}" ) _SCREAMING_SNAKE_CASE = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( A__ , A__ , A__ , export_params=A__ , opset_version=13 , do_constant_folding=A__ , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=A__ , ) logger.info("""onnx export finished""" )
0
1
'''simple docstring''' import re import string import numpy as np import datasets UpperCamelCase__ : Tuple = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" UpperCamelCase__ : Tuple = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" UpperCamelCase__ : Optional[int] = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a (datasets.Metric): """simple docstring""" def UpperCamelCase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def UpperCamelCase ( self , A__ , A__ , A__=None , A__=False , A__=False , A__=False , ) -> Optional[Any]: if regexes_to_ignore is not None: for s in regexes_to_ignore: _SCREAMING_SNAKE_CASE = np.array([re.sub(A__ , """""" , A__ ) for x in predictions] ) _SCREAMING_SNAKE_CASE = np.array([re.sub(A__ , """""" , A__ ) for x in references] ) else: _SCREAMING_SNAKE_CASE = np.asarray(A__ ) _SCREAMING_SNAKE_CASE = np.asarray(A__ ) if ignore_case: _SCREAMING_SNAKE_CASE = np.char.lower(A__ ) _SCREAMING_SNAKE_CASE = np.char.lower(A__ ) if ignore_punctuation: _SCREAMING_SNAKE_CASE = string.punctuation.maketrans("""""" , """""" , string.punctuation ) _SCREAMING_SNAKE_CASE = np.char.translate(A__ , table=A__ ) _SCREAMING_SNAKE_CASE = np.char.translate(A__ , table=A__ ) if ignore_numbers: _SCREAMING_SNAKE_CASE = string.digits.maketrans("""""" , """""" , string.digits ) _SCREAMING_SNAKE_CASE = np.char.translate(A__ , table=A__ ) _SCREAMING_SNAKE_CASE = np.char.translate(A__ , table=A__ ) _SCREAMING_SNAKE_CASE = predictions == references return {"exact_match": np.mean(A__ ) * 1_00}
0
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bytes: """simple docstring""" # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
0
1
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() UpperCamelCase__ : List[str] = logging.get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = UniSpeechSatForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = downstream_dict["""projector.weight"""] _SCREAMING_SNAKE_CASE = downstream_dict["""projector.bias"""] _SCREAMING_SNAKE_CASE = downstream_dict["""model.post_net.linear.weight"""] _SCREAMING_SNAKE_CASE = downstream_dict["""model.post_net.linear.bias"""] return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = UniSpeechSatForAudioFrameClassification.from_pretrained(SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = downstream_dict["""model.linear.weight"""] _SCREAMING_SNAKE_CASE = downstream_dict["""model.linear.bias"""] return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = UniSpeechSatForXVector.from_pretrained(SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = downstream_dict["""connector.weight"""] _SCREAMING_SNAKE_CASE = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _SCREAMING_SNAKE_CASE = downstream_dict[ F"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] _SCREAMING_SNAKE_CASE = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"] _SCREAMING_SNAKE_CASE = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] _SCREAMING_SNAKE_CASE = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] _SCREAMING_SNAKE_CASE = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] _SCREAMING_SNAKE_CASE = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] _SCREAMING_SNAKE_CASE = downstream_dict["""objective.W"""] return model @torch.no_grad() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" ) _SCREAMING_SNAKE_CASE = checkpoint["""Downstream"""] _SCREAMING_SNAKE_CASE = UniSpeechSatConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , do_normalize=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): _SCREAMING_SNAKE_CASE = convert_classification(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif arch.endswith("""ForAudioFrameClassification""" ): _SCREAMING_SNAKE_CASE = convert_diarization(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif arch.endswith("""ForXVector""" ): _SCREAMING_SNAKE_CASE = convert_xvector(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: _SCREAMING_SNAKE_CASE = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCamelCase__ : Tuple = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") UpperCamelCase__ : int = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
0
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def lowerCAmelCase_ ( ) -> int: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("""https://huggingface.co""" )
0
1
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = [] for line in lines: _SCREAMING_SNAKE_CASE = re.sub(r"""#.*""" , """""" , SCREAMING_SNAKE_CASE_ ) # remove comments if line: filtered_lines.append(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = """\n""".join(SCREAMING_SNAKE_CASE_ ) # Make a hash from all this code _SCREAMING_SNAKE_CASE = full_str.encode("""utf-8""" ) return shaaaa(SCREAMING_SNAKE_CASE_ ).hexdigest() # get importable module names and hash for caching UpperCamelCase__ : List[str] = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCamelCase__ : str = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCamelCase__ : Union[str, Any] = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name UpperCamelCase__ : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(".zip") _MODULE_TO_EXTENSIONS["audiofolder"].append(".zip")
0
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> Iterator[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 2 while True: if is_prime(SCREAMING_SNAKE_CASE_ ): yield num num += 1 def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = 2_00_00_00 ) -> int: """simple docstring""" return sum(takewhile(lambda SCREAMING_SNAKE_CASE_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
0
1
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> float: """simple docstring""" return round(float(moles / volume ) * nfactor ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> float: """simple docstring""" return round(float((moles * 0.0821 * temperature) / (volume) ) ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> float: """simple docstring""" return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> float: """simple docstring""" return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _a (unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 1_28, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 1_42, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } _SCREAMING_SNAKE_CASE = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 1_28, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 1_42, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(A__ ) , A__ ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(A__ ) , x.transpose() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , transpose(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , transpose(A__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , transpose(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , transpose(A__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , np.asarray(transpose(A__ ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , np.asarray(transpose(A__ , axes=(1, 2, 0) ) ) ) ) def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , np.reshape(A__ , (4, 3) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , np.reshape(A__ , (12, 5) ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , reshape(A__ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , reshape(A__ , (12, 5) ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , reshape(A__ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , reshape(A__ , (12, 5) ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , np.asarray(reshape(A__ , (4, 3) ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , np.asarray(reshape(A__ , (12, 5) ) ) ) ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(A__ ) , np.squeeze(A__ ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , np.squeeze(A__ , axis=2 ) ) ) @require_torch def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , squeeze(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , squeeze(A__ , axis=2 ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , squeeze(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , squeeze(A__ , axis=2 ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , np.asarray(squeeze(A__ ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , np.asarray(squeeze(A__ , axis=2 ) ) ) ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , np.expand_dims(A__ , axis=1 ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , expand_dims(A__ , axis=1 ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , expand_dims(A__ , axis=1 ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , np.asarray(expand_dims(A__ , axis=1 ) ) ) )
0
1
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _a (_lowerCamelCase): """simple docstring""" def __init__( self , A__ , A__ = None , A__ = None , A__ = True , A__ = None , A__ = False , A__ = None , A__ = True , A__ = "arrow" , **A__ , ) -> Optional[int]: super().__init__( split=A__ , features=A__ , cache_dir=A__ , keep_in_memory=A__ , streaming=A__ , **A__ , ) _SCREAMING_SNAKE_CASE = load_from_cache_file _SCREAMING_SNAKE_CASE = file_format _SCREAMING_SNAKE_CASE = Spark( df=A__ , features=A__ , cache_dir=A__ , working_dir=A__ , **A__ , ) def UpperCamelCase ( self ) -> Optional[int]: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _SCREAMING_SNAKE_CASE = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=A__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
0
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , A__ = None , A__ = None , **A__ , ) -> Optional[int]: super().__init__(self , **A__ ) _SCREAMING_SNAKE_CASE = repo_info _SCREAMING_SNAKE_CASE = token _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> Tuple: if self.dir_cache is None: _SCREAMING_SNAKE_CASE = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _SCREAMING_SNAKE_CASE = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(A__ ): {"""name""": str(A__ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def UpperCamelCase ( self , A__ , A__ = "rb" , **A__ , ) -> Optional[int]: if not isinstance(self.repo_info , A__ ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) _SCREAMING_SNAKE_CASE = hf_hub_url(self.repo_info.id , A__ , revision=self.repo_info.sha ) return fsspec.open( A__ , mode=A__ , headers=get_authentication_headers_for_url(A__ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def UpperCamelCase ( self , A__ , **A__ ) -> str: self._get_dirs() _SCREAMING_SNAKE_CASE = self._strip_protocol(A__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(A__ ) def UpperCamelCase ( self , A__ , A__=False , **A__ ) -> List[Any]: self._get_dirs() _SCREAMING_SNAKE_CASE = PurePosixPath(path.strip("""/""" ) ) _SCREAMING_SNAKE_CASE = {} for p, f in self.dir_cache.items(): _SCREAMING_SNAKE_CASE = PurePosixPath(p.strip("""/""" ) ) _SCREAMING_SNAKE_CASE = p.parent if root == path: _SCREAMING_SNAKE_CASE = f _SCREAMING_SNAKE_CASE = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
0
1
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _a (unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _SCREAMING_SNAKE_CASE = FlaxDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=A__ , cache_dir=A__ ) _SCREAMING_SNAKE_CASE = [t[-1] for t in os.walk(os.path.join(A__ , os.listdir(A__ )[0] , """snapshots""" ) )] _SCREAMING_SNAKE_CASE = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(""".bin""" ) for f in files ) @slow @require_flax class _a (unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=A__ ) _SCREAMING_SNAKE_CASE = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = jax.device_count() _SCREAMING_SNAKE_CASE = num_samples * [prompt] _SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(A__ ) # shard inputs and rng _SCREAMING_SNAKE_CASE = replicate(A__ ) _SCREAMING_SNAKE_CASE = jax.random.split(A__ , A__ ) _SCREAMING_SNAKE_CASE = shard(A__ ) _SCREAMING_SNAKE_CASE = pipeline(A__ , A__ , A__ , A__ , jit=A__ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.151_4745 ) < 1E-3 assert np.abs(np.abs(A__ , dtype=np.floataa ).sum() - 4_9947.875 ) < 5E-1 _SCREAMING_SNAKE_CASE = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(A__ ) == num_samples def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""flax""" , safety_checker=A__ ) _SCREAMING_SNAKE_CASE = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE = 50 _SCREAMING_SNAKE_CASE = jax.device_count() _SCREAMING_SNAKE_CASE = num_samples * [prompt] _SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(A__ ) # shard inputs and rng _SCREAMING_SNAKE_CASE = replicate(A__ ) _SCREAMING_SNAKE_CASE = jax.random.split(A__ , A__ ) _SCREAMING_SNAKE_CASE = shard(A__ ) _SCREAMING_SNAKE_CASE = pipeline(A__ , A__ , A__ , A__ , jit=A__ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0565_2401) ) < 1E-3 assert np.abs((np.abs(A__ , dtype=np.floataa ).sum() - 238_3808.2) ) < 5E-1 def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=A__ ) _SCREAMING_SNAKE_CASE = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE = 50 _SCREAMING_SNAKE_CASE = jax.device_count() _SCREAMING_SNAKE_CASE = num_samples * [prompt] _SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(A__ ) # shard inputs and rng _SCREAMING_SNAKE_CASE = replicate(A__ ) _SCREAMING_SNAKE_CASE = jax.random.split(A__ , A__ ) _SCREAMING_SNAKE_CASE = shard(A__ ) _SCREAMING_SNAKE_CASE = pipeline(A__ , A__ , A__ , A__ , jit=A__ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1E-3 assert np.abs((np.abs(A__ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5E-1 def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa ) _SCREAMING_SNAKE_CASE = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE = 50 _SCREAMING_SNAKE_CASE = jax.device_count() _SCREAMING_SNAKE_CASE = num_samples * [prompt] _SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(A__ ) # shard inputs and rng _SCREAMING_SNAKE_CASE = replicate(A__ ) _SCREAMING_SNAKE_CASE = jax.random.split(A__ , A__ ) _SCREAMING_SNAKE_CASE = shard(A__ ) _SCREAMING_SNAKE_CASE = pipeline(A__ , A__ , A__ , A__ , jit=A__ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1E-3 assert np.abs((np.abs(A__ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5E-1 def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = FlaxDDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , set_alpha_to_one=A__ , steps_offset=1 , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , scheduler=A__ , safety_checker=A__ , ) _SCREAMING_SNAKE_CASE = scheduler.create_state() _SCREAMING_SNAKE_CASE = scheduler_state _SCREAMING_SNAKE_CASE = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE = 50 _SCREAMING_SNAKE_CASE = jax.device_count() _SCREAMING_SNAKE_CASE = num_samples * [prompt] _SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(A__ ) # shard inputs and rng _SCREAMING_SNAKE_CASE = replicate(A__ ) _SCREAMING_SNAKE_CASE = jax.random.split(A__ , A__ ) _SCREAMING_SNAKE_CASE = shard(A__ ) _SCREAMING_SNAKE_CASE = pipeline(A__ , A__ , A__ , A__ , jit=A__ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4504_3945) ) < 1E-3 assert np.abs((np.abs(A__ , dtype=np.floataa ).sum() - 234_7693.5) ) < 5E-1 def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) _SCREAMING_SNAKE_CASE = jax.device_count() _SCREAMING_SNAKE_CASE = num_samples * [prompt] _SCREAMING_SNAKE_CASE = jax.random.split(jax.random.PRNGKey(0 ) , A__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=A__ , ) _SCREAMING_SNAKE_CASE = replicate(A__ ) _SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(A__ ) _SCREAMING_SNAKE_CASE = shard(A__ ) _SCREAMING_SNAKE_CASE = pipeline(A__ , A__ , A__ , jit=A__ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) _SCREAMING_SNAKE_CASE = images[2, 0, 2_56, 10:17, 1] # With memory efficient attention _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=A__ , use_memory_efficient_attention=A__ , ) _SCREAMING_SNAKE_CASE = replicate(A__ ) _SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(A__ ) _SCREAMING_SNAKE_CASE = shard(A__ ) _SCREAMING_SNAKE_CASE = pipeline(A__ , A__ , A__ , jit=A__ ).images assert images_eff.shape == (num_samples, 1, 5_12, 5_12, 3) _SCREAMING_SNAKE_CASE = images[2, 0, 2_56, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
0
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features _SCREAMING_SNAKE_CASE = ( Features({feature: Value(SCREAMING_SNAKE_CASE_ ) for feature, dtype in features.items()} ) if features is not None else None ) _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = parquet_path elif issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = [parquet_path] _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=("train",) ) -> List[str]: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for split in splits: _SCREAMING_SNAKE_CASE = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _SCREAMING_SNAKE_CASE = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features _SCREAMING_SNAKE_CASE = ( Features({feature: Value(SCREAMING_SNAKE_CASE_ ) for feature, dtype in features.items()} ) if features is not None else None ) _SCREAMING_SNAKE_CASE = ParquetDatasetReader({"""train""": parquet_path} , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" if split: _SCREAMING_SNAKE_CASE = {split: parquet_path} else: _SCREAMING_SNAKE_CASE = """train""" _SCREAMING_SNAKE_CASE = {"""train""": parquet_path, """test""": parquet_path} _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ParquetDatasetWriter(SCREAMING_SNAKE_CASE_ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _SCREAMING_SNAKE_CASE = pq.ParquetFile(tmp_path / """foo.parquet""" ) _SCREAMING_SNAKE_CASE = pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = str(shared_datadir / """test_image_rgb.jpg""" ) _SCREAMING_SNAKE_CASE = {"""image""": [image_path]} _SCREAMING_SNAKE_CASE = Features({"""image""": Image()} ) _SCREAMING_SNAKE_CASE = Dataset.from_dict(SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = ParquetDatasetWriter(SCREAMING_SNAKE_CASE_ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _SCREAMING_SNAKE_CASE = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _SCREAMING_SNAKE_CASE = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=SCREAMING_SNAKE_CASE_ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" assert get_writer_batch_size(SCREAMING_SNAKE_CASE_ ) == expected
0
1
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , A__ = None , A__ = None , **A__ , ) -> Optional[int]: super().__init__(self , **A__ ) _SCREAMING_SNAKE_CASE = repo_info _SCREAMING_SNAKE_CASE = token _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> Tuple: if self.dir_cache is None: _SCREAMING_SNAKE_CASE = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _SCREAMING_SNAKE_CASE = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(A__ ): {"""name""": str(A__ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def UpperCamelCase ( self , A__ , A__ = "rb" , **A__ , ) -> Optional[int]: if not isinstance(self.repo_info , A__ ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) _SCREAMING_SNAKE_CASE = hf_hub_url(self.repo_info.id , A__ , revision=self.repo_info.sha ) return fsspec.open( A__ , mode=A__ , headers=get_authentication_headers_for_url(A__ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def UpperCamelCase ( self , A__ , **A__ ) -> str: self._get_dirs() _SCREAMING_SNAKE_CASE = self._strip_protocol(A__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(A__ ) def UpperCamelCase ( self , A__ , A__=False , **A__ ) -> List[Any]: self._get_dirs() _SCREAMING_SNAKE_CASE = PurePosixPath(path.strip("""/""" ) ) _SCREAMING_SNAKE_CASE = {} for p, f in self.dir_cache.items(): _SCREAMING_SNAKE_CASE = PurePosixPath(p.strip("""/""" ) ) _SCREAMING_SNAKE_CASE = p.parent if root == path: _SCREAMING_SNAKE_CASE = f _SCREAMING_SNAKE_CASE = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
0
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: _SCREAMING_SNAKE_CASE = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] _SCREAMING_SNAKE_CASE = 1 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total *= numbers[i] _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: _SCREAMING_SNAKE_CASE = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] _SCREAMING_SNAKE_CASE = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total += numbers[i] _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
0
1
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _SCREAMING_SNAKE_CASE = grid[0] for row_n in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): _SCREAMING_SNAKE_CASE = grid[row_n] _SCREAMING_SNAKE_CASE = fill_row(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = grid[row_n] return grid[-1][-1] def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list: """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
0
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase__ : Tuple = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) UpperCamelCase__ : Union[str, Any] = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase__ : str = "sshleifer/tiny-mbart" @require_torch class _a (_lowerCamelCase): """simple docstring""" def UpperCamelCase ( self , A__=False , A__=None , A__=True , A__=True , A__=True , A__=True , ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.run_trainer( eval_steps=1 , max_len=12 , model_name=A__ , num_train_epochs=1 , distributed=A__ , extra_args_str=A__ , predict_with_generate=A__ , do_train=A__ , do_eval=A__ , do_predict=A__ , ) _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(os.path.join(A__ , """trainer_state.json""" ) ).log_history if not do_eval: return _SCREAMING_SNAKE_CASE = [log for log in logs if """eval_loss""" in log.keys()] _SCREAMING_SNAKE_CASE = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats _SCREAMING_SNAKE_CASE = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , A__ ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def UpperCamelCase ( self ) -> Optional[int]: self.run_seqaseq_quick() @require_torch_multi_gpu def UpperCamelCase ( self ) -> Optional[Any]: self.run_seqaseq_quick(distributed=A__ ) @require_torch_multi_gpu def UpperCamelCase ( self ) -> Union[str, Any]: self.run_seqaseq_quick(distributed=A__ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> Any: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> Tuple: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> str: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=A__ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> List[str]: self.run_seqaseq_quick( distributed=A__ , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=A__ ) @require_apex @require_torch_gpu def UpperCamelCase ( self ) -> Optional[Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def UpperCamelCase ( self , A__ ) -> List[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout _SCREAMING_SNAKE_CASE = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } _SCREAMING_SNAKE_CASE = experiments[experiment_id] _SCREAMING_SNAKE_CASE = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} _SCREAMING_SNAKE_CASE = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**A__ , extra_args_str=data["""extra_args_str"""] ) _SCREAMING_SNAKE_CASE = len(re.findall(A__ , cl.err ) ) self.assertEqual(A__ , data["""n_matches"""] ) @slow def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=A__ , learning_rate=3E-4 , num_train_epochs=10 , distributed=A__ , ) # Check metrics _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(os.path.join(A__ , """trainer_state.json""" ) ).log_history _SCREAMING_SNAKE_CASE = [log for log in logs if """eval_loss""" in log.keys()] _SCREAMING_SNAKE_CASE = eval_metrics[0] _SCREAMING_SNAKE_CASE = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , A__ ) # test if do_predict saves generations and metrics _SCREAMING_SNAKE_CASE = os.listdir(A__ ) _SCREAMING_SNAKE_CASE = {os.path.basename(A__ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def UpperCamelCase ( self ) -> Dict: from transformers.training_args import OptimizerNames def train_and_return_metrics(A__ ) -> Tuple[int, float]: _SCREAMING_SNAKE_CASE = """--skip_memory_metrics 0""" _SCREAMING_SNAKE_CASE = self.run_trainer( max_len=1_28 , model_name=A__ , learning_rate=3E-4 , num_train_epochs=1 , optim=A__ , distributed=A__ , extra_args_str=A__ , do_eval=A__ , do_predict=A__ , n_gpus_to_use=1 , ) # Check metrics _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(Path(A__ , """trainer_state.json""" ) ).log_history _SCREAMING_SNAKE_CASE = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) _SCREAMING_SNAKE_CASE = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) _SCREAMING_SNAKE_CASE = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) _SCREAMING_SNAKE_CASE = gpu_alloc_mem_orig - gpu_alloc_mem_bnb _SCREAMING_SNAKE_CASE = gpu_peak_mem_orig + gpu_alloc_mem_orig _SCREAMING_SNAKE_CASE = gpu_peak_mem_bnb + gpu_alloc_mem_bnb _SCREAMING_SNAKE_CASE = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings _SCREAMING_SNAKE_CASE = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( A__ , A__ , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" F" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" F" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( A__ , A__ , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" F" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" F" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( A__ , A__ , F"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}" ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ = 3E-3 , A__ = "adafactor" , A__ = False , A__ = None , A__ = 0 , A__ = True , A__ = True , A__ = True , A__ = True , A__ = None , ) -> Dict: _SCREAMING_SNAKE_CASE = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" _SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() _SCREAMING_SNAKE_CASE = F"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(A__ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(A__ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() _SCREAMING_SNAKE_CASE = F"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(A__ )}\n ".split() _SCREAMING_SNAKE_CASE = """ --do_predict """.split() _SCREAMING_SNAKE_CASE = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: _SCREAMING_SNAKE_CASE = get_gpu_count() _SCREAMING_SNAKE_CASE = get_torch_dist_unique_port() _SCREAMING_SNAKE_CASE = F"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() _SCREAMING_SNAKE_CASE = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A__ , env=self.get_env() ) else: _SCREAMING_SNAKE_CASE = ["""run_translation.py"""] + args with patch.object(A__ , """argv""" , A__ ): main() return output_dir
0
1
'''simple docstring''' UpperCamelCase__ : Dict = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } UpperCamelCase__ : str = {value: key for key, value in encode_dict.items()} def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" if set(SCREAMING_SNAKE_CASE_ ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) _SCREAMING_SNAKE_CASE = """""" for word in coded.split(): while len(SCREAMING_SNAKE_CASE_ ) != 0: decoded += decode_dict[word[:5]] _SCREAMING_SNAKE_CASE = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
0
'''simple docstring''' import sys UpperCamelCase__ : int = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = N ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = -sys.maxsize - 1 for i in range(len(SCREAMING_SNAKE_CASE_ ) - 12 ): _SCREAMING_SNAKE_CASE = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _SCREAMING_SNAKE_CASE = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
0
1
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 while number > 0: _SCREAMING_SNAKE_CASE = number % 10 sum_of_digits += last_digit _SCREAMING_SNAKE_CASE = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = 1_00 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = factorial(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = split_and_add(SCREAMING_SNAKE_CASE_ ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
0
'''simple docstring''' UpperCamelCase__ : Dict = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } UpperCamelCase__ : str = {value: key for key, value in encode_dict.items()} def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" if set(SCREAMING_SNAKE_CASE_ ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) _SCREAMING_SNAKE_CASE = """""" for word in coded.split(): while len(SCREAMING_SNAKE_CASE_ ) != 0: decoded += decode_dict[word[:5]] _SCREAMING_SNAKE_CASE = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
0
1
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=10_00 ) -> str: """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _SCREAMING_SNAKE_CASE = n - 1 _SCREAMING_SNAKE_CASE = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _SCREAMING_SNAKE_CASE = 0 while count < prec: _SCREAMING_SNAKE_CASE = random.randint(2 , n - 1 ) _SCREAMING_SNAKE_CASE = bin_exp_mod(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if b != 1: _SCREAMING_SNAKE_CASE = True for _ in range(SCREAMING_SNAKE_CASE_ ): if b == n - 1: _SCREAMING_SNAKE_CASE = False break _SCREAMING_SNAKE_CASE = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCamelCase__ : Any = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = emb.weight.shape _SCREAMING_SNAKE_CASE = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" ) _SCREAMING_SNAKE_CASE = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] _SCREAMING_SNAKE_CASE = mam_aaa["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = state_dict["""encoder.embed_tokens.weight"""].shape[0] _SCREAMING_SNAKE_CASE = MaMaaaConfig( vocab_size=SCREAMING_SNAKE_CASE_ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) _SCREAMING_SNAKE_CASE = state_dict["""decoder.embed_tokens.weight"""] _SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) model.model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : Any = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
0
1
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = None if token is not None: _SCREAMING_SNAKE_CASE = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} _SCREAMING_SNAKE_CASE = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" _SCREAMING_SNAKE_CASE = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _SCREAMING_SNAKE_CASE = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _SCREAMING_SNAKE_CASE = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = requests.get(url + F"&page={i + 2}" , headers=SCREAMING_SNAKE_CASE_ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = None if token is not None: _SCREAMING_SNAKE_CASE = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} _SCREAMING_SNAKE_CASE = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" _SCREAMING_SNAKE_CASE = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _SCREAMING_SNAKE_CASE = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _SCREAMING_SNAKE_CASE = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = requests.get(url + F"&page={i + 2}" , headers=SCREAMING_SNAKE_CASE_ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = None if token is not None: _SCREAMING_SNAKE_CASE = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} _SCREAMING_SNAKE_CASE = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = result.headers["""Location"""] _SCREAMING_SNAKE_CASE = requests.get(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , F"{artifact_name}.zip" ) with open(SCREAMING_SNAKE_CASE_ , """wb""" ) as fp: fp.write(response.content ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE_ ) as f: for line in f: _SCREAMING_SNAKE_CASE = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _SCREAMING_SNAKE_CASE = line[: line.index(""": """ )] _SCREAMING_SNAKE_CASE = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _SCREAMING_SNAKE_CASE = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE_ ) elif filename == "job_name.txt": _SCREAMING_SNAKE_CASE = line if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE_ )} for `errors` " F"and {len(SCREAMING_SNAKE_CASE_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" """ problem.""" ) _SCREAMING_SNAKE_CASE = None if job_name and job_links: _SCREAMING_SNAKE_CASE = job_links.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # A list with elements of the form (line of error, error, failed test) _SCREAMING_SNAKE_CASE = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] return result def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE_ , job_links=SCREAMING_SNAKE_CASE_ ) ) return errors def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = Counter() counter.update([x[1] for x in logs] ) _SCREAMING_SNAKE_CASE = counter.most_common() _SCREAMING_SNAKE_CASE = {} for error, count in counts: if error_filter is None or error not in error_filter: _SCREAMING_SNAKE_CASE = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _SCREAMING_SNAKE_CASE = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _SCREAMING_SNAKE_CASE = test.split("""/""" )[2] else: _SCREAMING_SNAKE_CASE = None return test def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [(x[0], x[1], get_model(x[2] )) for x in logs] _SCREAMING_SNAKE_CASE = [x for x in logs if x[2] is not None] _SCREAMING_SNAKE_CASE = {x[2] for x in logs} _SCREAMING_SNAKE_CASE = {} for test in tests: _SCREAMING_SNAKE_CASE = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _SCREAMING_SNAKE_CASE = counter.most_common() _SCREAMING_SNAKE_CASE = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _SCREAMING_SNAKE_CASE = sum(error_counts.values() ) if n_errors > 0: _SCREAMING_SNAKE_CASE = {"""count""": n_errors, """errors""": error_counts} _SCREAMING_SNAKE_CASE = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = """| no. | error | status |""" _SCREAMING_SNAKE_CASE = """|-:|:-|:-|""" _SCREAMING_SNAKE_CASE = [header, sep] for error in reduced_by_error: _SCREAMING_SNAKE_CASE = reduced_by_error[error]["""count"""] _SCREAMING_SNAKE_CASE = F"| {count} | {error[:1_00]} | |" lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = """| model | no. of errors | major error | count |""" _SCREAMING_SNAKE_CASE = """|-:|-:|-:|-:|""" _SCREAMING_SNAKE_CASE = [header, sep] for model in reduced_by_model: _SCREAMING_SNAKE_CASE = reduced_by_model[model]["""count"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = list(reduced_by_model[model]["""errors"""].items() )[0] _SCREAMING_SNAKE_CASE = F"| {model} | {count} | {error[:60]} | {_count} |" lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") UpperCamelCase__ : str = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) UpperCamelCase__ : List[Any] = get_job_links(args.workflow_run_id, token=args.token) UpperCamelCase__ : List[str] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: UpperCamelCase__ : Dict = k.find(" / ") UpperCamelCase__ : Optional[Any] = k[index + len(" / ") :] UpperCamelCase__ : List[str] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) UpperCamelCase__ : List[str] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) UpperCamelCase__ : List[str] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error UpperCamelCase__ : str = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors UpperCamelCase__ : List[str] = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) UpperCamelCase__ : Optional[Any] = reduce_by_error(errors) UpperCamelCase__ : Optional[int] = reduce_by_model(errors) UpperCamelCase__ : Optional[int] = make_github_table(reduced_by_error) UpperCamelCase__ : Optional[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : str = { "configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"], "tokenization_canine": ["CanineTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
1
'''simple docstring''' UpperCamelCase__ : Optional[int] = "Alexander Joslin" import operator as op from .stack import Stack def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} _SCREAMING_SNAKE_CASE = Stack() _SCREAMING_SNAKE_CASE = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE_ ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE_ ) elif i == ")": # RULE 4 _SCREAMING_SNAKE_CASE = operator_stack.peek() operator_stack.pop() _SCREAMING_SNAKE_CASE = operand_stack.peek() operand_stack.pop() _SCREAMING_SNAKE_CASE = operand_stack.peek() operand_stack.pop() _SCREAMING_SNAKE_CASE = operators[opr](SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) operand_stack.push(SCREAMING_SNAKE_CASE_ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": UpperCamelCase__ : List[Any] = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE = 'ChineseCLIPImageProcessor' SCREAMING_SNAKE_CASE = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , A__=None , A__=None , **A__ ) -> int: _SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A__ , ) _SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) _SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.image_processor def __call__( self , A__=None , A__=None , A__=None , **A__ ) -> Optional[int]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _SCREAMING_SNAKE_CASE = self.tokenizer(A__ , return_tensors=A__ , **A__ ) if images is not None: _SCREAMING_SNAKE_CASE = self.image_processor(A__ , return_tensors=A__ , **A__ ) if text is not None and images is not None: _SCREAMING_SNAKE_CASE = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A__ ) , tensor_type=A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Dict: return self.tokenizer.batch_decode(*A__ , **A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Optional[Any]: return self.tokenizer.decode(*A__ , **A__ ) @property def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase ( self ) -> Optional[int]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A__ , ) return self.image_processor_class
0
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_lowerCamelCase) class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True}) SCREAMING_SNAKE_CASE = Features({'text': Value('string')}) SCREAMING_SNAKE_CASE = Features({}) SCREAMING_SNAKE_CASE = "text" @property def UpperCamelCase ( self ) -> Dict[str, str]: return {self.text_column: "text"}
0
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets UpperCamelCase__ : List[str] = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCamelCase__ : List[Any] = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCamelCase__ : Any = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a (datasets.Metric): """simple docstring""" def UpperCamelCase ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def UpperCamelCase ( self , A__ , A__ , A__=None ) -> List[str]: return { "matthews_correlation": float(matthews_corrcoef(A__ , A__ , sample_weight=A__ ) ), }
0
1
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(SCREAMING_SNAKE_CASE_ ): print(F"{i}\t\t{d}" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" for j in range(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: return True return False def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[float]: """simple docstring""" _SCREAMING_SNAKE_CASE = [float("""inf""" )] * vertex_count _SCREAMING_SNAKE_CASE = 0.0 for _ in range(vertex_count - 1 ): for j in range(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: _SCREAMING_SNAKE_CASE = distance[u] + w _SCREAMING_SNAKE_CASE = check_negative_cycle(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if negative_cycle_exists: raise Exception("""Negative cycle found""" ) return distance if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : int = int(input("Enter number of vertices: ").strip()) UpperCamelCase__ : int = int(input("Enter number of edges: ").strip()) UpperCamelCase__ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Dict = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) UpperCamelCase__ : Optional[Any] = {"src": src, "dst": dest, "weight": weight} UpperCamelCase__ : Optional[Any] = int(input("\nEnter shortest path source:").strip()) UpperCamelCase__ : Any = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
0
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> int: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _SCREAMING_SNAKE_CASE = """""" else: _SCREAMING_SNAKE_CASE = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _SCREAMING_SNAKE_CASE = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) _SCREAMING_SNAKE_CASE = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] _SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. _SCREAMING_SNAKE_CASE = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = dct.pop(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = val def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = ViTMSNConfig() _SCREAMING_SNAKE_CASE = 10_00 _SCREAMING_SNAKE_CASE = """datasets/huggingface/label-files""" _SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , """r""" ) ) _SCREAMING_SNAKE_CASE = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _SCREAMING_SNAKE_CASE = 3_84 _SCREAMING_SNAKE_CASE = 15_36 _SCREAMING_SNAKE_CASE = 6 elif "l16" in checkpoint_url: _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = 40_96 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 0.1 elif "b4" in checkpoint_url: _SCREAMING_SNAKE_CASE = 4 elif "l7" in checkpoint_url: _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = 40_96 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = ViTMSNModel(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" )["""target_encoder"""] _SCREAMING_SNAKE_CASE = ViTImageProcessor(size=config.image_size ) remove_projection_head(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) model.eval() _SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" _SCREAMING_SNAKE_CASE = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) _SCREAMING_SNAKE_CASE = ViTImageProcessor( size=config.image_size , image_mean=SCREAMING_SNAKE_CASE_ , image_std=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) _SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: _SCREAMING_SNAKE_CASE = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCamelCase__ : List[Any] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _a : """simple docstring""" def __init__( self , A__ , A__=13 , A__=7 , A__=True , A__=True , A__=True , A__=True , A__=99 , A__=32 , A__=2 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=5_12 , A__=16 , A__=2 , A__=0.02 , A__=3 , A__=4 , A__=None , ) -> int: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 99 _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 37 _SCREAMING_SNAKE_CASE = """gelu""" _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 5_12 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 0.02 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = TFRoFormerModel(config=A__ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(A__ ) _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> str: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = TFRoFormerForCausalLM(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Dict: _SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFRoFormerForSequenceClassification(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Any: _SCREAMING_SNAKE_CASE = self.num_choices _SCREAMING_SNAKE_CASE = TFRoFormerForMultipleChoice(config=A__ ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFRoFormerForTokenClassification(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Tuple: _SCREAMING_SNAKE_CASE = TFRoFormerForQuestionAnswering(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _a (_lowerCamelCase , _lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ ) -> str: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = TFRoFormerModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A__ , hidden_size=37 ) def UpperCamelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__ ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A__ ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__ ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__ ) @slow def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(A__ ) @require_tf class _a (unittest.TestCase): """simple docstring""" @slow def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(A__ )[0] # TODO Replace vocab size _SCREAMING_SNAKE_CASE = 5_00_00 _SCREAMING_SNAKE_CASE = [1, 6, vocab_size] self.assertEqual(output.shape , A__ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A__ , atol=1E-4 ) @require_tf class _a (unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = 1E-4 def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = tf.constant([[4, 10]] ) _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) _SCREAMING_SNAKE_CASE = emba(input_ids.shape ) _SCREAMING_SNAKE_CASE = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) _SCREAMING_SNAKE_CASE = emba.weight[:3, :5] tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) @require_tf class _a (unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = 1E-4 def UpperCamelCase ( self ) -> int: # 2,12,16,64 _SCREAMING_SNAKE_CASE = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 _SCREAMING_SNAKE_CASE = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) _SCREAMING_SNAKE_CASE = embed_positions([2, 16, 7_68] )[None, None, :, :] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = TFRoFormerSelfAttention.apply_rotary_position_embeddings( A__ , A__ , A__ ) _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A__ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A__ , atol=self.tolerance )
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : Optional[Any] = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available UpperCamelCase__ : int = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase__ : Dict = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } UpperCamelCase__ : List[Any] = { "gpt-neox-20b": 2_048, } class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , A__=None , A__=None , A__=None , A__="<|endoftext|>" , A__="<|endoftext|>" , A__="<|endoftext|>" , A__=False , **A__ , ) -> List[Any]: super().__init__( A__ , A__ , tokenizer_file=A__ , unk_token=A__ , bos_token=A__ , eos_token=A__ , add_prefix_space=A__ , **A__ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , A__ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(A__ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**A__ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self , A__ , A__ = None ) -> Tuple[str]: _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ ) def UpperCamelCase ( self , A__ ) -> List[int]: _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A__ , add_special_tokens=A__ ) + [self.eos_token_id] ) if len(A__ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
0
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = XCLIPTextConfig() # derive patch size from model name _SCREAMING_SNAKE_CASE = model_name.find("""patch""" ) _SCREAMING_SNAKE_CASE = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) _SCREAMING_SNAKE_CASE = XCLIPVisionConfig(patch_size=SCREAMING_SNAKE_CASE_ , num_frames=SCREAMING_SNAKE_CASE_ ) if "large" in model_name: _SCREAMING_SNAKE_CASE = 7_68 _SCREAMING_SNAKE_CASE = 30_72 _SCREAMING_SNAKE_CASE = 12 _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = 40_96 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 7_68 _SCREAMING_SNAKE_CASE = 30_72 if model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE = 3_36 _SCREAMING_SNAKE_CASE = XCLIPConfig.from_text_vision_configs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "large" in model_name: _SCREAMING_SNAKE_CASE = 7_68 return config def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" # text encoder if name == "token_embedding.weight": _SCREAMING_SNAKE_CASE = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: _SCREAMING_SNAKE_CASE = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""c_proj""" , """fc2""" ) if name.startswith("""transformer.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: _SCREAMING_SNAKE_CASE = name.replace("""attn.out_proj""" , """self_attn.out_proj""" ) if "ln_final" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_final""" , """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": _SCREAMING_SNAKE_CASE = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" ) if "visual.conv1" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" ) if "visual.proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.proj""" , """visual_projection.weight""" ) if "text_projection" in name: _SCREAMING_SNAKE_CASE = name.replace("""text_projection""" , """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" ) if "prompts_visual_ln" in name: _SCREAMING_SNAKE_CASE = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""positional""" , """position""" ) if name.startswith("""mit.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""mit.resblocks""" , """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): _SCREAMING_SNAKE_CASE = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" ) return name def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "attn.in_proj" in key: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if key.startswith("""visual""" ): _SCREAMING_SNAKE_CASE = key_split[3] _SCREAMING_SNAKE_CASE = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: _SCREAMING_SNAKE_CASE = val[ :dim, : ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE = val[ :dim ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[ -dim: ] else: if "weight" in key: _SCREAMING_SNAKE_CASE = val[ :dim, : ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[-dim:] elif key.startswith("""mit""" ): _SCREAMING_SNAKE_CASE = key_split[2] _SCREAMING_SNAKE_CASE = config.vision_config.mit_hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[dim : dim * 2] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = key_split[2] _SCREAMING_SNAKE_CASE = config.text_config.hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = rename_key(SCREAMING_SNAKE_CASE_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: _SCREAMING_SNAKE_CASE = val.T _SCREAMING_SNAKE_CASE = val return orig_state_dict def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" if num_frames == 8: _SCREAMING_SNAKE_CASE = """eating_spaghetti_8_frames.npy""" elif num_frames == 16: _SCREAMING_SNAKE_CASE = """eating_spaghetti.npy""" elif num_frames == 32: _SCREAMING_SNAKE_CASE = """eating_spaghetti_32_frames.npy""" _SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename=SCREAMING_SNAKE_CASE_ , repo_type="""dataset""" , ) _SCREAMING_SNAKE_CASE = np.load(SCREAMING_SNAKE_CASE_ ) return list(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } _SCREAMING_SNAKE_CASE = model_to_url[model_name] _SCREAMING_SNAKE_CASE = 8 if "16-frames" in model_name: _SCREAMING_SNAKE_CASE = 16 elif "shot" in model_name: _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = get_xclip_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = XCLIPModel(SCREAMING_SNAKE_CASE_ ) model.eval() if "drive" in checkpoint_url: _SCREAMING_SNAKE_CASE = """pytorch_model.bin""" gdown.cached_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , quiet=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" )["""model"""] else: _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ )["""model"""] _SCREAMING_SNAKE_CASE = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = XCLIPModel(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() _SCREAMING_SNAKE_CASE = 3_36 if model_name == """xclip-large-patch14-16-frames""" else 2_24 _SCREAMING_SNAKE_CASE = VideoMAEImageProcessor(size=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) _SCREAMING_SNAKE_CASE = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) _SCREAMING_SNAKE_CASE = XCLIPProcessor(image_processor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = prepare_video(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , padding=SCREAMING_SNAKE_CASE_ ) print("""Shape of pixel values:""" , inputs.pixel_values.shape ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) # Verify outputs _SCREAMING_SNAKE_CASE = outputs.logits_per_video _SCREAMING_SNAKE_CASE = logits_per_video.softmax(dim=1 ) print("""Probs:""" , SCREAMING_SNAKE_CASE_ ) # kinetics-400 if model_name == "xclip-base-patch32": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F"Model name {model_name} not supported" ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) slow_tokenizer.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase__ : str = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
1
'''simple docstring''' from __future__ import annotations class _a : """simple docstring""" def __init__( self , A__ = 0 ) -> Tuple: _SCREAMING_SNAKE_CASE = key def UpperCamelCase ( self , A__ , A__ ) -> list[str]: assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) _SCREAMING_SNAKE_CASE = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(A__ ) ^ key ) for ch in content] def UpperCamelCase ( self , A__ , A__ ) -> list[str]: assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) _SCREAMING_SNAKE_CASE = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(A__ ) ^ key ) for ch in content] def UpperCamelCase ( self , A__ , A__ = 0 ) -> str: assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) _SCREAMING_SNAKE_CASE = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned _SCREAMING_SNAKE_CASE = """""" for ch in content: ans += chr(ord(A__ ) ^ key ) return ans def UpperCamelCase ( self , A__ , A__ = 0 ) -> str: assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) _SCREAMING_SNAKE_CASE = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned _SCREAMING_SNAKE_CASE = """""" for ch in content: ans += chr(ord(A__ ) ^ key ) return ans def UpperCamelCase ( self , A__ , A__ = 0 ) -> bool: assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) try: with open(A__ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(A__ , A__ ) ) except OSError: return False return True def UpperCamelCase ( self , A__ , A__ ) -> bool: assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) try: with open(A__ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(A__ , A__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _a (_lowerCamelCase): """simple docstring""" def __init__( self , A__ , A__ ) -> Any: _SCREAMING_SNAKE_CASE = params _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array([len(A__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , A__ ) -> Dict: return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Tuple: return len(self.lengths ) def UpperCamelCase ( self ) -> Dict: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.params.max_model_input_size _SCREAMING_SNAKE_CASE = self.lengths > max_len logger.info(F"Splitting {sum(A__ )} too long sequences." ) def divide_chunks(A__ , A__ ): return [l[i : i + n] for i in range(0 , len(A__ ) , A__ )] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] if self.params.mlm: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _SCREAMING_SNAKE_CASE = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , 0 , A__ ) if sub_s[-1] != sep_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , len(A__ ) , A__ ) assert len(A__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(A__ ) new_tok_ids.extend(A__ ) new_lengths.extend([len(A__ ) for l in sub_seqs] ) _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array(A__ ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = self.lengths > 11 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def UpperCamelCase ( self ) -> int: if "unk_token" not in self.params.special_tok_ids: return else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _SCREAMING_SNAKE_CASE = (unk_occs / self.lengths) < 0.5 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def UpperCamelCase ( self ) -> Optional[Any]: if not self.params.is_master: return logger.info(F"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCamelCase ( self , A__ ) -> Any: _SCREAMING_SNAKE_CASE = [t[0] for t in batch] _SCREAMING_SNAKE_CASE = [t[1] for t in batch] assert len(A__ ) == len(A__ ) # Max for paddings _SCREAMING_SNAKE_CASE = max(A__ ) # Pad token ids if self.params.mlm: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""pad_token"""] else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = [list(t.astype(A__ ) ) + [pad_idx] * (max_seq_len_ - len(A__ )) for t in token_ids] assert len(tk_ ) == len(A__ ) assert all(len(A__ ) == max_seq_len_ for t in tk_ ) _SCREAMING_SNAKE_CASE = torch.tensor(tk_ ) # (bs, max_seq_len_) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) # (bs) return tk_t, lg_t
0
1
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a (_lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = CTRLTokenizer SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _SCREAMING_SNAKE_CASE = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] _SCREAMING_SNAKE_CASE = dict(zip(A__ , range(len(A__ ) ) ) ) _SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] _SCREAMING_SNAKE_CASE = {"""unk_token""": """<unk>"""} _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A__ ) ) def UpperCamelCase ( self , **A__ ) -> Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A__ ) def UpperCamelCase ( self , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = """adapt react readapt apt""" _SCREAMING_SNAKE_CASE = """adapt react readapt apt""" return input_text, output_text def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _SCREAMING_SNAKE_CASE = """adapt react readapt apt""" _SCREAMING_SNAKE_CASE = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] _SCREAMING_SNAKE_CASE = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , A__ )
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : Any = "▁" UpperCamelCase__ : Any = {"vocab_file": "spiece.model"} UpperCamelCase__ : int = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } UpperCamelCase__ : Optional[int] = { "google/reformer-crime-and-punishment": 524_288, } class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , A__ , A__="</s>" , A__="<unk>" , A__=[] , A__ = None , **A__ , ) -> None: _SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A__ , unk_token=A__ , additional_special_tokens=A__ , sp_model_kwargs=self.sp_model_kwargs , **A__ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A__ ) @property def UpperCamelCase ( self ) -> Any: return self.sp_model.get_piece_size() def UpperCamelCase ( self ) -> Dict[str, int]: _SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: _SCREAMING_SNAKE_CASE = self.__dict__.copy() _SCREAMING_SNAKE_CASE = None return state def __setstate__( self , A__ ) -> str: _SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self , A__ ) -> List[str]: return self.sp_model.encode(A__ , out_type=A__ ) def UpperCamelCase ( self , A__ ) -> Union[str, Any]: return self.sp_model.piece_to_id(A__ ) def UpperCamelCase ( self , A__ ) -> List[Any]: if index < self.sp_model.get_piece_size(): _SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(A__ ) return token def UpperCamelCase ( self , A__ ) -> str: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A__ ) + token _SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(A__ ) out_string += self.sp_model.decode(A__ ) return out_string.strip() def UpperCamelCase ( self , A__ , A__ = None ) -> Tuple[str]: if not os.path.isdir(A__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _SCREAMING_SNAKE_CASE = os.path.join( A__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , """wb""" ) as fi: _SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,)
0
1
'''simple docstring''' import random def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = a[left_index] _SCREAMING_SNAKE_CASE = left_index + 1 for j in range(left_index + 1 , SCREAMING_SNAKE_CASE_ ): if a[j] < pivot: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = a[i], a[j] i += 1 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = a[i - 1], a[left_index] return i - 1 def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" if left < right: _SCREAMING_SNAKE_CASE = random.randint(SCREAMING_SNAKE_CASE_ , right - 1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( a[left], a[pivot], ) # switches the pivot with the left most bound _SCREAMING_SNAKE_CASE = partition(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) quick_sort_random( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # recursive quicksort to the left of the pivot point quick_sort_random( SCREAMING_SNAKE_CASE_ , pivot_index + 1 , SCREAMING_SNAKE_CASE_ ) # recursive quicksort to the right of the pivot point def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""" ).strip() _SCREAMING_SNAKE_CASE = [int(SCREAMING_SNAKE_CASE_ ) for item in user_input.split(""",""" )] quick_sort_random(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
0
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _a (_lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = MobileBertTokenizer SCREAMING_SNAKE_CASE = MobileBertTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = filter_non_english SCREAMING_SNAKE_CASE = 'google/mobilebert-uncased' def UpperCamelCase ( self ) -> Any: super().setUp() _SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _SCREAMING_SNAKE_CASE = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCamelCase ( self , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = """unwanted, running""" return input_text, output_text def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(A__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [9, 6, 7, 12, 10, 11] ) def UpperCamelCase ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) # With lower casing _SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=A__ ) _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _SCREAMING_SNAKE_CASE = {} for i, token in enumerate(A__ ): _SCREAMING_SNAKE_CASE = i _SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=A__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def UpperCamelCase ( self ) -> str: self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def UpperCamelCase ( self ) -> Union[str, Any]: self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def UpperCamelCase ( self ) -> Dict: self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A__ , A__ ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def UpperCamelCase ( self ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." _SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( A__ , return_attention_mask=A__ , return_token_type_ids=A__ , return_offsets_mapping=A__ , add_special_tokens=A__ , ) _SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(A__ , """do_lower_case""" ) else False _SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] _SCREAMING_SNAKE_CASE = """""".join(A__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that only the first Chinese character is not preceded by "##". _SCREAMING_SNAKE_CASE = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(A__ ) ] self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ )
0
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = 'timesformer' def __init__( self , A__=2_24 , A__=16 , A__=3 , A__=8 , A__=7_68 , A__=12 , A__=12 , A__=30_72 , A__="gelu" , A__=0.0 , A__=0.0 , A__=0.02 , A__=1E-6 , A__=True , A__="divided_space_time" , A__=0 , **A__ , ) -> Optional[Any]: super().__init__(**A__ ) _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = num_frames _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = qkv_bias _SCREAMING_SNAKE_CASE = attention_type _SCREAMING_SNAKE_CASE = drop_path_rate
0
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput UpperCamelCase__ : Tuple = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a (_lowerCamelCase): """simple docstring""" def __init__( self , *A__ , A__=None , A__=None , A__=None , **A__ ) -> Optional[int]: super().__init__(*A__ , **A__ ) _SCREAMING_SNAKE_CASE = eval_examples _SCREAMING_SNAKE_CASE = post_process_function _SCREAMING_SNAKE_CASE = quant_trainer_args _SCREAMING_SNAKE_CASE = 1_28 # default number of calibration samples def UpperCamelCase ( self , A__=None ) -> Union[str, Any]: if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) _SCREAMING_SNAKE_CASE = calib_dataset if calib_dataset is not None else self.calib_dataset _SCREAMING_SNAKE_CASE = self._remove_unused_columns(A__ , description="""Calibration""" ) return DataLoader( A__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=A__ , ) def UpperCamelCase ( self , A__=None ) -> str: _SCREAMING_SNAKE_CASE = self.train_dataset if calib_dataset is None else calib_dataset _SCREAMING_SNAKE_CASE = self.get_calib_dataloader(A__ ) _SCREAMING_SNAKE_CASE = self.model quant_trainer.configure_model(A__ , self.quant_trainer_args , calib=A__ ) model.eval() quant_trainer.enable_calibration(A__ ) logger.info("""***** Running calibration *****""" ) logger.info(F" Num examples = {self.calib_num}" ) logger.info(F" Batch size = {calib_dataloader.batch_size}" ) for step, inputs in enumerate(A__ ): # Prediction step _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.prediction_step(A__ , A__ , prediction_loss_only=A__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(A__ , self.quant_trainer_args ) _SCREAMING_SNAKE_CASE = model def UpperCamelCase ( self , A__=None , A__=None , A__=None , A__ = "eval" ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset _SCREAMING_SNAKE_CASE = self.get_eval_dataloader(A__ ) _SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) self.log(A__ ) else: _SCREAMING_SNAKE_CASE = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , A__ ) return metrics def UpperCamelCase ( self , A__ , A__ , A__=None , A__ = "test" ) -> List[str]: _SCREAMING_SNAKE_CASE = self.get_test_dataloader(A__ ) # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions , """predict""" ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A__ ) def UpperCamelCase ( self , A__="./" ) -> Tuple: _SCREAMING_SNAKE_CASE = self.eval_dataset _SCREAMING_SNAKE_CASE = self.get_eval_dataloader(A__ ) _SCREAMING_SNAKE_CASE = next(iter(A__ ) ) # saving device - to make it consistent _SCREAMING_SNAKE_CASE = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple _SCREAMING_SNAKE_CASE = tuple(v.to(A__ ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = self.model.to(A__ ) model.eval() model.float() _SCREAMING_SNAKE_CASE = model.module if hasattr(A__ , """module""" ) else model quant_trainer.configure_model(A__ , self.quant_trainer_args ) _SCREAMING_SNAKE_CASE = os.path.join(A__ , """model.onnx""" ) logger.info(F"exporting model to {output_model_file}" ) _SCREAMING_SNAKE_CASE = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( A__ , A__ , A__ , export_params=A__ , opset_version=13 , do_constant_folding=A__ , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=A__ , ) logger.info("""onnx export finished""" )
0
1
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge UpperCamelCase__ : int = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] UpperCamelCase__ : str = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def lowerCAmelCase_ ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bootstrap_aggregation=SCREAMING_SNAKE_CASE_ , rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bootstrap_aggregation=SCREAMING_SNAKE_CASE_ , rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = """rougeLsum""" _SCREAMING_SNAKE_CASE = calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , newline_sep=SCREAMING_SNAKE_CASE_ , rouge_keys=[k] )[k] _SCREAMING_SNAKE_CASE = calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , newline_sep=SCREAMING_SNAKE_CASE_ , rouge_keys=[k] )[k] assert score > score_no_sep def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = ["""rouge1""", """rouge2""", """rougeL"""] _SCREAMING_SNAKE_CASE = calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , newline_sep=SCREAMING_SNAKE_CASE_ , rouge_keys=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , newline_sep=SCREAMING_SNAKE_CASE_ , rouge_keys=SCREAMING_SNAKE_CASE_ ) assert score_sep == score_no_sep def lowerCAmelCase_ ( ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] _SCREAMING_SNAKE_CASE = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , newline_sep=SCREAMING_SNAKE_CASE_ ) == calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , newline_sep=SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] _SCREAMING_SNAKE_CASE = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] _SCREAMING_SNAKE_CASE = calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rouge_keys=["""rougeLsum"""] , newline_sep=SCREAMING_SNAKE_CASE_ )["""rougeLsum"""] _SCREAMING_SNAKE_CASE = calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rouge_keys=["""rougeLsum"""] )["""rougeLsum"""] assert new_score > prev_score def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) _SCREAMING_SNAKE_CASE = calculate_rouge_path(data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) ) assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = calculate_rouge_path( data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) , bootstrap_aggregation=SCREAMING_SNAKE_CASE_ ) assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
0
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bytes: """simple docstring""" # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
0
1
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets UpperCamelCase__ : Dict = datasets.logging.get_logger(__name__) UpperCamelCase__ : Dict = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" UpperCamelCase__ : List[Any] = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" UpperCamelCase__ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a (datasets.Metric): """simple docstring""" def UpperCamelCase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def UpperCamelCase ( self , A__ ) -> Optional[Any]: if self.config_name == "default": _SCREAMING_SNAKE_CASE = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: _SCREAMING_SNAKE_CASE = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__=None , A__=False ) -> Tuple: if gpus is None: _SCREAMING_SNAKE_CASE = 1 if torch.cuda.is_available() else 0 _SCREAMING_SNAKE_CASE = {"""src""": sources, """mt""": predictions, """ref""": references} _SCREAMING_SNAKE_CASE = [dict(zip(A__ , A__ ) ) for t in zip(*data.values() )] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.scorer.predict(A__ , gpus=A__ , progress_bar=A__ ) return {"mean_score": mean_score, "scores": scores}
0
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def lowerCAmelCase_ ( ) -> int: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("""https://huggingface.co""" )
0
1
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 for ch in input_str: _SCREAMING_SNAKE_CASE = ord(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = pow(2 , SCREAMING_SNAKE_CASE_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
0
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> Iterator[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 2 while True: if is_prime(SCREAMING_SNAKE_CASE_ ): yield num num += 1 def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = 2_00_00_00 ) -> int: """simple docstring""" return sum(takewhile(lambda SCREAMING_SNAKE_CASE_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
0
1
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = XCLIPTextConfig() # derive patch size from model name _SCREAMING_SNAKE_CASE = model_name.find("""patch""" ) _SCREAMING_SNAKE_CASE = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) _SCREAMING_SNAKE_CASE = XCLIPVisionConfig(patch_size=SCREAMING_SNAKE_CASE_ , num_frames=SCREAMING_SNAKE_CASE_ ) if "large" in model_name: _SCREAMING_SNAKE_CASE = 7_68 _SCREAMING_SNAKE_CASE = 30_72 _SCREAMING_SNAKE_CASE = 12 _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = 40_96 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 7_68 _SCREAMING_SNAKE_CASE = 30_72 if model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE = 3_36 _SCREAMING_SNAKE_CASE = XCLIPConfig.from_text_vision_configs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "large" in model_name: _SCREAMING_SNAKE_CASE = 7_68 return config def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" # text encoder if name == "token_embedding.weight": _SCREAMING_SNAKE_CASE = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: _SCREAMING_SNAKE_CASE = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""c_proj""" , """fc2""" ) if name.startswith("""transformer.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: _SCREAMING_SNAKE_CASE = name.replace("""attn.out_proj""" , """self_attn.out_proj""" ) if "ln_final" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_final""" , """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": _SCREAMING_SNAKE_CASE = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" ) if "visual.conv1" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" ) if "visual.proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.proj""" , """visual_projection.weight""" ) if "text_projection" in name: _SCREAMING_SNAKE_CASE = name.replace("""text_projection""" , """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" ) if "prompts_visual_ln" in name: _SCREAMING_SNAKE_CASE = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""positional""" , """position""" ) if name.startswith("""mit.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""mit.resblocks""" , """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): _SCREAMING_SNAKE_CASE = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" ) return name def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "attn.in_proj" in key: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if key.startswith("""visual""" ): _SCREAMING_SNAKE_CASE = key_split[3] _SCREAMING_SNAKE_CASE = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: _SCREAMING_SNAKE_CASE = val[ :dim, : ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE = val[ :dim ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[ -dim: ] else: if "weight" in key: _SCREAMING_SNAKE_CASE = val[ :dim, : ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[-dim:] elif key.startswith("""mit""" ): _SCREAMING_SNAKE_CASE = key_split[2] _SCREAMING_SNAKE_CASE = config.vision_config.mit_hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[dim : dim * 2] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = key_split[2] _SCREAMING_SNAKE_CASE = config.text_config.hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = rename_key(SCREAMING_SNAKE_CASE_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: _SCREAMING_SNAKE_CASE = val.T _SCREAMING_SNAKE_CASE = val return orig_state_dict def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" if num_frames == 8: _SCREAMING_SNAKE_CASE = """eating_spaghetti_8_frames.npy""" elif num_frames == 16: _SCREAMING_SNAKE_CASE = """eating_spaghetti.npy""" elif num_frames == 32: _SCREAMING_SNAKE_CASE = """eating_spaghetti_32_frames.npy""" _SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename=SCREAMING_SNAKE_CASE_ , repo_type="""dataset""" , ) _SCREAMING_SNAKE_CASE = np.load(SCREAMING_SNAKE_CASE_ ) return list(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } _SCREAMING_SNAKE_CASE = model_to_url[model_name] _SCREAMING_SNAKE_CASE = 8 if "16-frames" in model_name: _SCREAMING_SNAKE_CASE = 16 elif "shot" in model_name: _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = get_xclip_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = XCLIPModel(SCREAMING_SNAKE_CASE_ ) model.eval() if "drive" in checkpoint_url: _SCREAMING_SNAKE_CASE = """pytorch_model.bin""" gdown.cached_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , quiet=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" )["""model"""] else: _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ )["""model"""] _SCREAMING_SNAKE_CASE = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = XCLIPModel(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() _SCREAMING_SNAKE_CASE = 3_36 if model_name == """xclip-large-patch14-16-frames""" else 2_24 _SCREAMING_SNAKE_CASE = VideoMAEImageProcessor(size=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) _SCREAMING_SNAKE_CASE = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) _SCREAMING_SNAKE_CASE = XCLIPProcessor(image_processor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = prepare_video(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , padding=SCREAMING_SNAKE_CASE_ ) print("""Shape of pixel values:""" , inputs.pixel_values.shape ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) # Verify outputs _SCREAMING_SNAKE_CASE = outputs.logits_per_video _SCREAMING_SNAKE_CASE = logits_per_video.softmax(dim=1 ) print("""Probs:""" , SCREAMING_SNAKE_CASE_ ) # kinetics-400 if model_name == "xclip-base-patch32": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F"Model name {model_name} not supported" ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) slow_tokenizer.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase__ : str = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _a (unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 1_28, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 1_42, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } _SCREAMING_SNAKE_CASE = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 1_28, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 1_42, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(A__ ) , A__ ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(A__ ) , x.transpose() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , transpose(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , transpose(A__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , transpose(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , transpose(A__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , np.asarray(transpose(A__ ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , np.asarray(transpose(A__ , axes=(1, 2, 0) ) ) ) ) def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , np.reshape(A__ , (4, 3) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , np.reshape(A__ , (12, 5) ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , reshape(A__ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , reshape(A__ , (12, 5) ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , reshape(A__ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , reshape(A__ , (12, 5) ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , np.asarray(reshape(A__ , (4, 3) ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , np.asarray(reshape(A__ , (12, 5) ) ) ) ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(A__ ) , np.squeeze(A__ ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , np.squeeze(A__ , axis=2 ) ) ) @require_torch def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , squeeze(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , squeeze(A__ , axis=2 ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , squeeze(A__ ).numpy() ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , squeeze(A__ , axis=2 ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , np.asarray(squeeze(A__ ) ) ) ) _SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , np.asarray(squeeze(A__ , axis=2 ) ) ) ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , np.expand_dims(A__ , axis=1 ) ) ) @require_torch def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , expand_dims(A__ , axis=1 ).numpy() ) ) @require_tf def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , expand_dims(A__ , axis=1 ).numpy() ) ) @require_flax def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , np.asarray(expand_dims(A__ , axis=1 ) ) ) )
0
1
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file _SCREAMING_SNAKE_CASE = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) # set absolute/relative position embeddings parameter _SCREAMING_SNAKE_CASE = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _SCREAMING_SNAKE_CASE = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) elif task == "WTQ": # run_task_main.py hparams _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = True # hparam_utils.py hparams _SCREAMING_SNAKE_CASE = 0.66_4694 _SCREAMING_SNAKE_CASE = 0.20_7951 _SCREAMING_SNAKE_CASE = 0.12_1194 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = 0.035_2513 _SCREAMING_SNAKE_CASE = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = False # hparam_utils.py hparams _SCREAMING_SNAKE_CASE = 36.4519 _SCREAMING_SNAKE_CASE = 0.90_3421 _SCREAMING_SNAKE_CASE = 222.088 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 0.76_3141 _SCREAMING_SNAKE_CASE = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) elif task == "TABFACT": _SCREAMING_SNAKE_CASE = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE_ ) elif task == "MLM": _SCREAMING_SNAKE_CASE = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) elif task == "INTERMEDIATE_PRETRAINING": _SCREAMING_SNAKE_CASE = TapasModel(config=SCREAMING_SNAKE_CASE_ ) else: raise ValueError(F"Task {task} not supported." ) print(F"Building PyTorch model from configuration: {config}" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model (weights and configuration) print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Save tokenizer files print(F"Save tokenizer files to {pytorch_dump_path}" ) _SCREAMING_SNAKE_CASE = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=5_12 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": UpperCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase__ : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
0
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , A__ = None , A__ = None , **A__ , ) -> Optional[int]: super().__init__(self , **A__ ) _SCREAMING_SNAKE_CASE = repo_info _SCREAMING_SNAKE_CASE = token _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> Tuple: if self.dir_cache is None: _SCREAMING_SNAKE_CASE = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _SCREAMING_SNAKE_CASE = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(A__ ): {"""name""": str(A__ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def UpperCamelCase ( self , A__ , A__ = "rb" , **A__ , ) -> Optional[int]: if not isinstance(self.repo_info , A__ ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) _SCREAMING_SNAKE_CASE = hf_hub_url(self.repo_info.id , A__ , revision=self.repo_info.sha ) return fsspec.open( A__ , mode=A__ , headers=get_authentication_headers_for_url(A__ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def UpperCamelCase ( self , A__ , **A__ ) -> str: self._get_dirs() _SCREAMING_SNAKE_CASE = self._strip_protocol(A__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(A__ ) def UpperCamelCase ( self , A__ , A__=False , **A__ ) -> List[Any]: self._get_dirs() _SCREAMING_SNAKE_CASE = PurePosixPath(path.strip("""/""" ) ) _SCREAMING_SNAKE_CASE = {} for p, f in self.dir_cache.items(): _SCREAMING_SNAKE_CASE = PurePosixPath(p.strip("""/""" ) ) _SCREAMING_SNAKE_CASE = p.parent if root == path: _SCREAMING_SNAKE_CASE = f _SCREAMING_SNAKE_CASE = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
0
1
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: """simple docstring""" if not head: return True # split the list to two parts _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = head.next, head while fast and fast.next: _SCREAMING_SNAKE_CASE = fast.next.next _SCREAMING_SNAKE_CASE = slow.next _SCREAMING_SNAKE_CASE = slow.next _SCREAMING_SNAKE_CASE = None # Don't forget here! But forget still works! # reverse the second part _SCREAMING_SNAKE_CASE = None while second: _SCREAMING_SNAKE_CASE = second.next _SCREAMING_SNAKE_CASE = node _SCREAMING_SNAKE_CASE = second _SCREAMING_SNAKE_CASE = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False _SCREAMING_SNAKE_CASE = node.next _SCREAMING_SNAKE_CASE = head.next return True def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = head while fast and fast.next: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = fast.next.next, slow.next # 2. Push the second half into the stack _SCREAMING_SNAKE_CASE = [slow.val] while slow.next: _SCREAMING_SNAKE_CASE = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False _SCREAMING_SNAKE_CASE = cur.next return True def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" if not head or not head.next: return True _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = 0 while head: if head.val in d: d[head.val].append(SCREAMING_SNAKE_CASE_ ) else: _SCREAMING_SNAKE_CASE = [pos] _SCREAMING_SNAKE_CASE = head.next pos += 1 _SCREAMING_SNAKE_CASE = pos - 1 _SCREAMING_SNAKE_CASE = 0 for v in d.values(): if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0: middle += 1 else: _SCREAMING_SNAKE_CASE = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
0
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features _SCREAMING_SNAKE_CASE = ( Features({feature: Value(SCREAMING_SNAKE_CASE_ ) for feature, dtype in features.items()} ) if features is not None else None ) _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = parquet_path elif issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = [parquet_path] _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=("train",) ) -> List[str]: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for split in splits: _SCREAMING_SNAKE_CASE = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _SCREAMING_SNAKE_CASE = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features _SCREAMING_SNAKE_CASE = ( Features({feature: Value(SCREAMING_SNAKE_CASE_ ) for feature, dtype in features.items()} ) if features is not None else None ) _SCREAMING_SNAKE_CASE = ParquetDatasetReader({"""train""": parquet_path} , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" if split: _SCREAMING_SNAKE_CASE = {split: parquet_path} else: _SCREAMING_SNAKE_CASE = """train""" _SCREAMING_SNAKE_CASE = {"""train""": parquet_path, """test""": parquet_path} _SCREAMING_SNAKE_CASE = tmp_path / """cache""" _SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ParquetDatasetWriter(SCREAMING_SNAKE_CASE_ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _SCREAMING_SNAKE_CASE = pq.ParquetFile(tmp_path / """foo.parquet""" ) _SCREAMING_SNAKE_CASE = pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = str(shared_datadir / """test_image_rgb.jpg""" ) _SCREAMING_SNAKE_CASE = {"""image""": [image_path]} _SCREAMING_SNAKE_CASE = Features({"""image""": Image()} ) _SCREAMING_SNAKE_CASE = Dataset.from_dict(SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = ParquetDatasetWriter(SCREAMING_SNAKE_CASE_ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _SCREAMING_SNAKE_CASE = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _SCREAMING_SNAKE_CASE = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=SCREAMING_SNAKE_CASE_ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" assert get_writer_batch_size(SCREAMING_SNAKE_CASE_ ) == expected
0
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : int = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = 'vivit' def __init__( self , A__=2_24 , A__=32 , A__=[2, 16, 16] , A__=3 , A__=7_68 , A__=12 , A__=12 , A__=30_72 , A__="gelu_fast" , A__=0.0 , A__=0.0 , A__=0.02 , A__=1E-06 , A__=True , **A__ , ) -> Any: _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = num_frames _SCREAMING_SNAKE_CASE = tubelet_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = qkv_bias super().__init__(**A__ )
0
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: _SCREAMING_SNAKE_CASE = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] _SCREAMING_SNAKE_CASE = 1 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total *= numbers[i] _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: _SCREAMING_SNAKE_CASE = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] _SCREAMING_SNAKE_CASE = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total += numbers[i] _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
0
1
'''simple docstring''' from itertools import permutations def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _SCREAMING_SNAKE_CASE = [7, 11, 13, 17] for i, test in enumerate(SCREAMING_SNAKE_CASE_ ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = 10 ) -> int: """simple docstring""" return sum( int("""""".join(map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) for num in permutations(range(SCREAMING_SNAKE_CASE_ ) ) if is_substring_divisible(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": print(f"""{solution() = }""")
0
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase__ : Tuple = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) UpperCamelCase__ : Union[str, Any] = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase__ : str = "sshleifer/tiny-mbart" @require_torch class _a (_lowerCamelCase): """simple docstring""" def UpperCamelCase ( self , A__=False , A__=None , A__=True , A__=True , A__=True , A__=True , ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.run_trainer( eval_steps=1 , max_len=12 , model_name=A__ , num_train_epochs=1 , distributed=A__ , extra_args_str=A__ , predict_with_generate=A__ , do_train=A__ , do_eval=A__ , do_predict=A__ , ) _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(os.path.join(A__ , """trainer_state.json""" ) ).log_history if not do_eval: return _SCREAMING_SNAKE_CASE = [log for log in logs if """eval_loss""" in log.keys()] _SCREAMING_SNAKE_CASE = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats _SCREAMING_SNAKE_CASE = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , A__ ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def UpperCamelCase ( self ) -> Optional[int]: self.run_seqaseq_quick() @require_torch_multi_gpu def UpperCamelCase ( self ) -> Optional[Any]: self.run_seqaseq_quick(distributed=A__ ) @require_torch_multi_gpu def UpperCamelCase ( self ) -> Union[str, Any]: self.run_seqaseq_quick(distributed=A__ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> Any: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> Tuple: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> str: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=A__ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> List[str]: self.run_seqaseq_quick( distributed=A__ , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=A__ ) @require_apex @require_torch_gpu def UpperCamelCase ( self ) -> Optional[Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def UpperCamelCase ( self , A__ ) -> List[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout _SCREAMING_SNAKE_CASE = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } _SCREAMING_SNAKE_CASE = experiments[experiment_id] _SCREAMING_SNAKE_CASE = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} _SCREAMING_SNAKE_CASE = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**A__ , extra_args_str=data["""extra_args_str"""] ) _SCREAMING_SNAKE_CASE = len(re.findall(A__ , cl.err ) ) self.assertEqual(A__ , data["""n_matches"""] ) @slow def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=A__ , learning_rate=3E-4 , num_train_epochs=10 , distributed=A__ , ) # Check metrics _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(os.path.join(A__ , """trainer_state.json""" ) ).log_history _SCREAMING_SNAKE_CASE = [log for log in logs if """eval_loss""" in log.keys()] _SCREAMING_SNAKE_CASE = eval_metrics[0] _SCREAMING_SNAKE_CASE = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , A__ ) # test if do_predict saves generations and metrics _SCREAMING_SNAKE_CASE = os.listdir(A__ ) _SCREAMING_SNAKE_CASE = {os.path.basename(A__ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def UpperCamelCase ( self ) -> Dict: from transformers.training_args import OptimizerNames def train_and_return_metrics(A__ ) -> Tuple[int, float]: _SCREAMING_SNAKE_CASE = """--skip_memory_metrics 0""" _SCREAMING_SNAKE_CASE = self.run_trainer( max_len=1_28 , model_name=A__ , learning_rate=3E-4 , num_train_epochs=1 , optim=A__ , distributed=A__ , extra_args_str=A__ , do_eval=A__ , do_predict=A__ , n_gpus_to_use=1 , ) # Check metrics _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(Path(A__ , """trainer_state.json""" ) ).log_history _SCREAMING_SNAKE_CASE = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) _SCREAMING_SNAKE_CASE = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) _SCREAMING_SNAKE_CASE = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) _SCREAMING_SNAKE_CASE = gpu_alloc_mem_orig - gpu_alloc_mem_bnb _SCREAMING_SNAKE_CASE = gpu_peak_mem_orig + gpu_alloc_mem_orig _SCREAMING_SNAKE_CASE = gpu_peak_mem_bnb + gpu_alloc_mem_bnb _SCREAMING_SNAKE_CASE = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings _SCREAMING_SNAKE_CASE = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( A__ , A__ , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" F" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" F" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( A__ , A__ , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" F" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" F" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( A__ , A__ , F"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}" ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ = 3E-3 , A__ = "adafactor" , A__ = False , A__ = None , A__ = 0 , A__ = True , A__ = True , A__ = True , A__ = True , A__ = None , ) -> Dict: _SCREAMING_SNAKE_CASE = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" _SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() _SCREAMING_SNAKE_CASE = F"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(A__ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(A__ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() _SCREAMING_SNAKE_CASE = F"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(A__ )}\n ".split() _SCREAMING_SNAKE_CASE = """ --do_predict """.split() _SCREAMING_SNAKE_CASE = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: _SCREAMING_SNAKE_CASE = get_gpu_count() _SCREAMING_SNAKE_CASE = get_torch_dist_unique_port() _SCREAMING_SNAKE_CASE = F"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() _SCREAMING_SNAKE_CASE = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A__ , env=self.get_env() ) else: _SCREAMING_SNAKE_CASE = ["""run_translation.py"""] + args with patch.object(A__ , """argv""" , A__ ): main() return output_dir
0
1
'''simple docstring''' import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" if "model" in orig_key: _SCREAMING_SNAKE_CASE = orig_key.replace("""model.""" , """""" ) if "norm1" in orig_key: _SCREAMING_SNAKE_CASE = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" ) if "norm2" in orig_key: _SCREAMING_SNAKE_CASE = orig_key.replace("""norm2""" , """output.LayerNorm""" ) if "norm" in orig_key: _SCREAMING_SNAKE_CASE = orig_key.replace("""norm""" , """LayerNorm""" ) if "transformer" in orig_key: _SCREAMING_SNAKE_CASE = orig_key.split(""".""" )[0].split("""_""" )[-1] _SCREAMING_SNAKE_CASE = orig_key.replace(F"transformer_{layer_num}" , F"encoder.layer.{layer_num}" ) if "mha.attn" in orig_key: _SCREAMING_SNAKE_CASE = orig_key.replace("""mha.attn""" , """attention.self""" ) if "mha" in orig_key: _SCREAMING_SNAKE_CASE = orig_key.replace("""mha""" , """attention""" ) if "W_q" in orig_key: _SCREAMING_SNAKE_CASE = orig_key.replace("""W_q""" , """self.query""" ) if "W_k" in orig_key: _SCREAMING_SNAKE_CASE = orig_key.replace("""W_k""" , """self.key""" ) if "W_v" in orig_key: _SCREAMING_SNAKE_CASE = orig_key.replace("""W_v""" , """self.value""" ) if "ff1" in orig_key: _SCREAMING_SNAKE_CASE = orig_key.replace("""ff1""" , """intermediate.dense""" ) if "ff2" in orig_key: _SCREAMING_SNAKE_CASE = orig_key.replace("""ff2""" , """output.dense""" ) if "ff" in orig_key: _SCREAMING_SNAKE_CASE = orig_key.replace("""ff""" , """output.dense""" ) if "mlm_class" in orig_key: _SCREAMING_SNAKE_CASE = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" ) if "mlm" in orig_key: _SCREAMING_SNAKE_CASE = orig_key.replace("""mlm""" , """cls.predictions.transform""" ) if "cls" not in orig_key: _SCREAMING_SNAKE_CASE = """yoso.""" + orig_key return orig_key def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if ("pooler" in key) or ("sen_class" in key): continue else: _SCREAMING_SNAKE_CASE = val _SCREAMING_SNAKE_CASE = orig_state_dict["""cls.predictions.decoder.bias"""] _SCREAMING_SNAKE_CASE = torch.arange(SCREAMING_SNAKE_CASE_ ).expand((1, -1) ) + 2 return orig_state_dict def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" )["""model_state_dict"""] _SCREAMING_SNAKE_CASE = YosoConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = YosoForMaskedLM(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = convert_checkpoint_helper(config.max_position_embeddings , SCREAMING_SNAKE_CASE_ ) print(model.load_state_dict(SCREAMING_SNAKE_CASE_ ) ) model.eval() model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase__ : int = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
0
'''simple docstring''' import sys UpperCamelCase__ : int = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = N ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = -sys.maxsize - 1 for i in range(len(SCREAMING_SNAKE_CASE_ ) - 12 ): _SCREAMING_SNAKE_CASE = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _SCREAMING_SNAKE_CASE = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
0
1
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask UpperCamelCase__ : Any = logging.getLogger(__name__) class _a (_lowerCamelCase): """simple docstring""" def __init__( self , A__=-1 ) -> str: # in NER datasets, the last column is usually reserved for NER label _SCREAMING_SNAKE_CASE = label_idx def UpperCamelCase ( self , A__ , A__ ) -> List[InputExample]: if isinstance(A__ , A__ ): _SCREAMING_SNAKE_CASE = mode.value _SCREAMING_SNAKE_CASE = os.path.join(A__ , F"{mode}.txt" ) _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = [] with open(A__ , encoding="""utf-8""" ) as f: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=A__ , labels=A__ ) ) guid_index += 1 _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] else: _SCREAMING_SNAKE_CASE = line.split(""" """ ) words.append(splits[0] ) if len(A__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=A__ , labels=A__ ) ) return examples def UpperCamelCase ( self , A__ , A__ , A__ ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(A__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _SCREAMING_SNAKE_CASE = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(A__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def UpperCamelCase ( self , A__ ) -> List[str]: if path: with open(A__ , """r""" ) as f: _SCREAMING_SNAKE_CASE = f.read().splitlines() if "O" not in labels: _SCREAMING_SNAKE_CASE = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class _a (_lowerCamelCase): """simple docstring""" def __init__( self ) -> List[str]: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def UpperCamelCase ( self , A__ ) -> List[str]: if path: with open(A__ , """r""" ) as f: _SCREAMING_SNAKE_CASE = f.read().splitlines() if "O" not in labels: _SCREAMING_SNAKE_CASE = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class _a (_lowerCamelCase): """simple docstring""" def UpperCamelCase ( self , A__ , A__ ) -> List[InputExample]: if isinstance(A__ , A__ ): _SCREAMING_SNAKE_CASE = mode.value _SCREAMING_SNAKE_CASE = os.path.join(A__ , F"{mode}.txt" ) _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = [] with open(A__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(A__ ): _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(A__ ) == len(A__ ) if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=A__ , labels=A__ ) ) guid_index += 1 return examples def UpperCamelCase ( self , A__ , A__ , A__ ) -> Dict: _SCREAMING_SNAKE_CASE = 0 for sentence in parse_incr(A__ ): _SCREAMING_SNAKE_CASE = preds_list[example_id] _SCREAMING_SNAKE_CASE = """""" for token in sentence: out += F"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(A__ ) example_id += 1 def UpperCamelCase ( self , A__ ) -> List[str]: if path: with open(A__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
0
'''simple docstring''' UpperCamelCase__ : Dict = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } UpperCamelCase__ : str = {value: key for key, value in encode_dict.items()} def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" if set(SCREAMING_SNAKE_CASE_ ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) _SCREAMING_SNAKE_CASE = """""" for word in coded.split(): while len(SCREAMING_SNAKE_CASE_ ) != 0: decoded += decode_dict[word[:5]] _SCREAMING_SNAKE_CASE = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
0
1