code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __snake_case ( _lowerCamelCase ,_lowerCamelCase ): @register_to_config def __init__( self , __UpperCamelCase = 128 , __UpperCamelCase = 256 , __UpperCamelCase = 2000.0 , __UpperCamelCase = 768 , __UpperCamelCase = 12 , __UpperCamelCase = 12 , __UpperCamelCase = 64 , __UpperCamelCase = 2048 , __UpperCamelCase = 0.1 , ) -> Union[str, Any]: '''simple docstring''' super().__init__() snake_case__ : Dict = nn.Sequential( nn.Linear(__UpperCamelCase , d_model * 4 , bias=__UpperCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__UpperCamelCase ) , nn.SiLU() , ) snake_case__ : Tuple = nn.Embedding(__UpperCamelCase , __UpperCamelCase ) snake_case__ : int = False snake_case__ : Optional[Any] = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) snake_case__ : int = nn.Dropout(p=__UpperCamelCase ) snake_case__ : Dict = nn.ModuleList() for lyr_num in range(__UpperCamelCase ): # FiLM conditional T5 decoder snake_case__ : int = DecoderLayer(d_model=__UpperCamelCase , d_kv=__UpperCamelCase , num_heads=__UpperCamelCase , d_ff=__UpperCamelCase , dropout_rate=__UpperCamelCase ) self.decoders.append(__UpperCamelCase ) snake_case__ : Dict = TaLayerNorm(__UpperCamelCase ) snake_case__ : Optional[Any] = nn.Dropout(p=__UpperCamelCase ) snake_case__ : List[Any] = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase ) -> Dict: '''simple docstring''' snake_case__ : Dict = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: '''simple docstring''' snake_case__ : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. snake_case__ : List[Any] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) snake_case__ : Optional[Any] = self.conditioning_emb(__UpperCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) snake_case__ : int = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. snake_case__ : Dict = torch.broadcast_to( torch.arange(__UpperCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) snake_case__ : Union[str, Any] = self.position_encoding(__UpperCamelCase ) snake_case__ : Union[str, Any] = self.continuous_inputs_projection(__UpperCamelCase ) inputs += position_encodings snake_case__ : Any = self.dropout(__UpperCamelCase ) # decoder: No padding present. snake_case__ : Dict = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. snake_case__ : Dict = [(x, self.encoder_decoder_mask(__UpperCamelCase , __UpperCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings snake_case__ : Optional[int] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) snake_case__ : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: snake_case__ : Optional[Any] = lyr( __UpperCamelCase , conditioning_emb=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , )[0] snake_case__ : Union[str, Any] = self.decoder_norm(__UpperCamelCase ) snake_case__ : Optional[int] = self.post_dropout(__UpperCamelCase ) snake_case__ : int = self.spec_out(__UpperCamelCase ) return spec_out class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=1E-6 ) -> Dict: '''simple docstring''' super().__init__() snake_case__ : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__UpperCamelCase , d_kv=__UpperCamelCase , num_heads=__UpperCamelCase , dropout_rate=__UpperCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__UpperCamelCase , d_kv=__UpperCamelCase , num_heads=__UpperCamelCase , dropout_rate=__UpperCamelCase , layer_norm_epsilon=__UpperCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__UpperCamelCase , d_ff=__UpperCamelCase , dropout_rate=__UpperCamelCase , layer_norm_epsilon=__UpperCamelCase ) ) def __a ( self , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , ) -> Dict: '''simple docstring''' snake_case__ : Any = self.layer[0]( __UpperCamelCase , conditioning_emb=__UpperCamelCase , attention_mask=__UpperCamelCase , ) if encoder_hidden_states is not None: snake_case__ : Optional[Any] = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) snake_case__ : List[Any] = self.layer[1]( __UpperCamelCase , key_value_states=__UpperCamelCase , attention_mask=__UpperCamelCase , ) # Apply Film Conditional Feed Forward layer snake_case__ : str = self.layer[-1](__UpperCamelCase , __UpperCamelCase ) return (hidden_states,) class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__() snake_case__ : Union[str, Any] = TaLayerNorm(__UpperCamelCase ) snake_case__ : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=__UpperCamelCase ) snake_case__ : Optional[int] = Attention(query_dim=__UpperCamelCase , heads=__UpperCamelCase , dim_head=__UpperCamelCase , out_bias=__UpperCamelCase , scale_qk=__UpperCamelCase ) snake_case__ : Dict = nn.Dropout(__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , ) -> Optional[Any]: '''simple docstring''' snake_case__ : List[str] = self.layer_norm(__UpperCamelCase ) if conditioning_emb is not None: snake_case__ : List[str] = self.FiLMLayer(__UpperCamelCase , __UpperCamelCase ) # Self-attention block snake_case__ : Union[str, Any] = self.attention(__UpperCamelCase ) snake_case__ : Optional[Any] = hidden_states + self.dropout(__UpperCamelCase ) return hidden_states class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__() snake_case__ : Any = Attention(query_dim=__UpperCamelCase , heads=__UpperCamelCase , dim_head=__UpperCamelCase , out_bias=__UpperCamelCase , scale_qk=__UpperCamelCase ) snake_case__ : Dict = TaLayerNorm(__UpperCamelCase , eps=__UpperCamelCase ) snake_case__ : Union[str, Any] = nn.Dropout(__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Union[str, Any] = self.layer_norm(__UpperCamelCase ) snake_case__ : Optional[Any] = self.attention( __UpperCamelCase , encoder_hidden_states=__UpperCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) snake_case__ : Tuple = hidden_states + self.dropout(__UpperCamelCase ) return layer_output class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: '''simple docstring''' super().__init__() snake_case__ : Optional[int] = TaDenseGatedActDense(d_model=__UpperCamelCase , d_ff=__UpperCamelCase , dropout_rate=__UpperCamelCase ) snake_case__ : Dict = TaFiLMLayer(in_features=d_model * 4 , out_features=__UpperCamelCase ) snake_case__ : Dict = TaLayerNorm(__UpperCamelCase , eps=__UpperCamelCase ) snake_case__ : int = nn.Dropout(__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase=None ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = self.layer_norm(__UpperCamelCase ) if conditioning_emb is not None: snake_case__ : Optional[int] = self.film(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Tuple = self.DenseReluDense(__UpperCamelCase ) snake_case__ : Tuple = hidden_states + self.dropout(__UpperCamelCase ) return hidden_states class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: '''simple docstring''' super().__init__() snake_case__ : str = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) snake_case__ : int = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) snake_case__ : Optional[Any] = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) snake_case__ : int = nn.Dropout(__UpperCamelCase ) snake_case__ : Tuple = NewGELUActivation() def __a ( self , __UpperCamelCase ) -> List[Any]: '''simple docstring''' snake_case__ : Tuple = self.act(self.wi_a(__UpperCamelCase ) ) snake_case__ : Dict = self.wi_a(__UpperCamelCase ) snake_case__ : List[Any] = hidden_gelu * hidden_linear snake_case__ : Union[str, Any] = self.dropout(__UpperCamelCase ) snake_case__ : Tuple = self.wo(__UpperCamelCase ) return hidden_states class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase=1E-6 ) -> str: '''simple docstring''' super().__init__() snake_case__ : Tuple = nn.Parameter(torch.ones(__UpperCamelCase ) ) snake_case__ : Dict = eps def __a ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' snake_case__ : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__UpperCamelCase ) snake_case__ : List[str] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: snake_case__ : Tuple = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __snake_case ( nn.Module ): def __a ( self , __UpperCamelCase ) -> torch.Tensor: '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(__UpperCamelCase , 3.0 )) )) class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' super().__init__() snake_case__ : int = nn.Linear(__UpperCamelCase , out_features * 2 , bias=__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: '''simple docstring''' snake_case__ : Any = self.scale_bias(__UpperCamelCase ) snake_case__ : List[Any] = torch.chunk(__UpperCamelCase , 2 , -1 ) snake_case__ : Optional[int] = x * (1 + scale) + shift return x
701
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : int = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = """poolformer""" def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=16 , __UpperCamelCase=16 , __UpperCamelCase=3 , __UpperCamelCase=4.0 , __UpperCamelCase=[2, 2, 6, 2] , __UpperCamelCase=[64, 128, 320, 512] , __UpperCamelCase=[7, 3, 3, 3] , __UpperCamelCase=[4, 2, 2, 2] , __UpperCamelCase=[2, 1, 1, 1] , __UpperCamelCase=4 , __UpperCamelCase=0.0 , __UpperCamelCase="gelu" , __UpperCamelCase=True , __UpperCamelCase=1E-5 , __UpperCamelCase=0.0_2 , **__UpperCamelCase , ) -> Any: '''simple docstring''' snake_case__ : List[str] = num_channels snake_case__ : Dict = patch_size snake_case__ : Optional[int] = stride snake_case__ : str = padding snake_case__ : List[str] = pool_size snake_case__ : List[Any] = hidden_sizes snake_case__ : List[Any] = mlp_ratio snake_case__ : Union[str, Any] = depths snake_case__ : Dict = patch_sizes snake_case__ : Dict = strides snake_case__ : Dict = num_encoder_blocks snake_case__ : Union[str, Any] = drop_path_rate snake_case__ : List[str] = hidden_act snake_case__ : Optional[Any] = use_layer_scale snake_case__ : int = layer_scale_init_value snake_case__ : Dict = initializer_range super().__init__(**__UpperCamelCase ) class __snake_case ( _lowerCamelCase ): __lowerCamelCase = version.parse("""1.11""" ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __a ( self ) -> float: '''simple docstring''' return 2E-3
699
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def UpperCamelCase__ ( A__=None ) -> int: snake_case__ : Any = argparse.ArgumentParser(add_help=A__ , allow_abbrev=A__ ) # The main config parser snake_case__ : List[Any] = config_command_parser(A__ ) # The subparser to add commands to snake_case__ : Tuple = config_parser.add_subparsers(title='subcommands' , dest='subcommand' ) # Then add other parsers with the parent parser default_command_parser(A__ , parents=[parent_parser] ) update_command_parser(A__ , parents=[parent_parser] ) return config_parser def UpperCamelCase__ ( ) -> List[str]: snake_case__ : Union[str, Any] = get_config_parser() snake_case__ : List[str] = config_parser.parse_args() if not hasattr(A__ , 'func' ): config_parser.print_help() exit(1 ) # Run args.func(A__ ) if __name__ == "__main__": main()
702
import numpy as np import qiskit def UpperCamelCase__ ( A__ = 8 , A__ = None ) -> str: snake_case__ : Optional[int] = np.random.default_rng(seed=A__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. snake_case__ : Tuple = 6 * key_len # Measurement basis for Alice's qubits. snake_case__ : Tuple = rng.integers(2 , size=A__ ) # The set of states Alice will prepare. snake_case__ : List[str] = rng.integers(2 , size=A__ ) # Measurement basis for Bob's qubits. snake_case__ : List[Any] = rng.integers(2 , size=A__ ) # Quantum Circuit to simulate BB84 snake_case__ : Any = qiskit.QuantumCircuit(A__ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(A__ ): if alice_state[index] == 1: bbaa_circ.x(A__ ) if alice_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(A__ ): if bob_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. snake_case__ : List[str] = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. snake_case__ : Optional[Any] = qiskit.execute(A__ , A__ , shots=1 , seed_simulator=A__ ) # Returns the result of measurement. snake_case__ : Union[str, Any] = job.result().get_counts(A__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. snake_case__ : Optional[Any] = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( A__ , A__ , A__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. snake_case__ : Tuple = gen_key[:key_len] if len(A__ ) >= key_len else gen_key.ljust(A__ , '0' ) return key if __name__ == "__main__": print(F'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
699
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=18 , __UpperCamelCase=30 , __UpperCamelCase=400 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , ) -> Tuple: '''simple docstring''' snake_case__ : Dict = size if size is not None else {'shortest_edge': 20} snake_case__ : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} snake_case__ : List[Any] = parent snake_case__ : Dict = batch_size snake_case__ : List[str] = num_channels snake_case__ : Any = image_size snake_case__ : List[Any] = min_resolution snake_case__ : List[Any] = max_resolution snake_case__ : Optional[int] = do_resize snake_case__ : List[Any] = size snake_case__ : Any = do_center_crop snake_case__ : Optional[Any] = crop_size snake_case__ : List[str] = do_flip_channel_order def __a ( self ) -> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = MobileViTImageProcessor if is_vision_available() else None def __a ( self ) -> str: '''simple docstring''' snake_case__ : Optional[int] = MobileViTImageProcessingTester(self ) @property def __a ( self ) -> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'center_crop' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'do_flip_channel_order' ) ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) snake_case__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def __a ( self ) -> Optional[Any]: '''simple docstring''' pass def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input snake_case__ : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched snake_case__ : Dict = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __a ( self ) -> int: '''simple docstring''' snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched snake_case__ : Union[str, Any] = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input snake_case__ : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched snake_case__ : Tuple = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
703
def UpperCamelCase__ ( A__ , A__ , A__ ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case__ : Dict = _modexpt(A__ , exponent // 2 , A__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(A__ , exponent - 1 , A__ )) % modulo_value def UpperCamelCase__ ( A__ = 1777 , A__ = 1855 , A__ = 8 ) -> int: snake_case__ : Tuple = base for _ in range(1 , A__ ): snake_case__ : Any = _modexpt(A__ , A__ , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
699
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase__ : Optional[int] = 16 lowerCAmelCase__ : List[str] = 32 def UpperCamelCase__ ( A__ , A__ = 16 , A__ = "bert-base-cased" ) -> Tuple: '''simple docstring''' snake_case__ : Union[str, Any] = AutoTokenizer.from_pretrained(A__ ) snake_case__ : List[Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Union[str, Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ : Union[str, Any] = datasets.map( A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : Any = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(A__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. snake_case__ : List[Any] = DataLoader( tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) snake_case__ : Optional[int] = DataLoader( tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def UpperCamelCase__ ( A__ , A__ ) -> int: '''simple docstring''' snake_case__ : Optional[int] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : Optional[int] = config['lr'] snake_case__ : Union[str, Any] = int(config['num_epochs'] ) snake_case__ : List[str] = int(config['seed'] ) snake_case__ : int = int(config['batch_size'] ) snake_case__ : Optional[Any] = args.model_name_or_path set_seed(A__ ) snake_case__ : Any = get_dataloaders(A__ , A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : List[str] = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer snake_case__ : Optional[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ : Any = optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: snake_case__ : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: snake_case__ : Any = 1 snake_case__ : List[Any] = (len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ : List[Any] = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: snake_case__ : Union[str, Any] = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ : int = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over snake_case__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ : List[str] = 0 # Now we train the model snake_case__ : str = evaluate.load('glue' , 'mrpc' ) snake_case__ : int = 0 snake_case__ : Optional[Any] = {} for epoch in range(A__ , A__ ): model.train() for step, batch in enumerate(A__ ): snake_case__ : Union[str, Any] = model(**A__ ) snake_case__ : Dict = outputs.loss snake_case__ : Tuple = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() snake_case__ : Any = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : Optional[int] = model(**A__ ) snake_case__ : Union[str, Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ : int = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A__ ) - 1: snake_case__ : Optional[int] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ : Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A__ , references=A__ , ) snake_case__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , A__ ) snake_case__ : List[Any] = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: snake_case__ : str = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(A__ , A__ ) def UpperCamelCase__ ( ) -> str: '''simple docstring''' snake_case__ : str = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=A__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=A__ , ) parser.add_argument( '--output_dir' , type=A__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=A__ , default=A__ , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=A__ , default=3 , help='Number of train epochs.' , ) snake_case__ : Union[str, Any] = parser.parse_args() snake_case__ : List[Any] = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
704
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ : Tuple = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase__ ( A__ ) -> Optional[Any]: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(A__ ) def UpperCamelCase__ ( A__ ) -> Optional[Any]: from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Union[str, Any] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(A__ , id=A__ )
699
0
class __snake_case : def __init__( self , __UpperCamelCase ) -> None: '''simple docstring''' snake_case__ : Tuple = len(__UpperCamelCase ) snake_case__ : List[Any] = [0] * len_array if len_array > 0: snake_case__ : Union[str, Any] = array[0] for i in range(1 , __UpperCamelCase ): snake_case__ : Dict = self.prefix_sum[i - 1] + array[i] def __a ( self , __UpperCamelCase , __UpperCamelCase ) -> int: '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __a ( self , __UpperCamelCase ) -> bool: '''simple docstring''' snake_case__ : List[str] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
705
def UpperCamelCase__ ( A__ ) -> list[int]: if length <= 0 or not isinstance(A__ , A__ ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(A__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
699
0
import torch from transformers import AutoModel class __snake_case ( torch.nn.Module ): def __init__( self , __UpperCamelCase="sayef/fsner-bert-base-uncased" ) -> List[str]: '''simple docstring''' super(__UpperCamelCase , self ).__init__() snake_case__ : Tuple = AutoModel.from_pretrained(__UpperCamelCase , return_dict=__UpperCamelCase ) snake_case__ : Optional[Any] = torch.nn.CosineSimilarity(3 , 1E-08 ) snake_case__ : Optional[int] = torch.nn.Softmax(dim=1 ) def __a ( self , **__UpperCamelCase ) -> Any: '''simple docstring''' return self.bert(**__UpperCamelCase ).last_hidden_state def __a ( self , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' return token_embeddings.sum(2 , keepdim=__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=1 ) -> int: '''simple docstring''' return self.softmax(T * self.cos(__UpperCamelCase , __UpperCamelCase ) ) def __a ( self , __UpperCamelCase , __UpperCamelCase ) -> Dict: '''simple docstring''' snake_case__ : Any = W_supports['sizes'].tolist() snake_case__ : Union[str, Any] = W_supports['start_token_id'].item() snake_case__ : str = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] snake_case__ : str = self.BERT(**__UpperCamelCase ) snake_case__ : Tuple = self.BERT(**__UpperCamelCase ) snake_case__ : List[Any] = None snake_case__ : Any = None snake_case__ : str = W_supports['input_ids'] == start_token_id snake_case__ : Dict = W_supports['input_ids'] == end_token_id for i, size in enumerate(__UpperCamelCase ): if i == 0: snake_case__ : Dict = 0 else: snake_case__ : Union[str, Any] = support_sizes[i - 1] snake_case__ : int = S[s : s + size][start_token_masks[s : s + size]] snake_case__ : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] snake_case__ : List[str] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) snake_case__ : Dict = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: snake_case__ : str = torch.vstack((p_starts, p_start) ) snake_case__ : Optional[Any] = torch.vstack((p_ends, p_end) ) else: snake_case__ : Union[str, Any] = p_start snake_case__ : List[Any] = p_end return p_starts, p_ends
706
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Dict = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase__ : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> List[str]: snake_case__ : int = state_dict.pop(A__ ) snake_case__ : Union[str, Any] = val def UpperCamelCase__ ( A__ ) -> int: snake_case__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case__ : Any = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) snake_case__ : Optional[int] = value else: snake_case__ : Optional[int] = value return new_state_dict def UpperCamelCase__ ( A__ , A__=False ) -> Optional[int]: snake_case__ : Optional[int] = '' if is_panoptic: snake_case__ : Tuple = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case__ : int = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) snake_case__ : str = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Union[str, Any] = in_proj_weight[:256, :] snake_case__ : Union[str, Any] = in_proj_bias[:256] snake_case__ : Union[str, Any] = in_proj_weight[256:512, :] snake_case__ : Optional[Any] = in_proj_bias[256:512] snake_case__ : List[str] = in_proj_weight[-256:, :] snake_case__ : Tuple = in_proj_bias[-256:] def UpperCamelCase__ ( ) -> Tuple: snake_case__ : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : str = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( A__ , A__ ) -> str: snake_case__ : List[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case__ : Any = 'resnet101' if "dc5" in model_name: snake_case__ : Any = True snake_case__ : int = 'panoptic' in model_name if is_panoptic: snake_case__ : str = 250 else: snake_case__ : Union[str, Any] = 91 snake_case__ : Optional[int] = 'huggingface/label-files' snake_case__ : Optional[Any] = 'coco-detection-id2label.json' snake_case__ : str = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) snake_case__ : List[Any] = {int(A__ ): v for k, v in idalabel.items()} snake_case__ : Any = idalabel snake_case__ : int = {v: k for k, v in idalabel.items()} # load image processor snake_case__ : List[Any] = 'coco_panoptic' if is_panoptic else 'coco_detection' snake_case__ : List[Any] = ConditionalDetrImageProcessor(format=A__ ) # prepare image snake_case__ : List[str] = prepare_img() snake_case__ : Any = image_processor(images=A__ , return_tensors='pt' ) snake_case__ : Dict = encoding['pixel_values'] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub snake_case__ : Any = torch.hub.load('DeppMeng/ConditionalDETR' , A__ , pretrained=A__ ).eval() snake_case__ : Tuple = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case__ : List[Any] = 'conditional_detr.' + src rename_key(A__ , A__ , A__ ) snake_case__ : Dict = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ , is_panoptic=A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case__ : Optional[int] = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): snake_case__ : List[Any] = state_dict.pop(A__ ) snake_case__ : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case__ : str = state_dict.pop(A__ ) snake_case__ : List[Any] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: snake_case__ : Union[str, Any] = state_dict.pop(A__ ) snake_case__ : Dict = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): snake_case__ : List[Any] = state_dict.pop(A__ ) snake_case__ : Optional[int] = val # finally, create HuggingFace model and load state dict snake_case__ : Union[str, Any] = ConditionalDetrForSegmentation(A__ ) if is_panoptic else ConditionalDetrForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() model.push_to_hub(repo_id=A__ , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion snake_case__ : Tuple = conditional_detr(A__ ) snake_case__ : str = model(A__ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
699
0
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ : List[Any] = '''▁''' lowerCAmelCase__ : int = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = BertGenerationTokenizer __lowerCamelCase = False __lowerCamelCase = True def __a ( self ) -> Optional[int]: '''simple docstring''' super().setUp() snake_case__ : str = BertGenerationTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[str] = '<s>' snake_case__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(__UpperCamelCase ) , 1002 ) def __a ( self ) -> int: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Optional[Any] = BertGenerationTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) snake_case__ : int = tokenizer.tokenize('This is a test' ) self.assertListEqual(__UpperCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [285, 46, 10, 170, 382] , ) snake_case__ : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) snake_case__ : Optional[Any] = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) snake_case__ : int = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def __a ( self ) -> Dict: '''simple docstring''' return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def __a ( self ) -> Any: '''simple docstring''' snake_case__ : int = 'Hello World!' snake_case__ : Union[str, Any] = [18536, 2260, 101] self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @slow def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : str = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) snake_case__ : List[Any] = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @require_torch @slow def __a ( self ) -> List[str]: '''simple docstring''' import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence snake_case__ : Optional[int] = list(self.big_tokenizer.get_vocab().keys() )[:10] snake_case__ : Optional[int] = ' '.join(__UpperCamelCase ) snake_case__ : int = self.big_tokenizer.encode_plus(__UpperCamelCase , return_tensors='pt' , return_token_type_ids=__UpperCamelCase ) snake_case__ : Tuple = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=__UpperCamelCase ) snake_case__ : Dict = BertGenerationConfig() snake_case__ : List[str] = BertGenerationEncoder(__UpperCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCamelCase ) model(**__UpperCamelCase ) @slow def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
707
from collections import namedtuple lowerCAmelCase__ : Union[str, Any] = namedtuple('''from_to''', '''from_ to''') lowerCAmelCase__ : Tuple = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.0_01, 10_00), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_04_54, 2_64.1_72), '''cubicyard''': from_to(0.7_64_55, 1.3_07_95), '''cubicfoot''': from_to(0.0_28, 35.31_47), '''cup''': from_to(0.0_00_23_65_88, 42_26.75), } def UpperCamelCase__ ( A__ , A__ , A__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ', '.join(A__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ', '.join(A__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
699
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __snake_case ( _lowerCamelCase ): __lowerCamelCase = ["""image_processor""", """tokenizer"""] __lowerCamelCase = """CLIPImageProcessor""" __lowerCamelCase = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase ) -> List[str]: '''simple docstring''' snake_case__ : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCamelCase , ) snake_case__ : List[str] = kwargs.pop('feature_extractor' ) snake_case__ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCamelCase , __UpperCamelCase ) def __call__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: snake_case__ : str = self.tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if images is not None: snake_case__ : Tuple = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if text is not None and images is not None: snake_case__ : int = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def __a ( self , *__UpperCamelCase , **__UpperCamelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def __a ( self , *__UpperCamelCase , **__UpperCamelCase ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Union[str, Any] = self.tokenizer.model_input_names snake_case__ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
708
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : Tuple = logging.get_logger(__name__) lowerCAmelCase__ : Union[str, Any] = '''▁''' lowerCAmelCase__ : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ : Optional[Any] = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } lowerCAmelCase__ : str = { '''facebook/xglm-564M''': 20_48, } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCamelCase , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase = None , **__UpperCamelCase , ) -> None: '''simple docstring''' snake_case__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case__ : Tuple = 7 snake_case__ : Dict = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case__ : Union[str, Any] = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) snake_case__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) snake_case__ : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case__ : Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case__ : Tuple = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case__ : List[Any] = len(self.sp_model ) snake_case__ : Optional[Any] = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__UpperCamelCase ) snake_case__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = self.__dict__.copy() snake_case__ : Optional[Any] = None snake_case__ : Tuple = self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case__ : Any = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case__ : str = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __a ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' snake_case__ : int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __a ( self ) -> Tuple: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def __a ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case__ : Optional[Any] = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' snake_case__ : int = ''.join(__UpperCamelCase ).replace(__UpperCamelCase , ' ' ).strip() return out_string def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ : List[str] = os.path.join( __UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , 'wb' ) as fi: snake_case__ : Any = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
699
0
from __future__ import annotations import math def UpperCamelCase__ ( A__ , A__ ) -> float: snake_case__ : Dict = u for i in range(1 , A__ ): snake_case__ : List[str] = temp * (u - i) return temp def UpperCamelCase__ ( ) -> None: snake_case__ : List[str] = int(input('enter the numbers of values: ' ) ) snake_case__ : list[list[float]] = [] for _ in range(A__ ): y.append([] ) for i in range(A__ ): for j in range(A__ ): y[i].append(A__ ) snake_case__ : List[Any] = 0 print('enter the values of parameters in a list: ' ) snake_case__ : str = list(map(A__ , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(A__ ): snake_case__ : Tuple = float(input() ) snake_case__ : Tuple = int(input('enter the value to interpolate: ' ) ) snake_case__ : Union[str, Any] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , A__ ): for j in range(n - i ): snake_case__ : Any = y[j + 1][i - 1] - y[j][i - 1] snake_case__ : int = y[0][0] for i in range(1 , A__ ): summ += (ucal(A__ , A__ ) * y[0][i]) / math.factorial(A__ ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
709
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCAmelCase__ : Any = logging.get_logger(__name__) lowerCAmelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : Any = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Any = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Tuple = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Dict = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_12, '''facebook/dpr-ctx_encoder-multiset-base''': 5_12, } lowerCAmelCase__ : Union[str, Any] = { '''facebook/dpr-question_encoder-single-nq-base''': 5_12, '''facebook/dpr-question_encoder-multiset-base''': 5_12, } lowerCAmelCase__ : Optional[Any] = { '''facebook/dpr-reader-single-nq-base''': 5_12, '''facebook/dpr-reader-multiset-base''': 5_12, } lowerCAmelCase__ : Tuple = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase__ : Any = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase__ : List[str] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = DPRContextEncoderTokenizer class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = DPRQuestionEncoderTokenizer lowerCAmelCase__ : Tuple = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCAmelCase__ : List[Any] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCAmelCase__ : int = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_lowerCamelCase ) class __snake_case : def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) elif titles is None or texts is None: snake_case__ : Optional[Any] = titles if texts is None else texts return super().__call__( __UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ : int = titles if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [titles] snake_case__ : Optional[int] = texts if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [texts] snake_case__ : List[Any] = len(__UpperCamelCase ) snake_case__ : str = questions if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [questions] * n_passages assert len(__UpperCamelCase ) == len( __UpperCamelCase ), F"""There should be as many titles than texts but got {len(__UpperCamelCase )} titles and {len(__UpperCamelCase )} texts.""" snake_case__ : Optional[int] = super().__call__(__UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )['input_ids'] snake_case__ : Optional[Any] = super().__call__(__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )['input_ids'] snake_case__ : Union[str, Any] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCamelCase , __UpperCamelCase ) ] } if return_attention_mask is not False: snake_case__ : List[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case__ : Union[str, Any] = attention_mask return self.pad(__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 16 , __UpperCamelCase = 64 , __UpperCamelCase = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' snake_case__ : Optional[Any] = reader_input['input_ids'] snake_case__ , snake_case__ , snake_case__ : Any = reader_output[:3] snake_case__ : List[str] = len(__UpperCamelCase ) snake_case__ : Tuple = sorted(range(__UpperCamelCase ) , reverse=__UpperCamelCase , key=relevance_logits.__getitem__ ) snake_case__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: snake_case__ : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case__ : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case__ : Union[str, Any] = sequence_ids.index(self.pad_token_id ) else: snake_case__ : str = len(__UpperCamelCase ) snake_case__ : Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCamelCase , top_spans=__UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCamelCase , start_index=__UpperCamelCase , end_index=__UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> List[DPRSpanPrediction]: '''simple docstring''' snake_case__ : Any = [] for start_index, start_score in enumerate(__UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case__ : str = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] , reverse=__UpperCamelCase ) snake_case__ : Any = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" snake_case__ : str = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_lowerCamelCase ) class __snake_case ( _lowerCamelCase ,_lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = READER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = ["""input_ids""", """attention_mask"""] __lowerCamelCase = DPRReaderTokenizer
699
0
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments lowerCAmelCase__ : Any = logging.getLogger(__name__) @dataclass class __snake_case ( _lowerCamelCase ): __lowerCamelCase = field( default=0.0 ,metadata={"""help""": """The label smoothing epsilon to apply (if not zero)."""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """Whether to SortishSamler or not."""} ) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """whether to use adafactor"""} ) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Encoder layer dropout probability. Goes into model.config."""} ) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Decoder layer dropout probability. Goes into model.config."""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """Dropout probability. Goes into model.config."""} ) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Attention dropout probability. Goes into model.config."""} ) __lowerCamelCase = field( default="""linear""" ,metadata={"""help""": F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} ,)
710
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = StableDiffusionInstructPixaPixPipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def __a ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) snake_case__ : Any = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) torch.manual_seed(0 ) snake_case__ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case__ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) snake_case__ : Tuple = CLIPTextModel(__UpperCamelCase ) snake_case__ : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __a ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : Union[str, Any] = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('RGB' ) if str(__UpperCamelCase ).startswith('mps' ): snake_case__ : str = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : Dict = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ : str = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[int] = self.get_dummy_components() snake_case__ : str = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : Optional[int] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Tuple = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : List[str] = sd_pipe(**__UpperCamelCase ).images snake_case__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ : str = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : Union[str, Any] = self.get_dummy_components() snake_case__ : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : List[Any] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Union[str, Any] = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : List[str] = 'french fries' snake_case__ : Optional[Any] = sd_pipe(**__UpperCamelCase , negative_prompt=__UpperCamelCase ) snake_case__ : Union[str, Any] = output.images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ : Any = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> int: '''simple docstring''' snake_case__ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : List[str] = self.get_dummy_components() snake_case__ : str = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : str = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Dict = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : Any = [inputs['prompt']] * 2 snake_case__ : Optional[int] = np.array(inputs['image'] ).astype(np.floataa ) / 2_5_5.0 snake_case__ : Optional[int] = torch.from_numpy(__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) snake_case__ : Any = image / 2 + 0.5 snake_case__ : Optional[Any] = image.permute(0 , 3 , 1 , 2 ) snake_case__ : List[Any] = image.repeat(2 , 1 , 1 , 1 ) snake_case__ : Optional[int] = sd_pipe(**__UpperCamelCase ).images snake_case__ : Union[str, Any] = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) snake_case__ : List[Any] = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[int] = self.get_dummy_components() snake_case__ : Tuple = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' ) snake_case__ : int = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : List[str] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : str = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : Any = sd_pipe(**__UpperCamelCase ).images snake_case__ : int = image[0, -3:, -3:, -1] snake_case__ : Tuple = [round(__UpperCamelCase , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(__UpperCamelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) snake_case__ : List[Any] = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Optional[int] = self.get_dummy_components() snake_case__ : int = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : Union[str, Any] = VaeImageProcessor(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase ) snake_case__ : Optional[int] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Optional[Any] = pipe(**self.get_dummy_inputs_by_type(__UpperCamelCase , input_image_type='pt' ) )[0] snake_case__ : Union[str, Any] = components['vae'] snake_case__ : str = self.get_dummy_inputs_by_type(__UpperCamelCase , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): snake_case__ : List[str] = vae.encode(inputs[image_param] ).latent_dist.mode() snake_case__ : Dict = pipe(**__UpperCamelCase )[0] snake_case__ : str = np.abs(out - out_latents_inputs ).max() self.assertLess(__UpperCamelCase , 1E-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self , __UpperCamelCase=0 ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = torch.manual_seed(__UpperCamelCase ) snake_case__ : List[str] = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) snake_case__ : int = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : Tuple = self.get_inputs() snake_case__ : List[Any] = pipe(**__UpperCamelCase ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ : Dict = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ) -> str: '''simple docstring''' snake_case__ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase ) snake_case__ : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : Dict = self.get_inputs() snake_case__ : Dict = pipe(**__UpperCamelCase ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ : List[Any] = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase ) snake_case__ : Tuple = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : Optional[int] = self.get_inputs() snake_case__ : Optional[int] = pipe(**__UpperCamelCase ).images snake_case__ : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ : int = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = 0 def callback_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> None: snake_case__ : List[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case__ : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) snake_case__ : int = latents[0, -3:, -3:, -1] snake_case__ : List[str] = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: snake_case__ : Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) snake_case__ : Dict = latents[0, -3:, -3:, -1] snake_case__ : Optional[Any] = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 snake_case__ : str = False snake_case__ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) snake_case__ : int = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : int = self.get_inputs() pipe(**__UpperCamelCase , callback=__UpperCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __a ( self ) -> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) snake_case__ : Dict = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ : str = self.get_inputs() snake_case__ : Tuple = pipe(**__UpperCamelCase ) snake_case__ : List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __a ( self ) -> int: '''simple docstring''' snake_case__ : int = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 snake_case__ : Tuple = inputs['image'].resize((504, 504) ) snake_case__ : str = 'timbrooks/instruct-pix2pix' snake_case__ : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : str = pipe(**__UpperCamelCase ) snake_case__ : List[Any] = output.images[0] snake_case__ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) snake_case__ : List[str] = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
699
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __snake_case ( datasets.BuilderConfig ): __lowerCamelCase = None __lowerCamelCase = """utf-8""" __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = True # deprecated __lowerCamelCase = None # deprecated __lowerCamelCase = 10 << 20 # 10MB __lowerCamelCase = None class __snake_case ( datasets.ArrowBasedBuilder ): __lowerCamelCase = JsonConfig def __a ( self ) -> Optional[Any]: '''simple docstring''' if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead' ) snake_case__ : str = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.' ) if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported' ) return datasets.DatasetInfo(features=self.config.features ) def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) snake_case__ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__UpperCamelCase , (str, list, tuple) ): snake_case__ : Any = data_files if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : Optional[Any] = [files] snake_case__ : List[str] = [dl_manager.iter_files(__UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] snake_case__ : List[Any] = [] for split_name, files in data_files.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : List[Any] = [files] snake_case__ : Any = [dl_manager.iter_files(__UpperCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__UpperCamelCase , gen_kwargs={'files': files} ) ) return splits def __a ( self , __UpperCamelCase ) -> pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): snake_case__ : List[Any] = self.config.features.arrow_schema.field(__UpperCamelCase ).type snake_case__ : List[str] = pa_table.append_column(__UpperCamelCase , pa.array([None] * len(__UpperCamelCase ) , type=__UpperCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example snake_case__ : List[str] = table_cast(__UpperCamelCase , self.config.features.arrow_schema ) return pa_table def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(__UpperCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__UpperCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case__ : Union[str, Any] = json.load(__UpperCamelCase ) # We keep only the field we are interested in snake_case__ : Tuple = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__UpperCamelCase , (list, tuple) ): snake_case__ : List[Any] = set().union(*[row.keys() for row in dataset] ) snake_case__ : List[Any] = {col: [row.get(__UpperCamelCase ) for row in dataset] for col in keys} else: snake_case__ : List[Any] = dataset snake_case__ : Dict = pa.Table.from_pydict(__UpperCamelCase ) yield file_idx, self._cast_table(__UpperCamelCase ) # If the file has one json object per line else: with open(__UpperCamelCase , 'rb' ) as f: snake_case__ : Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small snake_case__ : Tuple = max(self.config.chunksize // 32 , 16 << 10 ) snake_case__ : Optional[Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: snake_case__ : Optional[int] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__UpperCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": snake_case__ : int = batch.decode(self.config.encoding , errors=__UpperCamelCase ).encode('utf-8' ) try: while True: try: snake_case__ : List[str] = paj.read_json( io.BytesIO(__UpperCamelCase ) , read_options=paj.ReadOptions(block_size=__UpperCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__UpperCamelCase , pa.ArrowInvalid ) and "straddling" not in str(__UpperCamelCase ) or block_size > len(__UpperCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(__UpperCamelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __UpperCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case__ : Tuple = json.load(__UpperCamelCase ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__UpperCamelCase , __UpperCamelCase ): # list is the only sequence type supported in JSON try: snake_case__ : str = set().union(*[row.keys() for row in dataset] ) snake_case__ : Union[str, Any] = {col: [row.get(__UpperCamelCase ) for row in dataset] for col in keys} snake_case__ : List[str] = pa.Table.from_pydict(__UpperCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(__UpperCamelCase ) break else: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__UpperCamelCase ) batch_idx += 1
711
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
699
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Dict = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase__ : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> List[str]: snake_case__ : int = state_dict.pop(A__ ) snake_case__ : Union[str, Any] = val def UpperCamelCase__ ( A__ ) -> int: snake_case__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case__ : Any = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) snake_case__ : Optional[int] = value else: snake_case__ : Optional[int] = value return new_state_dict def UpperCamelCase__ ( A__ , A__=False ) -> Optional[int]: snake_case__ : Optional[int] = '' if is_panoptic: snake_case__ : Tuple = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case__ : int = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) snake_case__ : str = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Union[str, Any] = in_proj_weight[:256, :] snake_case__ : Union[str, Any] = in_proj_bias[:256] snake_case__ : Union[str, Any] = in_proj_weight[256:512, :] snake_case__ : Optional[Any] = in_proj_bias[256:512] snake_case__ : List[str] = in_proj_weight[-256:, :] snake_case__ : Tuple = in_proj_bias[-256:] def UpperCamelCase__ ( ) -> Tuple: snake_case__ : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : str = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( A__ , A__ ) -> str: snake_case__ : List[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case__ : Any = 'resnet101' if "dc5" in model_name: snake_case__ : Any = True snake_case__ : int = 'panoptic' in model_name if is_panoptic: snake_case__ : str = 250 else: snake_case__ : Union[str, Any] = 91 snake_case__ : Optional[int] = 'huggingface/label-files' snake_case__ : Optional[Any] = 'coco-detection-id2label.json' snake_case__ : str = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) snake_case__ : List[Any] = {int(A__ ): v for k, v in idalabel.items()} snake_case__ : Any = idalabel snake_case__ : int = {v: k for k, v in idalabel.items()} # load image processor snake_case__ : List[Any] = 'coco_panoptic' if is_panoptic else 'coco_detection' snake_case__ : List[Any] = ConditionalDetrImageProcessor(format=A__ ) # prepare image snake_case__ : List[str] = prepare_img() snake_case__ : Any = image_processor(images=A__ , return_tensors='pt' ) snake_case__ : Dict = encoding['pixel_values'] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub snake_case__ : Any = torch.hub.load('DeppMeng/ConditionalDETR' , A__ , pretrained=A__ ).eval() snake_case__ : Tuple = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case__ : List[Any] = 'conditional_detr.' + src rename_key(A__ , A__ , A__ ) snake_case__ : Dict = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ , is_panoptic=A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case__ : Optional[int] = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): snake_case__ : List[Any] = state_dict.pop(A__ ) snake_case__ : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case__ : str = state_dict.pop(A__ ) snake_case__ : List[Any] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: snake_case__ : Union[str, Any] = state_dict.pop(A__ ) snake_case__ : Dict = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): snake_case__ : List[Any] = state_dict.pop(A__ ) snake_case__ : Optional[int] = val # finally, create HuggingFace model and load state dict snake_case__ : Union[str, Any] = ConditionalDetrForSegmentation(A__ ) if is_panoptic else ConditionalDetrForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() model.push_to_hub(repo_id=A__ , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion snake_case__ : Tuple = conditional_detr(A__ ) snake_case__ : str = model(A__ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
712
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class __snake_case : __lowerCamelCase = field( metadata={"""help""": """The output directory where the model will be written."""} ,) __lowerCamelCase = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } ,) __lowerCamelCase = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } ,) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def UpperCamelCase__ ( ) -> Union[str, Any]: snake_case__ : str = HfArgumentParser((ModelArguments,) ) ((snake_case__) , ) : Dict = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: snake_case__ : List[str] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: snake_case__ : Optional[int] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: snake_case__ : Optional[Any] = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: snake_case__ : List[str] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed snake_case__ : Any = True snake_case__ : Dict = True snake_case__ : Tuple = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=A__ , decoder_config=A__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens snake_case__ : Optional[Any] = decoder_config.decoder_start_token_id snake_case__ : Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: snake_case__ : Optional[Any] = decoder_config.bos_token_id if pad_token_id is None: snake_case__ : int = decoder_config.eos_token_id # This is necessary to make Flax's generate() work snake_case__ : Union[str, Any] = decoder_config.eos_token_id snake_case__ : Optional[int] = decoder_start_token_id snake_case__ : int = pad_token_id snake_case__ : Tuple = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) snake_case__ : int = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
699
0
from math import sqrt def UpperCamelCase__ ( A__ ) -> bool: assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' must been an int and positive" snake_case__ : List[Any] = True # 0 and 1 are none primes. if number <= 1: snake_case__ : Any = False for divisor in range(2 , int(round(sqrt(A__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: snake_case__ : Optional[Any] = False break # precondition assert isinstance(A__ , A__ ), "'status' must been from type bool" return status def UpperCamelCase__ ( A__ ) -> int: assert isinstance(A__ , A__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N snake_case__ : Optional[int] = list(range(2 , n + 1 ) ) snake_case__ : Any = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(A__ ) ): for j in range(i + 1 , len(A__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): snake_case__ : Optional[int] = 0 # filters actual prime numbers. snake_case__ : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def UpperCamelCase__ ( A__ ) -> Tuple: assert isinstance(A__ , A__ ) and (n > 2), "'N' must been an int and > 2" snake_case__ : Dict = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(A__ ): ans.append(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def UpperCamelCase__ ( A__ ) -> List[str]: assert isinstance(A__ , A__ ) and number >= 0, "'number' must been an int and >= 0" snake_case__ : List[Any] = [] # this list will be returns of the function. # potential prime number factors. snake_case__ : Tuple = 2 snake_case__ : int = number if number == 0 or number == 1: ans.append(A__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(A__ ): while quotient != 1: if is_prime(A__ ) and (quotient % factor == 0): ans.append(A__ ) quotient /= factor else: factor += 1 else: ans.append(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type list" return ans def UpperCamelCase__ ( A__ ) -> Any: assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" snake_case__ : int = 0 # prime factorization of 'number' snake_case__ : Optional[Any] = prime_factorization(A__ ) snake_case__ : str = max(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type int" return ans def UpperCamelCase__ ( A__ ) -> Union[str, Any]: assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" snake_case__ : str = 0 # prime factorization of 'number' snake_case__ : str = prime_factorization(A__ ) snake_case__ : Optional[int] = min(A__ ) # precondition assert isinstance(A__ , A__ ), "'ans' must been from type int" return ans def UpperCamelCase__ ( A__ ) -> Optional[Any]: assert isinstance(A__ , A__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , A__ ), "compare bust been from type bool" return number % 2 == 0 def UpperCamelCase__ ( A__ ) -> List[str]: assert isinstance(A__ , A__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , A__ ), "compare bust been from type bool" return number % 2 != 0 def UpperCamelCase__ ( A__ ) -> Union[str, Any]: assert ( isinstance(A__ , A__ ) and (number > 2) and is_even(A__ ) ), "'number' must been an int, even and > 2" snake_case__ : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' snake_case__ : Dict = get_prime_numbers(A__ ) snake_case__ : str = len(A__ ) # run variable for while-loops. snake_case__ : Tuple = 0 snake_case__ : Dict = None # exit variable. for break up the loops snake_case__ : List[str] = True while i < len_pn and loop: snake_case__ : Union[str, Any] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: snake_case__ : str = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(A__ , A__ ) and (len(A__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCamelCase__ ( A__ , A__ ) -> Dict: assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." snake_case__ : Union[str, Any] = 0 while numbera != 0: snake_case__ : Tuple = numbera % numbera snake_case__ : Optional[Any] = numbera snake_case__ : int = rest # precondition assert isinstance(A__ , A__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCamelCase__ ( A__ , A__ ) -> Optional[int]: assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." snake_case__ : Optional[Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' snake_case__ : int = prime_factorization(A__ ) snake_case__ : int = prime_factorization(A__ ) elif numbera == 1 or numbera == 1: snake_case__ : List[Any] = [] snake_case__ : List[str] = [] snake_case__ : List[str] = max(A__ , A__ ) snake_case__ : List[str] = 0 snake_case__ : Optional[Any] = 0 snake_case__ : List[str] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: snake_case__ : List[str] = prime_fac_a.count(A__ ) snake_case__ : Tuple = prime_fac_a.count(A__ ) for _ in range(max(A__ , A__ ) ): ans *= n else: snake_case__ : Optional[Any] = prime_fac_a.count(A__ ) for _ in range(A__ ): ans *= n done.append(A__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: snake_case__ : int = prime_fac_a.count(A__ ) for _ in range(A__ ): ans *= n done.append(A__ ) # precondition assert isinstance(A__ , A__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCamelCase__ ( A__ ) -> str: assert isinstance(A__ , A__ ) and (n >= 0), "'number' must been a positive int" snake_case__ : Optional[Any] = 0 snake_case__ : Optional[int] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(A__ ): ans += 1 # precondition assert isinstance(A__ , A__ ) and is_prime( A__ ), "'ans' must been a prime number and from type int" return ans def UpperCamelCase__ ( A__ , A__ ) -> Optional[Any]: assert ( is_prime(A__ ) and is_prime(A__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" snake_case__ : int = p_number_a + 1 # jump to the next number snake_case__ : Union[str, Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(A__ ): number += 1 while number < p_number_a: ans.append(A__ ) number += 1 # fetch the next prime number. while not is_prime(A__ ): number += 1 # precondition assert ( isinstance(A__ , A__ ) and ans[0] != p_number_a and ans[len(A__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCamelCase__ ( A__ ) -> Optional[Any]: assert isinstance(A__ , A__ ) and (n >= 1), "'n' must been int and >= 1" snake_case__ : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(A__ ) # precondition assert ans[0] == 1 and ans[len(A__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCamelCase__ ( A__ ) -> Any: assert isinstance(A__ , A__ ) and ( number > 1 ), "'number' must been an int and >= 1" snake_case__ : Optional[int] = get_divisors(A__ ) # precondition assert ( isinstance(A__ , A__ ) and (divisors[0] == 1) and (divisors[len(A__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCamelCase__ ( A__ , A__ ) -> Tuple: assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. snake_case__ : Optional[int] = gcd(abs(A__ ) , abs(A__ ) ) # precondition assert ( isinstance(A__ , A__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCamelCase__ ( A__ ) -> Tuple: assert isinstance(A__ , A__ ) and (n >= 0), "'n' must been a int and >= 0" snake_case__ : Dict = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCamelCase__ ( A__ ) -> Dict: assert isinstance(A__ , A__ ) and (n >= 0), "'n' must been an int and >= 0" snake_case__ : List[Any] = 0 snake_case__ : Optional[Any] = 1 snake_case__ : Any = 1 # this will be return for _ in range(n - 1 ): snake_case__ : List[str] = ans ans += fiba snake_case__ : Union[str, Any] = tmp return ans
713
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ , A__ = None , ) -> Optional[int]: snake_case__ : List[str] = {} if train_file is not None: snake_case__ : Tuple = [train_file] if eval_file is not None: snake_case__ : Dict = [eval_file] if test_file is not None: snake_case__ : str = [test_file] snake_case__ : Optional[Any] = datasets.load_dataset('csv' , data_files=A__ ) snake_case__ : Any = list(ds[list(files.keys() )[0]].features.keys() ) snake_case__ : Optional[Any] = features_name.pop(A__ ) snake_case__ : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) snake_case__ : str = {label: i for i, label in enumerate(A__ )} snake_case__ : int = tokenizer.model_input_names snake_case__ : int = {} if len(A__ ) == 1: for k in files.keys(): snake_case__ : str = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=A__ , max_length=A__ , padding='max_length' ) , batched=A__ , ) elif len(A__ ) == 2: for k in files.keys(): snake_case__ : Optional[int] = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=A__ , max_length=A__ , padding='max_length' , ) , batched=A__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: snake_case__ : int = {k: v for k, v in ex.items() if k in input_names} snake_case__ : Any = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: snake_case__ : int = {k: v for k, v in ex.items() if k in input_names} snake_case__ : Union[str, Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: snake_case__ : Dict = {k: v for k, v in ex.items() if k in input_names} snake_case__ : List[str] = labelaid[ex[label_name]] yield (d, label) snake_case__ : Any = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: snake_case__ : str = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) snake_case__ : Optional[int] = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: snake_case__ : Optional[int] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) snake_case__ : List[str] = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: snake_case__ : str = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase__ : List[str] = logging.getLogger(__name__) @dataclass class __snake_case : __lowerCamelCase = field(metadata={"""help""": """Which column contains the label"""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """The path of the training file"""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """The path of the development file"""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """The path of the test file"""} ) __lowerCamelCase = field( default=128 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class __snake_case : __lowerCamelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) def UpperCamelCase__ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) snake_case__ , snake_case__ , snake_case__ : Dict = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case__ : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=A__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) snake_case__ : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(A__ ) , labelaid=A__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): snake_case__ : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) def compute_metrics(A__ ) -> Dict: snake_case__ : Optional[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer snake_case__ : Any = TFTrainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case__ : Dict = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case__ : Tuple = trainer.evaluate() snake_case__ : Any = os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(A__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(A__ ) return results if __name__ == "__main__": main()
699
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ : int = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
714
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) class __snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCamelCase = None __lowerCamelCase = None class __snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCamelCase = datasets.Audio() __lowerCamelCase = """audio""" __lowerCamelCase = AudioFolderConfig __lowerCamelCase = 42 # definition at the bottom of the script __lowerCamelCase = AudioClassification(audio_column="""audio""" ,label_column="""label""" ) lowerCAmelCase__ : Tuple = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] lowerCAmelCase__ : List[Any] = AUDIO_EXTENSIONS
699
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Optional[Any] = logging.get_logger(__name__) def UpperCamelCase__ ( A__ , A__=False ) -> Union[str, Any]: snake_case__ : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def UpperCamelCase__ ( A__ , A__ , A__=False ) -> Any: for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Optional[Any] = '' else: snake_case__ : List[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ : str = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Dict = in_proj_bias[: config.hidden_size] snake_case__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : List[Any] = in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( A__ ) -> Any: snake_case__ : str = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(A__ , A__ ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> Tuple: snake_case__ : Any = dct.pop(A__ ) snake_case__ : Optional[int] = val def UpperCamelCase__ ( ) -> Tuple: snake_case__ : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : List[Any] = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( A__ , A__ ) -> List[Any]: snake_case__ : List[Any] = ViTConfig() snake_case__ : List[Any] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case__ : List[Any] = True snake_case__ : Union[str, Any] = int(vit_name[-12:-10] ) snake_case__ : Tuple = int(vit_name[-9:-6] ) else: snake_case__ : List[str] = 1000 snake_case__ : Optional[int] = 'huggingface/label-files' snake_case__ : Dict = 'imagenet-1k-id2label.json' snake_case__ : List[Any] = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) snake_case__ : Tuple = {int(A__ ): v for k, v in idalabel.items()} snake_case__ : List[str] = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} snake_case__ : Union[str, Any] = int(vit_name[-6:-4] ) snake_case__ : Tuple = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): snake_case__ : List[Any] = 192 snake_case__ : Tuple = 768 snake_case__ : List[Any] = 12 snake_case__ : Dict = 3 elif vit_name[9:].startswith('small' ): snake_case__ : Union[str, Any] = 384 snake_case__ : Optional[int] = 1536 snake_case__ : Optional[Any] = 12 snake_case__ : Any = 6 else: pass else: if vit_name[4:].startswith('small' ): snake_case__ : Dict = 768 snake_case__ : int = 2304 snake_case__ : str = 8 snake_case__ : Optional[Any] = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): snake_case__ : List[Any] = 1024 snake_case__ : Union[str, Any] = 4096 snake_case__ : Optional[Any] = 24 snake_case__ : Dict = 16 elif vit_name[4:].startswith('huge' ): snake_case__ : Union[str, Any] = 1280 snake_case__ : str = 5120 snake_case__ : List[Any] = 32 snake_case__ : Optional[int] = 16 # load original model from timm snake_case__ : List[Any] = timm.create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Any = timm_model.state_dict() if base_model: remove_classification_head_(A__ ) snake_case__ : int = create_rename_keys(A__ , A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , A__ , A__ ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ : Optional[int] = ViTModel(A__ ).eval() else: snake_case__ : str = ViTForImageClassification(A__ ).eval() model.load_state_dict(A__ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case__ : Tuple = DeiTImageProcessor(size=config.image_size ) else: snake_case__ : Optional[int] = ViTImageProcessor(size=config.image_size ) snake_case__ : Dict = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case__ : str = encoding['pixel_values'] snake_case__ : int = model(A__ ) if base_model: snake_case__ : Optional[int] = timm_model.forward_features(A__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(A__ , outputs.pooler_output , atol=1e-3 ) else: snake_case__ : List[str] = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1e-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase__ : List[str] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
715
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = IFInpaintingPipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCamelCase = PipelineTesterMixin.required_optional_params - {"""latents"""} def __a ( self ) -> Optional[Any]: '''simple docstring''' return self._get_dummy_components() def __a ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> str: '''simple docstring''' if str(__UpperCamelCase ).startswith('mps' ): snake_case__ : int = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : Union[str, Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __a ( self ) -> List[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __a ( self ) -> Optional[int]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __a ( self ) -> List[str]: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def __a ( self ) -> List[str]: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __a ( self ) -> int: '''simple docstring''' self._test_save_load_local() def __a ( self ) -> List[str]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
699
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCAmelCase__ : Any = logging.get_logger(__name__) lowerCAmelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : Any = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Any = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Tuple = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Dict = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_12, '''facebook/dpr-ctx_encoder-multiset-base''': 5_12, } lowerCAmelCase__ : Union[str, Any] = { '''facebook/dpr-question_encoder-single-nq-base''': 5_12, '''facebook/dpr-question_encoder-multiset-base''': 5_12, } lowerCAmelCase__ : Optional[Any] = { '''facebook/dpr-reader-single-nq-base''': 5_12, '''facebook/dpr-reader-multiset-base''': 5_12, } lowerCAmelCase__ : Tuple = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase__ : Any = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase__ : List[str] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = DPRContextEncoderTokenizer class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = DPRQuestionEncoderTokenizer lowerCAmelCase__ : Tuple = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCAmelCase__ : List[Any] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCAmelCase__ : int = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_lowerCamelCase ) class __snake_case : def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) elif titles is None or texts is None: snake_case__ : Optional[Any] = titles if texts is None else texts return super().__call__( __UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ : int = titles if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [titles] snake_case__ : Optional[int] = texts if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [texts] snake_case__ : List[Any] = len(__UpperCamelCase ) snake_case__ : str = questions if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [questions] * n_passages assert len(__UpperCamelCase ) == len( __UpperCamelCase ), F"""There should be as many titles than texts but got {len(__UpperCamelCase )} titles and {len(__UpperCamelCase )} texts.""" snake_case__ : Optional[int] = super().__call__(__UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )['input_ids'] snake_case__ : Optional[Any] = super().__call__(__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )['input_ids'] snake_case__ : Union[str, Any] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCamelCase , __UpperCamelCase ) ] } if return_attention_mask is not False: snake_case__ : List[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case__ : Union[str, Any] = attention_mask return self.pad(__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 16 , __UpperCamelCase = 64 , __UpperCamelCase = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' snake_case__ : Optional[Any] = reader_input['input_ids'] snake_case__ : Any = reader_output[:3] snake_case__ : List[str] = len(__UpperCamelCase ) snake_case__ : Tuple = sorted(range(__UpperCamelCase ) , reverse=__UpperCamelCase , key=relevance_logits.__getitem__ ) snake_case__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: snake_case__ : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case__ : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case__ : Union[str, Any] = sequence_ids.index(self.pad_token_id ) else: snake_case__ : str = len(__UpperCamelCase ) snake_case__ : Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCamelCase , top_spans=__UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCamelCase , start_index=__UpperCamelCase , end_index=__UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> List[DPRSpanPrediction]: '''simple docstring''' snake_case__ : Any = [] for start_index, start_score in enumerate(__UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case__ : str = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] , reverse=__UpperCamelCase ) snake_case__ : Any = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" snake_case__ : str = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_lowerCamelCase ) class __snake_case ( _lowerCamelCase ,_lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = READER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = ["""input_ids""", """attention_mask"""] __lowerCamelCase = DPRReaderTokenizer
716
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ : List[Any] = '''▁''' lowerCAmelCase__ : int = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = BertGenerationTokenizer __lowerCamelCase = False __lowerCamelCase = True def __a ( self ) -> Optional[int]: '''simple docstring''' super().setUp() snake_case__ : str = BertGenerationTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[str] = '<s>' snake_case__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(__UpperCamelCase ) , 1002 ) def __a ( self ) -> int: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Optional[Any] = BertGenerationTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) snake_case__ : int = tokenizer.tokenize('This is a test' ) self.assertListEqual(__UpperCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [285, 46, 10, 170, 382] , ) snake_case__ : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) snake_case__ : Optional[Any] = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) snake_case__ : int = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def __a ( self ) -> Dict: '''simple docstring''' return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def __a ( self ) -> Any: '''simple docstring''' snake_case__ : int = 'Hello World!' snake_case__ : Union[str, Any] = [18536, 2260, 101] self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @slow def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : str = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) snake_case__ : List[Any] = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @require_torch @slow def __a ( self ) -> List[str]: '''simple docstring''' import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence snake_case__ : Optional[int] = list(self.big_tokenizer.get_vocab().keys() )[:10] snake_case__ : Optional[int] = ' '.join(__UpperCamelCase ) snake_case__ : int = self.big_tokenizer.encode_plus(__UpperCamelCase , return_tensors='pt' , return_token_type_ids=__UpperCamelCase ) snake_case__ : Tuple = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=__UpperCamelCase ) snake_case__ : Dict = BertGenerationConfig() snake_case__ : List[str] = BertGenerationEncoder(__UpperCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCamelCase ) model(**__UpperCamelCase ) @slow def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
699
0
import datasets lowerCAmelCase__ : str = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' lowerCAmelCase__ : Dict = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' lowerCAmelCase__ : int = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def UpperCamelCase__ ( A__ , A__ ) -> Union[str, Any]: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def __a ( self ) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def __a ( self , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: '''simple docstring''' return {"accuracy": simple_accuracy(__UpperCamelCase , __UpperCamelCase )}
717
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowerCAmelCase__ : List[str] = HfApi() lowerCAmelCase__ : str = {} # fmt: off lowerCAmelCase__ : int = torch.tensor([ -0.75_15, -1.68_83, 0.24_20, 0.03_00, 0.63_47, 1.34_33, -1.17_43, -3.74_67, 1.23_42, -2.24_85, 0.46_36, 0.80_76, -0.79_91, 0.39_69, 0.84_98, 0.91_89, -1.88_87, -3.35_22, 0.76_39, 0.20_40, 0.62_71, -2.71_48, -1.63_16, 3.08_39, 0.31_86, 0.27_21, -0.97_59, -1.24_61, 2.62_57, 1.35_57 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.36_39, -2.53_44, 0.00_54, -0.66_74, 1.59_90, 1.01_58, 0.31_24, -2.14_36, 1.87_95, -2.54_29, -0.15_66, -0.39_73, 1.24_90, 2.64_47, 1.22_83, -0.52_08, -2.81_54, -3.51_19, 2.38_38, 1.20_33, 1.72_01, -2.12_56, -1.45_76, 2.79_48, 2.42_04, -0.97_52, -1.25_46, 0.80_27, 3.27_58, 3.13_65 ]) lowerCAmelCase__ : Dict = torch.tensor([ -0.65_31, -0.68_91, -0.31_72, -0.53_75, -0.91_40, -0.53_67, -0.11_75, -0.78_69, -0.38_08, -0.45_13, -0.20_98, -0.00_83, 0.31_83, 0.51_40, 0.22_47, -0.13_04, -0.13_02, -0.28_02, -0.20_84, -0.20_25, -0.49_67, -0.48_73, -0.08_61, 0.69_25, 0.02_50, 0.12_90, -0.15_43, 0.63_16, 1.04_60, 1.49_43 ]) lowerCAmelCase__ : List[str] = torch.tensor([ 0.09_11, 0.11_07, 0.01_82, 0.04_35, -0.08_05, -0.06_08, 0.03_81, 0.21_72, -0.02_80, 0.13_27, -0.02_99, -0.02_55, -0.00_50, -0.11_70, -0.10_46, 0.03_09, 0.13_67, 0.17_28, -0.05_33, -0.07_48, -0.05_34, 0.16_24, 0.03_84, -0.18_05, -0.07_07, 0.06_42, 0.02_20, -0.01_34, -0.13_33, -0.15_05 ]) lowerCAmelCase__ : Union[str, Any] = torch.tensor([ 0.13_21, 0.13_37, 0.04_40, 0.06_22, -0.05_91, -0.03_70, 0.05_03, 0.21_33, -0.01_77, 0.14_15, -0.01_16, -0.01_12, 0.00_44, -0.09_80, -0.07_89, 0.03_95, 0.15_02, 0.17_85, -0.04_88, -0.05_14, -0.04_04, 0.15_39, 0.04_54, -0.15_59, -0.06_65, 0.06_59, 0.03_83, -0.00_05, -0.12_66, -0.13_86 ]) lowerCAmelCase__ : List[Any] = torch.tensor([ 0.11_54, 0.12_18, 0.03_07, 0.05_26, -0.07_11, -0.05_41, 0.03_66, 0.20_78, -0.02_67, 0.13_17, -0.02_26, -0.01_93, -0.00_14, -0.10_55, -0.09_02, 0.03_30, 0.13_91, 0.17_09, -0.05_62, -0.06_93, -0.05_60, 0.14_82, 0.03_81, -0.16_83, -0.06_81, 0.06_61, 0.03_31, -0.00_46, -0.12_68, -0.14_31 ]) lowerCAmelCase__ : Optional[Any] = torch.tensor([ 0.11_92, 0.12_40, 0.04_14, 0.06_06, -0.05_57, -0.04_12, 0.04_30, 0.20_42, -0.02_00, 0.13_85, -0.01_15, -0.01_32, 0.00_17, -0.09_65, -0.08_02, 0.03_98, 0.14_33, 0.17_47, -0.04_58, -0.05_33, -0.04_07, 0.15_45, 0.04_19, -0.15_74, -0.06_45, 0.06_26, 0.03_41, -0.00_10, -0.11_99, -0.13_90 ]) lowerCAmelCase__ : List[str] = torch.tensor([ 0.10_75, 0.10_74, 0.02_05, 0.04_31, -0.07_74, -0.06_07, 0.02_98, 0.20_42, -0.03_20, 0.12_67, -0.02_81, -0.02_50, -0.00_64, -0.10_91, -0.09_46, 0.02_90, 0.13_28, 0.16_50, -0.05_80, -0.07_38, -0.05_86, 0.14_40, 0.03_37, -0.17_46, -0.07_12, 0.06_05, 0.02_50, -0.00_99, -0.13_16, -0.14_73 ]) lowerCAmelCase__ : List[str] = torch.tensor([ -1.45_72, -2.04_81, -0.04_14, -0.60_05, 1.41_36, 0.58_48, 0.40_28, -2.73_30, 1.22_12, -2.12_28, 0.21_55, 0.40_39, 0.76_62, 2.05_35, 0.74_77, -0.32_43, -2.17_58, -2.76_48, 1.69_47, 0.70_26, 1.23_38, -1.60_78, -0.86_82, 2.28_10, 1.85_74, -0.57_18, -0.55_86, -0.01_86, 2.34_15, 2.12_51]) lowerCAmelCase__ : List[Any] = torch.tensor([ -1.36_90, -1.97_20, -0.40_90, -0.69_66, 1.46_60, 0.99_38, -0.13_85, -2.73_24, 0.77_36, -1.89_17, 0.29_23, 0.42_93, 0.16_93, 1.41_12, 1.18_87, -0.31_81, -2.21_60, -2.63_81, 1.31_70, 0.81_63, 0.92_40, -1.65_44, -0.60_99, 2.52_59, 1.64_30, -0.90_90, -0.93_92, -0.01_26, 2.42_68, 2.32_66 ]) lowerCAmelCase__ : Tuple = torch.tensor([ -1.35_25, -1.96_28, -0.39_56, -0.68_60, 1.46_64, 1.00_14, -0.12_59, -2.72_12, 0.77_72, -1.88_11, 0.29_96, 0.43_88, 0.17_04, 1.40_29, 1.17_01, -0.30_27, -2.20_53, -2.62_87, 1.33_50, 0.81_31, 0.92_74, -1.62_92, -0.60_98, 2.51_31, 1.65_05, -0.89_58, -0.92_98, -0.01_51, 2.42_57, 2.33_55 ]) lowerCAmelCase__ : List[str] = torch.tensor([ -2.05_85, -2.78_97, -0.28_50, -0.89_40, 1.90_52, 0.57_02, 0.63_45, -3.89_59, 1.59_32, -3.23_19, 0.19_74, 0.02_87, 1.75_66, 2.65_43, 0.83_87, -0.53_51, -3.27_36, -4.33_75, 2.90_29, 1.63_90, 1.46_40, -2.17_01, -1.90_13, 2.93_41, 3.49_81, -0.62_55, -1.16_44, -0.15_91, 3.70_97, 3.20_66 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.31_39, -2.55_94, -0.01_97, -0.67_85, 1.70_01, 1.16_06, 0.30_75, -2.17_40, 1.80_71, -2.56_30, -0.09_26, -0.38_11, 1.21_16, 2.62_46, 1.27_31, -0.53_98, -2.81_53, -3.61_40, 2.38_93, 1.32_62, 1.62_58, -2.18_56, -1.32_67, 2.83_95, 2.37_79, -1.06_23, -1.24_68, 0.89_59, 3.33_67, 3.22_43 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.06_28, -2.76_67, -0.20_89, -0.82_63, 2.05_39, 0.59_92, 0.64_95, -3.83_36, 1.60_25, -3.28_17, 0.17_21, -0.06_33, 1.75_16, 2.70_39, 0.81_00, -0.59_08, -3.21_13, -4.43_43, 2.92_57, 1.36_32, 1.55_62, -2.14_89, -1.98_94, 3.05_60, 3.33_96, -0.73_28, -1.04_17, 0.03_83, 3.70_93, 3.23_43 ]) lowerCAmelCase__ : Any = torch.tensor([ -1.45_74, -2.05_69, -0.04_73, -0.61_17, 1.40_18, 0.57_69, 0.41_29, -2.73_44, 1.22_41, -2.13_97, 0.20_00, 0.39_37, 0.76_16, 2.04_53, 0.73_24, -0.33_91, -2.17_46, -2.77_44, 1.69_63, 0.69_21, 1.21_87, -1.61_72, -0.88_77, 2.24_39, 1.84_71, -0.58_39, -0.56_05, -0.04_64, 2.32_50, 2.12_19 ]) # fmt: on lowerCAmelCase__ : Any = api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowerCAmelCase__ : List[str] = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith('''CompVis'''): lowerCAmelCase__ : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: lowerCAmelCase__ : str = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowerCAmelCase__ : Any = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowerCAmelCase__ : List[str] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowerCAmelCase__ : int = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
699
0
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __snake_case : def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.0_2 , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase="None" , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , ) -> List[Any]: '''simple docstring''' snake_case__ : Dict = parent snake_case__ : str = batch_size snake_case__ : List[str] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_input_mask snake_case__ : Any = use_token_type_ids snake_case__ : Optional[Any] = use_labels snake_case__ : str = vocab_size snake_case__ : Dict = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : Dict = num_attention_heads snake_case__ : List[str] = intermediate_size snake_case__ : int = hidden_act snake_case__ : Tuple = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : str = max_position_embeddings snake_case__ : Optional[int] = type_vocab_size snake_case__ : Optional[Any] = type_sequence_label_size snake_case__ : int = initializer_range snake_case__ : Dict = num_labels snake_case__ : Tuple = num_choices snake_case__ : str = relative_attention snake_case__ : Optional[int] = position_biased_input snake_case__ : Dict = pos_att_type snake_case__ : int = scope def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Dict = None if self.use_input_mask: snake_case__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Dict = None if self.use_token_type_ids: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : str = None snake_case__ : Dict = None snake_case__ : str = None if self.use_labels: snake_case__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Union[str, Any] = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict: '''simple docstring''' snake_case__ : List[str] = TFDebertaVaModel(config=__UpperCamelCase ) snake_case__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case__ : Dict = [input_ids, input_mask] snake_case__ : Tuple = model(__UpperCamelCase ) snake_case__ : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' snake_case__ : List[Any] = TFDebertaVaForMaskedLM(config=__UpperCamelCase ) snake_case__ : Optional[int] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case__ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: '''simple docstring''' snake_case__ : List[str] = self.num_labels snake_case__ : int = TFDebertaVaForSequenceClassification(config=__UpperCamelCase ) snake_case__ : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case__ : Dict = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: '''simple docstring''' snake_case__ : Dict = self.num_labels snake_case__ : Union[str, Any] = TFDebertaVaForTokenClassification(config=__UpperCamelCase ) snake_case__ : List[str] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case__ : Dict = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: '''simple docstring''' snake_case__ : List[str] = TFDebertaVaForQuestionAnswering(config=__UpperCamelCase ) snake_case__ : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case__ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ) -> str: '''simple docstring''' snake_case__ : List[Any] = self.prepare_config_and_inputs() ( snake_case__ ) : str = config_and_inputs snake_case__ : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __lowerCamelCase = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Dict = TFDebertaVaModelTester(self ) snake_case__ : Union[str, Any] = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def __a ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def __a ( self ) -> int: '''simple docstring''' snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Any = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class __snake_case ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def __a ( self ) -> Tuple: '''simple docstring''' pass @slow def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : List[str] = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) snake_case__ : Tuple = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) snake_case__ : Any = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) snake_case__ : str = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] snake_case__ : Optional[int] = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1E-4 )
718
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCAmelCase__ : Dict = logging.get_logger(__name__) class __snake_case ( _lowerCamelCase ): def __init__( self , *__UpperCamelCase , **__UpperCamelCase ) -> None: '''simple docstring''' warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , __UpperCamelCase , ) super().__init__(*__UpperCamelCase , **__UpperCamelCase )
699
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : Optional[Any] = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } lowerCAmelCase__ : int = {'''mobilebert-uncased''': 5_12} lowerCAmelCase__ : Optional[int] = {} class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = MobileBertTokenizer def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase="[UNK]" , __UpperCamelCase="[SEP]" , __UpperCamelCase="[PAD]" , __UpperCamelCase="[CLS]" , __UpperCamelCase="[MASK]" , __UpperCamelCase=True , __UpperCamelCase=None , **__UpperCamelCase , ) -> List[Any]: '''simple docstring''' super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , tokenize_chinese_chars=__UpperCamelCase , strip_accents=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , __UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __UpperCamelCase ) != tokenize_chinese_chars ): snake_case__ : Any = getattr(__UpperCamelCase , normalizer_state.pop('type' ) ) snake_case__ : List[str] = do_lower_case snake_case__ : str = strip_accents snake_case__ : List[Any] = tokenize_chinese_chars snake_case__ : Union[str, Any] = normalizer_class(**__UpperCamelCase ) snake_case__ : Any = do_lower_case def __a ( self , __UpperCamelCase , __UpperCamelCase=None ) -> List[str]: '''simple docstring''' snake_case__ : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' snake_case__ : Union[str, Any] = [self.sep_token_id] snake_case__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' snake_case__ : Tuple = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase )
719
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __snake_case ( datasets.BuilderConfig ): __lowerCamelCase = None __lowerCamelCase = "utf-8" __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = True # deprecated __lowerCamelCase = None # deprecated __lowerCamelCase = 10 << 20 # 10MB __lowerCamelCase = None class __snake_case ( datasets.ArrowBasedBuilder ): __lowerCamelCase = JsonConfig def __a ( self ) -> Optional[Any]: '''simple docstring''' if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead' ) snake_case__ : str = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.' ) if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported' ) return datasets.DatasetInfo(features=self.config.features ) def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) snake_case__ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__UpperCamelCase , (str, list, tuple) ): snake_case__ : Any = data_files if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : Optional[Any] = [files] snake_case__ : List[str] = [dl_manager.iter_files(__UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] snake_case__ : List[Any] = [] for split_name, files in data_files.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : List[Any] = [files] snake_case__ : Any = [dl_manager.iter_files(__UpperCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__UpperCamelCase , gen_kwargs={'files': files} ) ) return splits def __a ( self , __UpperCamelCase ) -> pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): snake_case__ : List[Any] = self.config.features.arrow_schema.field(__UpperCamelCase ).type snake_case__ : List[str] = pa_table.append_column(__UpperCamelCase , pa.array([None] * len(__UpperCamelCase ) , type=__UpperCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example snake_case__ : List[str] = table_cast(__UpperCamelCase , self.config.features.arrow_schema ) return pa_table def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(__UpperCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__UpperCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case__ : Union[str, Any] = json.load(__UpperCamelCase ) # We keep only the field we are interested in snake_case__ : Tuple = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__UpperCamelCase , (list, tuple) ): snake_case__ : List[Any] = set().union(*[row.keys() for row in dataset] ) snake_case__ : List[Any] = {col: [row.get(__UpperCamelCase ) for row in dataset] for col in keys} else: snake_case__ : List[Any] = dataset snake_case__ : Dict = pa.Table.from_pydict(__UpperCamelCase ) yield file_idx, self._cast_table(__UpperCamelCase ) # If the file has one json object per line else: with open(__UpperCamelCase , 'rb' ) as f: snake_case__ : Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small snake_case__ : Tuple = max(self.config.chunksize // 32 , 16 << 10 ) snake_case__ : Optional[Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: snake_case__ : Optional[int] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__UpperCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": snake_case__ : int = batch.decode(self.config.encoding , errors=__UpperCamelCase ).encode('utf-8' ) try: while True: try: snake_case__ : List[str] = paj.read_json( io.BytesIO(__UpperCamelCase ) , read_options=paj.ReadOptions(block_size=__UpperCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__UpperCamelCase , pa.ArrowInvalid ) and "straddling" not in str(__UpperCamelCase ) or block_size > len(__UpperCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(__UpperCamelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __UpperCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case__ : Tuple = json.load(__UpperCamelCase ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__UpperCamelCase , __UpperCamelCase ): # list is the only sequence type supported in JSON try: snake_case__ : str = set().union(*[row.keys() for row in dataset] ) snake_case__ : Union[str, Any] = {col: [row.get(__UpperCamelCase ) for row in dataset] for col in keys} snake_case__ : List[str] = pa.Table.from_pydict(__UpperCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(__UpperCamelCase ) break else: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__UpperCamelCase ) batch_idx += 1
699
0
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCAmelCase__ : int = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCAmelCase__ : str = '''UperNetConfig''' class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0 , __UpperCamelCase = False , __UpperCamelCase = 1 , ) -> None: '''simple docstring''' super().__init__() snake_case__ : Union[str, Any] = nn.Convad( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , kernel_size=__UpperCamelCase , padding=__UpperCamelCase , bias=__UpperCamelCase , dilation=__UpperCamelCase , ) snake_case__ : Tuple = nn.BatchNormad(__UpperCamelCase ) snake_case__ : Tuple = nn.ReLU() def __a ( self , __UpperCamelCase ) -> torch.Tensor: '''simple docstring''' snake_case__ : Tuple = self.conv(__UpperCamelCase ) snake_case__ : str = self.batch_norm(__UpperCamelCase ) snake_case__ : Dict = self.activation(__UpperCamelCase ) return output class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> None: '''simple docstring''' super().__init__() snake_case__ : Dict = [ nn.AdaptiveAvgPoolad(__UpperCamelCase ), UperNetConvModule(__UpperCamelCase , __UpperCamelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__UpperCamelCase ) , __UpperCamelCase ) def __a ( self , __UpperCamelCase ) -> torch.Tensor: '''simple docstring''' snake_case__ : Optional[int] = input for layer in self.layers: snake_case__ : int = layer(__UpperCamelCase ) return hidden_state class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> None: '''simple docstring''' super().__init__() snake_case__ : str = pool_scales snake_case__ : List[str] = align_corners snake_case__ : List[str] = in_channels snake_case__ : int = channels snake_case__ : Union[str, Any] = [] for i, pool_scale in enumerate(__UpperCamelCase ): snake_case__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=__UpperCamelCase , in_channels=__UpperCamelCase , channels=__UpperCamelCase ) self.blocks.append(__UpperCamelCase ) self.add_module(str(__UpperCamelCase ) , __UpperCamelCase ) def __a ( self , __UpperCamelCase ) -> List[torch.Tensor]: '''simple docstring''' snake_case__ : Optional[int] = [] for ppm in self.blocks: snake_case__ : List[Any] = ppm(__UpperCamelCase ) snake_case__ : Optional[int] = nn.functional.interpolate( __UpperCamelCase , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(__UpperCamelCase ) return ppm_outs class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase ) -> int: '''simple docstring''' super().__init__() snake_case__ : List[Any] = config snake_case__ : Any = config.pool_scales # e.g. (1, 2, 3, 6) snake_case__ : Tuple = in_channels snake_case__ : int = config.hidden_size snake_case__ : List[Any] = False snake_case__ : Tuple = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module snake_case__ : List[Any] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) snake_case__ : Dict = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module snake_case__ : Optional[Any] = nn.ModuleList() snake_case__ : Optional[int] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer snake_case__ : str = UperNetConvModule(__UpperCamelCase , self.channels , kernel_size=1 ) snake_case__ : Tuple = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__UpperCamelCase ) self.fpn_convs.append(__UpperCamelCase ) snake_case__ : str = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def __a ( self ) -> List[str]: '''simple docstring''' self.apply(self._init_weights ) def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' if isinstance(__UpperCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __a ( self , __UpperCamelCase ) -> Tuple: '''simple docstring''' snake_case__ : Union[str, Any] = inputs[-1] snake_case__ : str = [x] psp_outs.extend(self.psp_modules(__UpperCamelCase ) ) snake_case__ : Any = torch.cat(__UpperCamelCase , dim=1 ) snake_case__ : Tuple = self.bottleneck(__UpperCamelCase ) return output def __a ( self , __UpperCamelCase ) -> torch.Tensor: '''simple docstring''' snake_case__ : int = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__UpperCamelCase ) ) # build top-down path snake_case__ : str = len(__UpperCamelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): snake_case__ : Optional[int] = laterals[i - 1].shape[2:] snake_case__ : List[str] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__UpperCamelCase , mode='bilinear' , align_corners=self.align_corners ) # build outputs snake_case__ : Union[str, Any] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): snake_case__ : str = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) snake_case__ : List[str] = torch.cat(__UpperCamelCase , dim=1 ) snake_case__ : str = self.fpn_bottleneck(__UpperCamelCase ) snake_case__ : str = self.classifier(__UpperCamelCase ) return output class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase = 2 , __UpperCamelCase = 3 , __UpperCamelCase = 1 ) -> None: '''simple docstring''' super().__init__() snake_case__ : Any = config snake_case__ : List[str] = config.auxiliary_in_channels snake_case__ : Any = config.auxiliary_channels snake_case__ : Tuple = config.auxiliary_num_convs snake_case__ : List[Any] = config.auxiliary_concat_input snake_case__ : Union[str, Any] = in_index snake_case__ : int = (kernel_size // 2) * dilation snake_case__ : str = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__UpperCamelCase , padding=__UpperCamelCase , dilation=__UpperCamelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__UpperCamelCase , padding=__UpperCamelCase , dilation=__UpperCamelCase ) ) if self.num_convs == 0: snake_case__ : Tuple = nn.Identity() else: snake_case__ : Dict = nn.Sequential(*__UpperCamelCase ) if self.concat_input: snake_case__ : List[Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__UpperCamelCase , padding=kernel_size // 2 ) snake_case__ : Any = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' self.apply(self._init_weights ) def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' if isinstance(__UpperCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __a ( self , __UpperCamelCase ) -> torch.Tensor: '''simple docstring''' snake_case__ : Tuple = encoder_hidden_states[self.in_index] snake_case__ : Any = self.convs(__UpperCamelCase ) if self.concat_input: snake_case__ : Optional[Any] = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) snake_case__ : Union[str, Any] = self.classifier(__UpperCamelCase ) return output class __snake_case ( _lowerCamelCase ): __lowerCamelCase = UperNetConfig __lowerCamelCase = """pixel_values""" __lowerCamelCase = True def __a ( self , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def __a ( self ) -> Any: '''simple docstring''' self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def __a ( self , __UpperCamelCase , __UpperCamelCase=False ) -> List[Any]: '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : Optional[int] = value lowerCAmelCase__ : int = r''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowerCAmelCase__ : Tuple = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" ,_lowerCamelCase ,) class __snake_case ( _lowerCamelCase ): def __init__( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__(__UpperCamelCase ) snake_case__ : List[str] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) snake_case__ : Any = UperNetHead(__UpperCamelCase , in_channels=self.backbone.channels ) snake_case__ : Union[str, Any] = UperNetFCNHead(__UpperCamelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=__UpperCamelCase , config_class=_CONFIG_FOR_DOC ) def __a ( self , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , ) -> Union[tuple, SemanticSegmenterOutput]: '''simple docstring''' snake_case__ : Any = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions snake_case__ : List[str] = self.backbone.forward_with_filtered_kwargs( __UpperCamelCase , output_hidden_states=__UpperCamelCase , output_attentions=__UpperCamelCase ) snake_case__ : Any = outputs.feature_maps snake_case__ : Tuple = self.decode_head(__UpperCamelCase ) snake_case__ : Optional[Any] = nn.functional.interpolate(__UpperCamelCase , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=__UpperCamelCase ) snake_case__ : str = None if self.auxiliary_head is not None: snake_case__ : int = self.auxiliary_head(__UpperCamelCase ) snake_case__ : Any = nn.functional.interpolate( __UpperCamelCase , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=__UpperCamelCase ) snake_case__ : Tuple = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss snake_case__ : List[str] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) snake_case__ : Optional[int] = loss_fct(__UpperCamelCase , __UpperCamelCase ) snake_case__ : str = loss_fct(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Dict = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: snake_case__ : int = (logits,) + outputs[1:] else: snake_case__ : Any = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__UpperCamelCase , logits=__UpperCamelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
699
0
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( A__ , A__ , A__ ) -> Any: # Initialise PyTorch model snake_case__ : Dict = TaConfig.from_json_file(A__ ) print(F"""Building PyTorch model from configuration: {config}""" ) snake_case__ : Union[str, Any] = TaForConditionalGeneration(A__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(A__ , A__ , A__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
721
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCAmelCase__ : Dict = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCAmelCase__ : List[str] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCAmelCase__ : List[str] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def UpperCamelCase__ ( A__ , A__ ) -> tuple[str, float]: snake_case__ : Tuple = len([g for position, g in enumerate(A__ ) if g == main_target[position]] ) return (item, float(A__ )) def UpperCamelCase__ ( A__ , A__ ) -> tuple[str, str]: snake_case__ : str = random.randint(0 , len(A__ ) - 1 ) snake_case__ : int = parent_a[:random_slice] + parent_a[random_slice:] snake_case__ : Any = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def UpperCamelCase__ ( A__ , A__ ) -> str: snake_case__ : List[Any] = list(A__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: snake_case__ : Optional[Any] = random.choice(A__ ) return "".join(A__ ) def UpperCamelCase__ ( A__ , A__ , A__ , ) -> list[str]: snake_case__ : Tuple = [] # Generate more children proportionally to the fitness score. snake_case__ : Optional[Any] = int(parent_a[1] * 100 ) + 1 snake_case__ : str = 10 if child_n >= 10 else child_n for _ in range(A__ ): snake_case__ : Any = population_score[random.randint(0 , A__ )][0] snake_case__ , snake_case__ : int = crossover(parent_a[0] , A__ ) # Append new string to the population list. pop.append(mutate(A__ , A__ ) ) pop.append(mutate(A__ , A__ ) ) return pop def UpperCamelCase__ ( A__ , A__ , A__ = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: snake_case__ : Union[str, Any] = F"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(A__ ) # Verify that the target contains no genes besides the ones inside genes variable. snake_case__ : Tuple = sorted({c for c in target if c not in genes} ) if not_in_genes_list: snake_case__ : int = F"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(A__ ) # Generate random starting population. snake_case__ : Union[str, Any] = [] for _ in range(A__ ): population.append(''.join([random.choice(A__ ) for i in range(len(A__ ) )] ) ) # Just some logs to know what the algorithms is doing. snake_case__ , snake_case__ : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(A__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. snake_case__ : List[Any] = [evaluate(A__ , A__ ) for item in population] # Check if there is a matching evolution. snake_case__ : int = sorted(A__ , key=lambda A__ : x[1] , reverse=A__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"""\nGeneration: {generation}""" F"""\nTotal Population:{total_population}""" F"""\nBest score: {population_score[0][1]}""" F"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. snake_case__ : Optional[int] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(A__ ) # Normalize population score to be between 0 and 1. snake_case__ : str = [ (item, score / len(A__ )) for item, score in population_score ] # This is selection for i in range(A__ ): population.extend(select(population_score[int(A__ )] , A__ , A__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(A__ ) > N_POPULATION: break if __name__ == "__main__": lowerCAmelCase__ : str = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) lowerCAmelCase__ : Optional[Any] = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ : List[str] = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
699
0
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = SpeechTaTokenizer __lowerCamelCase = False __lowerCamelCase = True def __a ( self ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Dict = SpeechTaTokenizer(__UpperCamelCase ) snake_case__ : List[str] = AddedToken('<mask>' , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) snake_case__ : int = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self , __UpperCamelCase ) -> Any: '''simple docstring''' snake_case__ : int = 'this is a test' snake_case__ : Optional[Any] = 'this is a test' return input_text, output_text def __a ( self , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=20 , __UpperCamelCase=5 ) -> int: '''simple docstring''' snake_case__ : Any = self.get_input_output_texts(__UpperCamelCase ) snake_case__ : Optional[int] = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) snake_case__ : List[Any] = tokenizer.decode(__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase ) return text, ids def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = '<pad>' snake_case__ : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def __a ( self ) -> int: '''simple docstring''' snake_case__ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(__UpperCamelCase ) , 81 ) def __a ( self ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Union[str, Any] = self.get_tokenizers(do_lower_case=__UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case__ : List[Any] = tokenizer.vocab_size snake_case__ : Optional[Any] = len(__UpperCamelCase ) self.assertNotEqual(__UpperCamelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) snake_case__ : Tuple = ['aaaaa bbbbbb', 'cccccccccdddddddd'] snake_case__ : int = tokenizer.add_tokens(__UpperCamelCase ) snake_case__ : Optional[Any] = tokenizer.vocab_size snake_case__ : Optional[int] = len(__UpperCamelCase ) self.assertNotEqual(__UpperCamelCase , 0 ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , len(__UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , all_size + len(__UpperCamelCase ) ) snake_case__ : Optional[Any] = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=__UpperCamelCase ) self.assertGreaterEqual(len(__UpperCamelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) snake_case__ : Union[str, Any] = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} snake_case__ : Optional[int] = tokenizer.add_special_tokens(__UpperCamelCase ) snake_case__ : List[str] = tokenizer.vocab_size snake_case__ : Union[str, Any] = len(__UpperCamelCase ) self.assertNotEqual(__UpperCamelCase , 0 ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , len(__UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , all_size_a + len(__UpperCamelCase ) ) snake_case__ : List[str] = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=__UpperCamelCase ) self.assertGreaterEqual(len(__UpperCamelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def __a ( self ) -> Optional[int]: '''simple docstring''' pass def __a ( self ) -> List[Any]: '''simple docstring''' pass def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Any = self.get_tokenizer() snake_case__ : List[str] = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(__UpperCamelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) snake_case__ : Dict = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __UpperCamelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) snake_case__ : Dict = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) # fmt: off self.assertListEqual(__UpperCamelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on snake_case__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off snake_case__ : Tuple = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=__UpperCamelCase , )
700
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCAmelCase__ : Optional[int] = TypeVar('''T''') class __snake_case ( Generic[T] ): def __init__( self , __UpperCamelCase ) -> Any: '''simple docstring''' snake_case__ : Optional[int] = data snake_case__ : Node[T] | None = None def __str__( self ) -> str: '''simple docstring''' return F"""{self.data}""" class __snake_case ( Generic[T] ): def __init__( self ) -> None: '''simple docstring''' snake_case__ : Node[T] | None = None def __iter__( self ) -> Iterator[T]: '''simple docstring''' snake_case__ : str = self.top while node: yield node.data snake_case__ : Dict = node.next def __str__( self ) -> str: '''simple docstring''' return "->".join([str(__UpperCamelCase ) for item in self] ) def __len__( self ) -> int: '''simple docstring''' return len(tuple(iter(self ) ) ) def __a ( self ) -> bool: '''simple docstring''' return self.top is None def __a ( self , __UpperCamelCase ) -> None: '''simple docstring''' snake_case__ : str = Node(__UpperCamelCase ) if not self.is_empty(): snake_case__ : List[str] = self.top snake_case__ : Tuple = node def __a ( self ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , __UpperCamelCase ) snake_case__ : List[str] = self.top snake_case__ : Union[str, Any] = self.top.next return pop_node.data def __a ( self ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def __a ( self ) -> None: '''simple docstring''' snake_case__ : Any = None if __name__ == "__main__": from doctest import testmod testmod()
699
0
import random from typing import Any def UpperCamelCase__ ( A__ ) -> list[Any]: for _ in range(len(A__ ) ): snake_case__ : List[Any] = random.randint(0 , len(A__ ) - 1 ) snake_case__ : Union[str, Any] = random.randint(0 , len(A__ ) - 1 ) snake_case__ : Dict = data[b], data[a] return data if __name__ == "__main__": lowerCAmelCase__ : str = [0, 1, 2, 3, 4, 5, 6, 7] lowerCAmelCase__ : Tuple = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
701
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : int = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = """poolformer""" def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=16 , __UpperCamelCase=16 , __UpperCamelCase=3 , __UpperCamelCase=4.0 , __UpperCamelCase=[2, 2, 6, 2] , __UpperCamelCase=[64, 128, 320, 512] , __UpperCamelCase=[7, 3, 3, 3] , __UpperCamelCase=[4, 2, 2, 2] , __UpperCamelCase=[2, 1, 1, 1] , __UpperCamelCase=4 , __UpperCamelCase=0.0 , __UpperCamelCase="gelu" , __UpperCamelCase=True , __UpperCamelCase=1E-5 , __UpperCamelCase=0.0_2 , **__UpperCamelCase , ) -> Any: '''simple docstring''' snake_case__ : List[str] = num_channels snake_case__ : Dict = patch_size snake_case__ : Optional[int] = stride snake_case__ : str = padding snake_case__ : List[str] = pool_size snake_case__ : List[Any] = hidden_sizes snake_case__ : List[Any] = mlp_ratio snake_case__ : Union[str, Any] = depths snake_case__ : Dict = patch_sizes snake_case__ : Dict = strides snake_case__ : Dict = num_encoder_blocks snake_case__ : Union[str, Any] = drop_path_rate snake_case__ : List[str] = hidden_act snake_case__ : Optional[Any] = use_layer_scale snake_case__ : int = layer_scale_init_value snake_case__ : Dict = initializer_range super().__init__(**__UpperCamelCase ) class __snake_case ( _lowerCamelCase ): __lowerCamelCase = version.parse("""1.11""" ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __a ( self ) -> float: '''simple docstring''' return 2E-3
699
0
from math import isqrt def UpperCamelCase__ ( A__ ) -> list[int]: snake_case__ : Optional[Any] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , A__ , A__ ): snake_case__ : Union[str, Any] = False return [i for i in range(2 , A__ ) if is_prime[i]] def UpperCamelCase__ ( A__ = 10**8 ) -> int: snake_case__ : Dict = calculate_prime_numbers(max_number // 2 ) snake_case__ : Tuple = 0 snake_case__ : Any = 0 snake_case__ : int = len(A__ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'''{solution() = }''')
702
import numpy as np import qiskit def UpperCamelCase__ ( A__ = 8 , A__ = None ) -> str: snake_case__ : Optional[int] = np.random.default_rng(seed=A__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. snake_case__ : Tuple = 6 * key_len # Measurement basis for Alice's qubits. snake_case__ : Tuple = rng.integers(2 , size=A__ ) # The set of states Alice will prepare. snake_case__ : List[str] = rng.integers(2 , size=A__ ) # Measurement basis for Bob's qubits. snake_case__ : List[Any] = rng.integers(2 , size=A__ ) # Quantum Circuit to simulate BB84 snake_case__ : Any = qiskit.QuantumCircuit(A__ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(A__ ): if alice_state[index] == 1: bbaa_circ.x(A__ ) if alice_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(A__ ): if bob_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. snake_case__ : List[str] = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. snake_case__ : Optional[Any] = qiskit.execute(A__ , A__ , shots=1 , seed_simulator=A__ ) # Returns the result of measurement. snake_case__ : Union[str, Any] = job.result().get_counts(A__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. snake_case__ : Optional[Any] = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( A__ , A__ , A__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. snake_case__ : Tuple = gen_key[:key_len] if len(A__ ) >= key_len else gen_key.ljust(A__ , '0' ) return key if __name__ == "__main__": print(F'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
699
0
'''simple docstring''' def UpperCamelCase__ ( A__ , A__ ) -> str: return "\n".join( F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
703
def UpperCamelCase__ ( A__ , A__ , A__ ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case__ : Dict = _modexpt(A__ , exponent // 2 , A__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(A__ , exponent - 1 , A__ )) % modulo_value def UpperCamelCase__ ( A__ = 1777 , A__ = 1855 , A__ = 8 ) -> int: snake_case__ : Tuple = base for _ in range(1 , A__ ): snake_case__ : Any = _modexpt(A__ , A__ , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
699
0
from timeit import timeit def UpperCamelCase__ ( A__ ) -> int: '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) snake_case__ : Optional[Any] = 0 while number: number &= number - 1 result += 1 return result def UpperCamelCase__ ( A__ ) -> int: '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) snake_case__ : List[str] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCamelCase__ ( ) -> None: '''simple docstring''' def do_benchmark(A__ ) -> None: snake_case__ : Optional[int] = 'import __main__ as z' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(A__ ) = }""" ) snake_case__ : Optional[int] = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=A__ ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(A__ ) = }""" ) snake_case__ : List[Any] = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=A__ , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(A__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
704
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ : Tuple = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase__ ( A__ ) -> Optional[Any]: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(A__ ) def UpperCamelCase__ ( A__ ) -> Optional[Any]: from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Union[str, Any] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(A__ , id=A__ )
699
0
def UpperCamelCase__ ( A__ = 1000 ) -> int: return sum(e for e in range(3 , A__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'''{solution() = }''')
705
def UpperCamelCase__ ( A__ ) -> list[int]: if length <= 0 or not isinstance(A__ , A__ ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(A__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
699
0
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) class __snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCamelCase = None __lowerCamelCase = None class __snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCamelCase = datasets.Audio() __lowerCamelCase = """audio""" __lowerCamelCase = AudioFolderConfig __lowerCamelCase = 42 # definition at the bottom of the script __lowerCamelCase = AudioClassification(audio_column="""audio""" ,label_column="""label""" ) lowerCAmelCase__ : Tuple = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] lowerCAmelCase__ : List[Any] = AUDIO_EXTENSIONS
706
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Dict = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase__ : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> List[str]: snake_case__ : int = state_dict.pop(A__ ) snake_case__ : Union[str, Any] = val def UpperCamelCase__ ( A__ ) -> int: snake_case__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case__ : Any = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) snake_case__ : Optional[int] = value else: snake_case__ : Optional[int] = value return new_state_dict def UpperCamelCase__ ( A__ , A__=False ) -> Optional[int]: snake_case__ : Optional[int] = '' if is_panoptic: snake_case__ : Tuple = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case__ : int = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) snake_case__ : str = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Union[str, Any] = in_proj_weight[:256, :] snake_case__ : Union[str, Any] = in_proj_bias[:256] snake_case__ : Union[str, Any] = in_proj_weight[256:512, :] snake_case__ : Optional[Any] = in_proj_bias[256:512] snake_case__ : List[str] = in_proj_weight[-256:, :] snake_case__ : Tuple = in_proj_bias[-256:] def UpperCamelCase__ ( ) -> Tuple: snake_case__ : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : str = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( A__ , A__ ) -> str: snake_case__ : List[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case__ : Any = 'resnet101' if "dc5" in model_name: snake_case__ : Any = True snake_case__ : int = 'panoptic' in model_name if is_panoptic: snake_case__ : str = 250 else: snake_case__ : Union[str, Any] = 91 snake_case__ : Optional[int] = 'huggingface/label-files' snake_case__ : Optional[Any] = 'coco-detection-id2label.json' snake_case__ : str = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) snake_case__ : List[Any] = {int(A__ ): v for k, v in idalabel.items()} snake_case__ : Any = idalabel snake_case__ : int = {v: k for k, v in idalabel.items()} # load image processor snake_case__ : List[Any] = 'coco_panoptic' if is_panoptic else 'coco_detection' snake_case__ : List[Any] = ConditionalDetrImageProcessor(format=A__ ) # prepare image snake_case__ : List[str] = prepare_img() snake_case__ : Any = image_processor(images=A__ , return_tensors='pt' ) snake_case__ : Dict = encoding['pixel_values'] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub snake_case__ : Any = torch.hub.load('DeppMeng/ConditionalDETR' , A__ , pretrained=A__ ).eval() snake_case__ : Tuple = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case__ : List[Any] = 'conditional_detr.' + src rename_key(A__ , A__ , A__ ) snake_case__ : Dict = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ , is_panoptic=A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case__ : Optional[int] = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): snake_case__ : List[Any] = state_dict.pop(A__ ) snake_case__ : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case__ : str = state_dict.pop(A__ ) snake_case__ : List[Any] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: snake_case__ : Union[str, Any] = state_dict.pop(A__ ) snake_case__ : Dict = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): snake_case__ : List[Any] = state_dict.pop(A__ ) snake_case__ : Optional[int] = val # finally, create HuggingFace model and load state dict snake_case__ : Union[str, Any] = ConditionalDetrForSegmentation(A__ ) if is_panoptic else ConditionalDetrForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() model.push_to_hub(repo_id=A__ , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion snake_case__ : Tuple = conditional_detr(A__ ) snake_case__ : str = model(A__ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
699
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __snake_case : def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=6 , __UpperCamelCase=17 , __UpperCamelCase=23 , __UpperCamelCase=11 , __UpperCamelCase=True , ) -> List[str]: '''simple docstring''' snake_case__ : str = parent snake_case__ : Dict = batch_size snake_case__ : Optional[int] = seq_length snake_case__ : Optional[Any] = act_dim snake_case__ : List[Any] = state_dim snake_case__ : Optional[int] = hidden_size snake_case__ : Dict = max_length snake_case__ : List[str] = is_training def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : str = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) snake_case__ : Optional[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) snake_case__ : Dict = floats_tensor((self.batch_size, self.seq_length, 1) ) snake_case__ : str = floats_tensor((self.batch_size, self.seq_length, 1) ) snake_case__ : str = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) snake_case__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) ) snake_case__ : Tuple = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __a ( self ) -> List[str]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> Any: '''simple docstring''' snake_case__ : Any = DecisionTransformerModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : Union[str, Any] = model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Optional[Any] = self.prepare_config_and_inputs() ( snake_case__ ) : List[str] = config_and_inputs snake_case__ : List[Any] = { 'states': states, 'actions': actions, 'rewards': rewards, 'returns_to_go': returns_to_go, 'timesteps': timesteps, 'attention_mask': attention_mask, } return config, inputs_dict @require_torch class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = (DecisionTransformerModel,) if is_torch_available() else () __lowerCamelCase = () __lowerCamelCase = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCamelCase = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Optional[Any] = DecisionTransformerModelTester(self ) snake_case__ : List[Any] = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def __a ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) @slow def __a ( self ) -> str: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[int] = DecisionTransformerModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = model_class(__UpperCamelCase ) snake_case__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Dict = [*signature.parameters.keys()] snake_case__ : Optional[int] = [ 'states', 'actions', 'rewards', 'returns_to_go', 'timesteps', 'attention_mask', ] self.assertListEqual(arg_names[: len(__UpperCamelCase )] , __UpperCamelCase ) @require_torch class __snake_case ( unittest.TestCase ): @slow def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : List[str] = 2 # number of steps of autoregressive prediction we will perform snake_case__ : int = 10 # defined by the RL environment, may be normalized snake_case__ : List[Any] = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' ) snake_case__ : Optional[Any] = model.to(__UpperCamelCase ) snake_case__ : Any = model.config torch.manual_seed(0 ) snake_case__ : str = torch.randn(1 , 1 , config.state_dim ).to(device=__UpperCamelCase , dtype=torch.floataa ) # env.reset() snake_case__ : str = torch.tensor( [[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=__UpperCamelCase ) snake_case__ : Optional[Any] = torch.tensor(__UpperCamelCase , device=__UpperCamelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) snake_case__ : int = state snake_case__ : Optional[int] = torch.zeros(1 , 0 , config.act_dim , device=__UpperCamelCase , dtype=torch.floataa ) snake_case__ : Dict = torch.zeros(1 , 0 , device=__UpperCamelCase , dtype=torch.floataa ) snake_case__ : Optional[int] = torch.tensor(0 , device=__UpperCamelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(__UpperCamelCase ): snake_case__ : Any = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=__UpperCamelCase )] , dim=1 ) snake_case__ : Any = torch.cat([rewards, torch.zeros(1 , 1 , device=__UpperCamelCase )] , dim=1 ) snake_case__ : Any = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): snake_case__ : List[str] = model( states=__UpperCamelCase , actions=__UpperCamelCase , rewards=__UpperCamelCase , returns_to_go=__UpperCamelCase , timesteps=__UpperCamelCase , attention_mask=__UpperCamelCase , return_dict=__UpperCamelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) snake_case__ : List[str] = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=__UpperCamelCase , dtype=torch.floataa ), 1.0, False, {}, ) snake_case__ : Tuple = action_pred[0, -1] snake_case__ : List[Any] = torch.cat([states, state] , dim=1 ) snake_case__ : int = returns_to_go[0, -1] - reward snake_case__ : Tuple = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) snake_case__ : List[str] = torch.cat( [timesteps, torch.ones((1, 1) , device=__UpperCamelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
707
from collections import namedtuple lowerCAmelCase__ : Union[str, Any] = namedtuple('''from_to''', '''from_ to''') lowerCAmelCase__ : Tuple = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.0_01, 10_00), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_04_54, 2_64.1_72), '''cubicyard''': from_to(0.7_64_55, 1.3_07_95), '''cubicfoot''': from_to(0.0_28, 35.31_47), '''cup''': from_to(0.0_00_23_65_88, 42_26.75), } def UpperCamelCase__ ( A__ , A__ , A__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ', '.join(A__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ', '.join(A__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
699
0
from __future__ import annotations def UpperCamelCase__ ( A__ , A__ ) -> bool: snake_case__ : Optional[Any] = get_failure_array(A__ ) # 2) Step through text searching for pattern snake_case__ : Any = 0, 0 # index into text, pattern while i < len(A__ ): if pattern[j] == text[i]: if j == (len(A__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: snake_case__ : List[Any] = failure[j - 1] continue i += 1 return False def UpperCamelCase__ ( A__ ) -> list[int]: snake_case__ : Optional[int] = [0] snake_case__ : Union[str, Any] = 0 snake_case__ : Tuple = 1 while j < len(A__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: snake_case__ : Optional[Any] = failure[i - 1] continue j += 1 failure.append(A__ ) return failure if __name__ == "__main__": # Test 1) lowerCAmelCase__ : Dict = '''abc1abc12''' lowerCAmelCase__ : int = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCAmelCase__ : Optional[int] = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCAmelCase__ : Union[str, Any] = '''ABABX''' lowerCAmelCase__ : Union[str, Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCAmelCase__ : List[Any] = '''AAAB''' lowerCAmelCase__ : str = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCAmelCase__ : List[Any] = '''abcdabcy''' lowerCAmelCase__ : int = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCAmelCase__ : Tuple = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
708
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : Tuple = logging.get_logger(__name__) lowerCAmelCase__ : Union[str, Any] = '''▁''' lowerCAmelCase__ : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ : Optional[Any] = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } lowerCAmelCase__ : str = { '''facebook/xglm-564M''': 20_48, } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCamelCase , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase = None , **__UpperCamelCase , ) -> None: '''simple docstring''' snake_case__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case__ : Tuple = 7 snake_case__ : Dict = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case__ : Union[str, Any] = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) snake_case__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) snake_case__ : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case__ : Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case__ : Tuple = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case__ : List[Any] = len(self.sp_model ) snake_case__ : Optional[Any] = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__UpperCamelCase ) snake_case__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = self.__dict__.copy() snake_case__ : Optional[Any] = None snake_case__ : Tuple = self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case__ : Any = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case__ : str = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __a ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' snake_case__ : int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __a ( self ) -> Tuple: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def __a ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case__ : Optional[Any] = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' snake_case__ : int = ''.join(__UpperCamelCase ).replace(__UpperCamelCase , ' ' ).strip() return out_string def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ : List[str] = os.path.join( __UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , 'wb' ) as fi: snake_case__ : Any = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
699
0
import random from .binary_exp_mod import bin_exp_mod def UpperCamelCase__ ( A__ , A__=1000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd snake_case__ : Optional[int] = n - 1 snake_case__ : Union[str, Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) snake_case__ : Union[str, Any] = 0 while count < prec: snake_case__ : Union[str, Any] = random.randint(2 , n - 1 ) snake_case__ : List[Any] = bin_exp_mod(A__ , A__ , A__ ) if b != 1: snake_case__ : Any = True for _ in range(A__ ): if b == n - 1: snake_case__ : Dict = False break snake_case__ : int = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ : Tuple = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
709
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCAmelCase__ : Any = logging.get_logger(__name__) lowerCAmelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : Any = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Any = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Tuple = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Dict = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_12, '''facebook/dpr-ctx_encoder-multiset-base''': 5_12, } lowerCAmelCase__ : Union[str, Any] = { '''facebook/dpr-question_encoder-single-nq-base''': 5_12, '''facebook/dpr-question_encoder-multiset-base''': 5_12, } lowerCAmelCase__ : Optional[Any] = { '''facebook/dpr-reader-single-nq-base''': 5_12, '''facebook/dpr-reader-multiset-base''': 5_12, } lowerCAmelCase__ : Tuple = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase__ : Any = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase__ : List[str] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = DPRContextEncoderTokenizer class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = DPRQuestionEncoderTokenizer lowerCAmelCase__ : Tuple = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCAmelCase__ : List[Any] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCAmelCase__ : int = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_lowerCamelCase ) class __snake_case : def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) elif titles is None or texts is None: snake_case__ : Optional[Any] = titles if texts is None else texts return super().__call__( __UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ : int = titles if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [titles] snake_case__ : Optional[int] = texts if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [texts] snake_case__ : List[Any] = len(__UpperCamelCase ) snake_case__ : str = questions if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [questions] * n_passages assert len(__UpperCamelCase ) == len( __UpperCamelCase ), F"""There should be as many titles than texts but got {len(__UpperCamelCase )} titles and {len(__UpperCamelCase )} texts.""" snake_case__ : Optional[int] = super().__call__(__UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )['input_ids'] snake_case__ : Optional[Any] = super().__call__(__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )['input_ids'] snake_case__ : Union[str, Any] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCamelCase , __UpperCamelCase ) ] } if return_attention_mask is not False: snake_case__ : List[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case__ : Union[str, Any] = attention_mask return self.pad(__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 16 , __UpperCamelCase = 64 , __UpperCamelCase = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' snake_case__ : Optional[Any] = reader_input['input_ids'] snake_case__ , snake_case__ , snake_case__ : Any = reader_output[:3] snake_case__ : List[str] = len(__UpperCamelCase ) snake_case__ : Tuple = sorted(range(__UpperCamelCase ) , reverse=__UpperCamelCase , key=relevance_logits.__getitem__ ) snake_case__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: snake_case__ : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case__ : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case__ : Union[str, Any] = sequence_ids.index(self.pad_token_id ) else: snake_case__ : str = len(__UpperCamelCase ) snake_case__ : Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCamelCase , top_spans=__UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCamelCase , start_index=__UpperCamelCase , end_index=__UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> List[DPRSpanPrediction]: '''simple docstring''' snake_case__ : Any = [] for start_index, start_score in enumerate(__UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case__ : str = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] , reverse=__UpperCamelCase ) snake_case__ : Any = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" snake_case__ : str = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_lowerCamelCase ) class __snake_case ( _lowerCamelCase ,_lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = READER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = ["""input_ids""", """attention_mask"""] __lowerCamelCase = DPRReaderTokenizer
699
0
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __snake_case ( _lowerCamelCase ): __lowerCamelCase = """""" __lowerCamelCase = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__(self , **__UpperCamelCase ) snake_case__ : int = repo_info snake_case__ : Dict = token snake_case__ : Optional[int] = None def __a ( self ) -> Dict: '''simple docstring''' if self.dir_cache is None: snake_case__ : str = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes snake_case__ : Dict = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(__UpperCamelCase ): {'name': str(__UpperCamelCase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __a ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , ) -> Optional[Any]: '''simple docstring''' if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) snake_case__ : Tuple = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def __a ( self , __UpperCamelCase , **__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' self._get_dirs() snake_case__ : Dict = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase ) -> Optional[int]: '''simple docstring''' self._get_dirs() snake_case__ : Dict = PurePosixPath(path.strip('/' ) ) snake_case__ : Tuple = {} for p, f in self.dir_cache.items(): snake_case__ : List[Any] = PurePosixPath(p.strip('/' ) ) snake_case__ : str = p.parent if root == path: snake_case__ : Any = f snake_case__ : Any = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
710
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = StableDiffusionInstructPixaPixPipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def __a ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) snake_case__ : Any = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) torch.manual_seed(0 ) snake_case__ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case__ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) snake_case__ : Tuple = CLIPTextModel(__UpperCamelCase ) snake_case__ : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __a ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : Union[str, Any] = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('RGB' ) if str(__UpperCamelCase ).startswith('mps' ): snake_case__ : str = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : Dict = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ : str = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[int] = self.get_dummy_components() snake_case__ : str = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : Optional[int] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Tuple = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : List[str] = sd_pipe(**__UpperCamelCase ).images snake_case__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ : str = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : Union[str, Any] = self.get_dummy_components() snake_case__ : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : List[Any] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Union[str, Any] = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : List[str] = 'french fries' snake_case__ : Optional[Any] = sd_pipe(**__UpperCamelCase , negative_prompt=__UpperCamelCase ) snake_case__ : Union[str, Any] = output.images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ : Any = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> int: '''simple docstring''' snake_case__ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : List[str] = self.get_dummy_components() snake_case__ : str = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : str = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Dict = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : Any = [inputs['prompt']] * 2 snake_case__ : Optional[int] = np.array(inputs['image'] ).astype(np.floataa ) / 2_5_5.0 snake_case__ : Optional[int] = torch.from_numpy(__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) snake_case__ : Any = image / 2 + 0.5 snake_case__ : Optional[Any] = image.permute(0 , 3 , 1 , 2 ) snake_case__ : List[Any] = image.repeat(2 , 1 , 1 , 1 ) snake_case__ : Optional[int] = sd_pipe(**__UpperCamelCase ).images snake_case__ : Union[str, Any] = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) snake_case__ : List[Any] = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[int] = self.get_dummy_components() snake_case__ : Tuple = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' ) snake_case__ : int = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : List[str] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : str = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : Any = sd_pipe(**__UpperCamelCase ).images snake_case__ : int = image[0, -3:, -3:, -1] snake_case__ : Tuple = [round(__UpperCamelCase , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(__UpperCamelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) snake_case__ : List[Any] = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Optional[int] = self.get_dummy_components() snake_case__ : int = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : Union[str, Any] = VaeImageProcessor(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase ) snake_case__ : Optional[int] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Optional[Any] = pipe(**self.get_dummy_inputs_by_type(__UpperCamelCase , input_image_type='pt' ) )[0] snake_case__ : Union[str, Any] = components['vae'] snake_case__ : str = self.get_dummy_inputs_by_type(__UpperCamelCase , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): snake_case__ : List[str] = vae.encode(inputs[image_param] ).latent_dist.mode() snake_case__ : Dict = pipe(**__UpperCamelCase )[0] snake_case__ : str = np.abs(out - out_latents_inputs ).max() self.assertLess(__UpperCamelCase , 1E-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self , __UpperCamelCase=0 ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = torch.manual_seed(__UpperCamelCase ) snake_case__ : List[str] = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) snake_case__ : int = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : Tuple = self.get_inputs() snake_case__ : List[Any] = pipe(**__UpperCamelCase ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ : Dict = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ) -> str: '''simple docstring''' snake_case__ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase ) snake_case__ : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : Dict = self.get_inputs() snake_case__ : Dict = pipe(**__UpperCamelCase ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ : List[Any] = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase ) snake_case__ : Tuple = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : Optional[int] = self.get_inputs() snake_case__ : Optional[int] = pipe(**__UpperCamelCase ).images snake_case__ : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ : int = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = 0 def callback_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> None: snake_case__ : List[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case__ : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) snake_case__ : int = latents[0, -3:, -3:, -1] snake_case__ : List[str] = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: snake_case__ : Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) snake_case__ : Dict = latents[0, -3:, -3:, -1] snake_case__ : Optional[Any] = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 snake_case__ : str = False snake_case__ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) snake_case__ : int = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : int = self.get_inputs() pipe(**__UpperCamelCase , callback=__UpperCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __a ( self ) -> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) snake_case__ : Dict = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ : str = self.get_inputs() snake_case__ : Tuple = pipe(**__UpperCamelCase ) snake_case__ : List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __a ( self ) -> int: '''simple docstring''' snake_case__ : int = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 snake_case__ : Tuple = inputs['image'].resize((504, 504) ) snake_case__ : str = 'timbrooks/instruct-pix2pix' snake_case__ : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : str = pipe(**__UpperCamelCase ) snake_case__ : List[Any] = output.images[0] snake_case__ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) snake_case__ : List[str] = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
699
0
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): @slow def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Any = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) snake_case__ : Optional[int] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(__UpperCamelCase ) from datasets import load_dataset snake_case__ : Optional[int] = load_dataset('nielsr/rvlcdip-demo' ) snake_case__ : List[Any] = dataset['train'][0]['image'].convert('RGB' ) snake_case__ : Any = image_processor(__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case__ : int = model(**__UpperCamelCase ) snake_case__ : Any = outputs.logits snake_case__ : List[Any] = torch.Size((1, 16) ) self.assertEqual(logits.shape , __UpperCamelCase ) snake_case__ : List[str] = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=__UpperCamelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
711
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
699
0
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCAmelCase__ : List[str] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCAmelCase__ : int = '''main''' # Default branch name lowerCAmelCase__ : Dict = '''f2c752cfc5c0ab6f4bdec59acea69eefbee381c2''' # One particular commit (not the top of `main`) lowerCAmelCase__ : Optional[Any] = '''aaaaaaa''' # This commit does not exist, so we should 404. lowerCAmelCase__ : List[Any] = '''d9e9f15bc825e4b2c9249e9578f884bbcb5e3684''' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCAmelCase__ : List[str] = '''4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3''' @contextlib.contextmanager def UpperCamelCase__ ( ) -> List[str]: print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def UpperCamelCase__ ( ) -> Optional[Any]: print('Bonjour!' ) yield print('Au revoir!' ) class __snake_case ( unittest.TestCase ): def __a ( self ) -> Union[str, Any]: '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class __snake_case ( unittest.TestCase ): @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , 'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def __a ( self , __UpperCamelCase ) -> str: '''simple docstring''' with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def __a ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def __a ( self ) -> List[str]: '''simple docstring''' self.assertEqual(find_labels(__UpperCamelCase ) , ['labels'] ) self.assertEqual(find_labels(__UpperCamelCase ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__UpperCamelCase ) , ['start_positions', 'end_positions'] ) class __snake_case ( _lowerCamelCase ): pass self.assertEqual(find_labels(__UpperCamelCase ) , ['labels'] ) @require_tf def __a ( self ) -> int: '''simple docstring''' self.assertEqual(find_labels(__UpperCamelCase ) , ['labels'] ) self.assertEqual(find_labels(__UpperCamelCase ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__UpperCamelCase ) , ['start_positions', 'end_positions'] ) class __snake_case ( _lowerCamelCase ): pass self.assertEqual(find_labels(__UpperCamelCase ) , ['labels'] ) @require_flax def __a ( self ) -> Optional[int]: '''simple docstring''' self.assertEqual(find_labels(__UpperCamelCase ) , [] ) self.assertEqual(find_labels(__UpperCamelCase ) , [] ) self.assertEqual(find_labels(__UpperCamelCase ) , [] ) class __snake_case ( _lowerCamelCase ): pass self.assertEqual(find_labels(__UpperCamelCase ) , [] )
712
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class __snake_case : __lowerCamelCase = field( metadata={"""help""": """The output directory where the model will be written."""} ,) __lowerCamelCase = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } ,) __lowerCamelCase = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } ,) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def UpperCamelCase__ ( ) -> Union[str, Any]: snake_case__ : str = HfArgumentParser((ModelArguments,) ) ((snake_case__) , ) : Dict = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: snake_case__ : List[str] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: snake_case__ : Optional[int] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: snake_case__ : Optional[Any] = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: snake_case__ : List[str] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed snake_case__ : Any = True snake_case__ : Dict = True snake_case__ : Tuple = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=A__ , decoder_config=A__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens snake_case__ : Optional[Any] = decoder_config.decoder_start_token_id snake_case__ : Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: snake_case__ : Optional[Any] = decoder_config.bos_token_id if pad_token_id is None: snake_case__ : int = decoder_config.eos_token_id # This is necessary to make Flax's generate() work snake_case__ : Union[str, Any] = decoder_config.eos_token_id snake_case__ : Optional[int] = decoder_start_token_id snake_case__ : int = pad_token_id snake_case__ : Tuple = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) snake_case__ : int = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
699
0
from copy import deepcopy class __snake_case : def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None ) -> None: '''simple docstring''' if arr is None and size is not None: snake_case__ : List[Any] = size snake_case__ : Union[str, Any] = [0] * size elif arr is not None: self.init(__UpperCamelCase ) else: raise ValueError('Either arr or size must be specified' ) def __a ( self , __UpperCamelCase ) -> None: '''simple docstring''' snake_case__ : Optional[int] = len(__UpperCamelCase ) snake_case__ : List[Any] = deepcopy(__UpperCamelCase ) for i in range(1 , self.size ): snake_case__ : List[str] = self.next_(__UpperCamelCase ) if j < self.size: self.tree[j] += self.tree[i] def __a ( self ) -> list[int]: '''simple docstring''' snake_case__ : int = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case__ : str = self.next_(__UpperCamelCase ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __a ( __UpperCamelCase ) -> int: '''simple docstring''' return index + (index & (-index)) @staticmethod def __a ( __UpperCamelCase ) -> int: '''simple docstring''' return index - (index & (-index)) def __a ( self , __UpperCamelCase , __UpperCamelCase ) -> None: '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case__ : Any = self.next_(__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase ) -> None: '''simple docstring''' self.add(__UpperCamelCase , value - self.get(__UpperCamelCase ) ) def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' if right == 0: return 0 snake_case__ : Union[str, Any] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case__ : Optional[Any] = self.prev(__UpperCamelCase ) return result def __a ( self , __UpperCamelCase , __UpperCamelCase ) -> int: '''simple docstring''' return self.prefix(__UpperCamelCase ) - self.prefix(__UpperCamelCase ) def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' return self.query(__UpperCamelCase , index + 1 ) def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' value -= self.tree[0] if value < 0: return -1 snake_case__ : Optional[int] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case__ : Any = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
713
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ , A__ = None , ) -> Optional[int]: snake_case__ : List[str] = {} if train_file is not None: snake_case__ : Tuple = [train_file] if eval_file is not None: snake_case__ : Dict = [eval_file] if test_file is not None: snake_case__ : str = [test_file] snake_case__ : Optional[Any] = datasets.load_dataset('csv' , data_files=A__ ) snake_case__ : Any = list(ds[list(files.keys() )[0]].features.keys() ) snake_case__ : Optional[Any] = features_name.pop(A__ ) snake_case__ : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) snake_case__ : str = {label: i for i, label in enumerate(A__ )} snake_case__ : int = tokenizer.model_input_names snake_case__ : int = {} if len(A__ ) == 1: for k in files.keys(): snake_case__ : str = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=A__ , max_length=A__ , padding='max_length' ) , batched=A__ , ) elif len(A__ ) == 2: for k in files.keys(): snake_case__ : Optional[int] = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=A__ , max_length=A__ , padding='max_length' , ) , batched=A__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: snake_case__ : int = {k: v for k, v in ex.items() if k in input_names} snake_case__ : Any = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: snake_case__ : int = {k: v for k, v in ex.items() if k in input_names} snake_case__ : Union[str, Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: snake_case__ : Dict = {k: v for k, v in ex.items() if k in input_names} snake_case__ : List[str] = labelaid[ex[label_name]] yield (d, label) snake_case__ : Any = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: snake_case__ : str = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) snake_case__ : Optional[int] = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: snake_case__ : Optional[int] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) snake_case__ : List[str] = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: snake_case__ : str = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase__ : List[str] = logging.getLogger(__name__) @dataclass class __snake_case : __lowerCamelCase = field(metadata={"""help""": """Which column contains the label"""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """The path of the training file"""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """The path of the development file"""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """The path of the test file"""} ) __lowerCamelCase = field( default=128 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class __snake_case : __lowerCamelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) def UpperCamelCase__ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) snake_case__ , snake_case__ , snake_case__ : Dict = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case__ : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=A__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) snake_case__ : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(A__ ) , labelaid=A__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): snake_case__ : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) def compute_metrics(A__ ) -> Dict: snake_case__ : Optional[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer snake_case__ : Any = TFTrainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case__ : Dict = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case__ : Tuple = trainer.evaluate() snake_case__ : Any = os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(A__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(A__ ) return results if __name__ == "__main__": main()
699
0
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowerCAmelCase__ : List[str] = HfApi() lowerCAmelCase__ : str = {} # fmt: off lowerCAmelCase__ : int = torch.tensor([ -0.75_15, -1.68_83, 0.24_20, 0.03_00, 0.63_47, 1.34_33, -1.17_43, -3.74_67, 1.23_42, -2.24_85, 0.46_36, 0.80_76, -0.79_91, 0.39_69, 0.84_98, 0.91_89, -1.88_87, -3.35_22, 0.76_39, 0.20_40, 0.62_71, -2.71_48, -1.63_16, 3.08_39, 0.31_86, 0.27_21, -0.97_59, -1.24_61, 2.62_57, 1.35_57 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.36_39, -2.53_44, 0.00_54, -0.66_74, 1.59_90, 1.01_58, 0.31_24, -2.14_36, 1.87_95, -2.54_29, -0.15_66, -0.39_73, 1.24_90, 2.64_47, 1.22_83, -0.52_08, -2.81_54, -3.51_19, 2.38_38, 1.20_33, 1.72_01, -2.12_56, -1.45_76, 2.79_48, 2.42_04, -0.97_52, -1.25_46, 0.80_27, 3.27_58, 3.13_65 ]) lowerCAmelCase__ : Dict = torch.tensor([ -0.65_31, -0.68_91, -0.31_72, -0.53_75, -0.91_40, -0.53_67, -0.11_75, -0.78_69, -0.38_08, -0.45_13, -0.20_98, -0.00_83, 0.31_83, 0.51_40, 0.22_47, -0.13_04, -0.13_02, -0.28_02, -0.20_84, -0.20_25, -0.49_67, -0.48_73, -0.08_61, 0.69_25, 0.02_50, 0.12_90, -0.15_43, 0.63_16, 1.04_60, 1.49_43 ]) lowerCAmelCase__ : List[str] = torch.tensor([ 0.09_11, 0.11_07, 0.01_82, 0.04_35, -0.08_05, -0.06_08, 0.03_81, 0.21_72, -0.02_80, 0.13_27, -0.02_99, -0.02_55, -0.00_50, -0.11_70, -0.10_46, 0.03_09, 0.13_67, 0.17_28, -0.05_33, -0.07_48, -0.05_34, 0.16_24, 0.03_84, -0.18_05, -0.07_07, 0.06_42, 0.02_20, -0.01_34, -0.13_33, -0.15_05 ]) lowerCAmelCase__ : Union[str, Any] = torch.tensor([ 0.13_21, 0.13_37, 0.04_40, 0.06_22, -0.05_91, -0.03_70, 0.05_03, 0.21_33, -0.01_77, 0.14_15, -0.01_16, -0.01_12, 0.00_44, -0.09_80, -0.07_89, 0.03_95, 0.15_02, 0.17_85, -0.04_88, -0.05_14, -0.04_04, 0.15_39, 0.04_54, -0.15_59, -0.06_65, 0.06_59, 0.03_83, -0.00_05, -0.12_66, -0.13_86 ]) lowerCAmelCase__ : List[Any] = torch.tensor([ 0.11_54, 0.12_18, 0.03_07, 0.05_26, -0.07_11, -0.05_41, 0.03_66, 0.20_78, -0.02_67, 0.13_17, -0.02_26, -0.01_93, -0.00_14, -0.10_55, -0.09_02, 0.03_30, 0.13_91, 0.17_09, -0.05_62, -0.06_93, -0.05_60, 0.14_82, 0.03_81, -0.16_83, -0.06_81, 0.06_61, 0.03_31, -0.00_46, -0.12_68, -0.14_31 ]) lowerCAmelCase__ : Optional[Any] = torch.tensor([ 0.11_92, 0.12_40, 0.04_14, 0.06_06, -0.05_57, -0.04_12, 0.04_30, 0.20_42, -0.02_00, 0.13_85, -0.01_15, -0.01_32, 0.00_17, -0.09_65, -0.08_02, 0.03_98, 0.14_33, 0.17_47, -0.04_58, -0.05_33, -0.04_07, 0.15_45, 0.04_19, -0.15_74, -0.06_45, 0.06_26, 0.03_41, -0.00_10, -0.11_99, -0.13_90 ]) lowerCAmelCase__ : List[str] = torch.tensor([ 0.10_75, 0.10_74, 0.02_05, 0.04_31, -0.07_74, -0.06_07, 0.02_98, 0.20_42, -0.03_20, 0.12_67, -0.02_81, -0.02_50, -0.00_64, -0.10_91, -0.09_46, 0.02_90, 0.13_28, 0.16_50, -0.05_80, -0.07_38, -0.05_86, 0.14_40, 0.03_37, -0.17_46, -0.07_12, 0.06_05, 0.02_50, -0.00_99, -0.13_16, -0.14_73 ]) lowerCAmelCase__ : List[str] = torch.tensor([ -1.45_72, -2.04_81, -0.04_14, -0.60_05, 1.41_36, 0.58_48, 0.40_28, -2.73_30, 1.22_12, -2.12_28, 0.21_55, 0.40_39, 0.76_62, 2.05_35, 0.74_77, -0.32_43, -2.17_58, -2.76_48, 1.69_47, 0.70_26, 1.23_38, -1.60_78, -0.86_82, 2.28_10, 1.85_74, -0.57_18, -0.55_86, -0.01_86, 2.34_15, 2.12_51]) lowerCAmelCase__ : List[Any] = torch.tensor([ -1.36_90, -1.97_20, -0.40_90, -0.69_66, 1.46_60, 0.99_38, -0.13_85, -2.73_24, 0.77_36, -1.89_17, 0.29_23, 0.42_93, 0.16_93, 1.41_12, 1.18_87, -0.31_81, -2.21_60, -2.63_81, 1.31_70, 0.81_63, 0.92_40, -1.65_44, -0.60_99, 2.52_59, 1.64_30, -0.90_90, -0.93_92, -0.01_26, 2.42_68, 2.32_66 ]) lowerCAmelCase__ : Tuple = torch.tensor([ -1.35_25, -1.96_28, -0.39_56, -0.68_60, 1.46_64, 1.00_14, -0.12_59, -2.72_12, 0.77_72, -1.88_11, 0.29_96, 0.43_88, 0.17_04, 1.40_29, 1.17_01, -0.30_27, -2.20_53, -2.62_87, 1.33_50, 0.81_31, 0.92_74, -1.62_92, -0.60_98, 2.51_31, 1.65_05, -0.89_58, -0.92_98, -0.01_51, 2.42_57, 2.33_55 ]) lowerCAmelCase__ : List[str] = torch.tensor([ -2.05_85, -2.78_97, -0.28_50, -0.89_40, 1.90_52, 0.57_02, 0.63_45, -3.89_59, 1.59_32, -3.23_19, 0.19_74, 0.02_87, 1.75_66, 2.65_43, 0.83_87, -0.53_51, -3.27_36, -4.33_75, 2.90_29, 1.63_90, 1.46_40, -2.17_01, -1.90_13, 2.93_41, 3.49_81, -0.62_55, -1.16_44, -0.15_91, 3.70_97, 3.20_66 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.31_39, -2.55_94, -0.01_97, -0.67_85, 1.70_01, 1.16_06, 0.30_75, -2.17_40, 1.80_71, -2.56_30, -0.09_26, -0.38_11, 1.21_16, 2.62_46, 1.27_31, -0.53_98, -2.81_53, -3.61_40, 2.38_93, 1.32_62, 1.62_58, -2.18_56, -1.32_67, 2.83_95, 2.37_79, -1.06_23, -1.24_68, 0.89_59, 3.33_67, 3.22_43 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.06_28, -2.76_67, -0.20_89, -0.82_63, 2.05_39, 0.59_92, 0.64_95, -3.83_36, 1.60_25, -3.28_17, 0.17_21, -0.06_33, 1.75_16, 2.70_39, 0.81_00, -0.59_08, -3.21_13, -4.43_43, 2.92_57, 1.36_32, 1.55_62, -2.14_89, -1.98_94, 3.05_60, 3.33_96, -0.73_28, -1.04_17, 0.03_83, 3.70_93, 3.23_43 ]) lowerCAmelCase__ : Any = torch.tensor([ -1.45_74, -2.05_69, -0.04_73, -0.61_17, 1.40_18, 0.57_69, 0.41_29, -2.73_44, 1.22_41, -2.13_97, 0.20_00, 0.39_37, 0.76_16, 2.04_53, 0.73_24, -0.33_91, -2.17_46, -2.77_44, 1.69_63, 0.69_21, 1.21_87, -1.61_72, -0.88_77, 2.24_39, 1.84_71, -0.58_39, -0.56_05, -0.04_64, 2.32_50, 2.12_19 ]) # fmt: on lowerCAmelCase__ : Any = api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowerCAmelCase__ : List[str] = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith('''CompVis'''): lowerCAmelCase__ : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: lowerCAmelCase__ : str = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowerCAmelCase__ : Any = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowerCAmelCase__ : List[str] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowerCAmelCase__ : int = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
714
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) class __snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCamelCase = None __lowerCamelCase = None class __snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCamelCase = datasets.Audio() __lowerCamelCase = """audio""" __lowerCamelCase = AudioFolderConfig __lowerCamelCase = 42 # definition at the bottom of the script __lowerCamelCase = AudioClassification(audio_column="""audio""" ,label_column="""label""" ) lowerCAmelCase__ : Tuple = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] lowerCAmelCase__ : List[Any] = AUDIO_EXTENSIONS
699
0
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def UpperCamelCase__ ( A__ , A__ ) -> str: snake_case__ : int = XCLIPTextConfig() # derive patch size from model name snake_case__ : str = model_name.find('patch' ) snake_case__ : Optional[int] = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) snake_case__ : str = XCLIPVisionConfig(patch_size=A__ , num_frames=A__ ) if "large" in model_name: snake_case__ : Union[str, Any] = 768 snake_case__ : Tuple = 3072 snake_case__ : int = 12 snake_case__ : Optional[int] = 1024 snake_case__ : Any = 4096 snake_case__ : List[Any] = 16 snake_case__ : List[Any] = 24 snake_case__ : Any = 768 snake_case__ : int = 3072 if model_name == "xclip-large-patch14-16-frames": snake_case__ : List[Any] = 336 snake_case__ : str = XCLIPConfig.from_text_vision_configs(A__ , A__ ) if "large" in model_name: snake_case__ : Optional[Any] = 768 return config def UpperCamelCase__ ( A__ ) -> List[str]: # text encoder if name == "token_embedding.weight": snake_case__ : Tuple = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": snake_case__ : int = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: snake_case__ : Any = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case__ : Optional[Any] = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case__ : Dict = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case__ : Tuple = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): snake_case__ : Dict = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: snake_case__ : Dict = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: snake_case__ : Optional[int] = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": snake_case__ : Tuple = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": snake_case__ : Optional[Any] = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): snake_case__ : Optional[int] = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: snake_case__ : Optional[Any] = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: snake_case__ : Optional[int] = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: snake_case__ : Optional[Any] = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: snake_case__ : Optional[int] = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: snake_case__ : Tuple = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: snake_case__ : Any = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: snake_case__ : Union[str, Any] = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": snake_case__ : List[str] = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): snake_case__ : Dict = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): snake_case__ : Any = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def UpperCamelCase__ ( A__ , A__ ) -> List[Any]: for key in orig_state_dict.copy().keys(): snake_case__ : Union[str, Any] = orig_state_dict.pop(A__ ) if "attn.in_proj" in key: snake_case__ : Any = key.split('.' ) if key.startswith('visual' ): snake_case__ : List[Any] = key_split[3] snake_case__ : Tuple = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: snake_case__ : int = val[ :dim, : ] snake_case__ : Dict = val[ dim : dim * 2, : ] snake_case__ : List[str] = val[ -dim:, : ] else: snake_case__ : Optional[int] = val[ :dim ] snake_case__ : str = val[ dim : dim * 2 ] snake_case__ : List[str] = val[ -dim: ] else: if "weight" in key: snake_case__ : int = val[ :dim, : ] snake_case__ : List[str] = val[ dim : dim * 2, : ] snake_case__ : Optional[int] = val[ -dim:, : ] else: snake_case__ : Dict = val[:dim] snake_case__ : List[Any] = val[ dim : dim * 2 ] snake_case__ : Optional[int] = val[-dim:] elif key.startswith('mit' ): snake_case__ : Any = key_split[2] snake_case__ : Optional[int] = config.vision_config.mit_hidden_size if "weight" in key: snake_case__ : Union[str, Any] = val[:dim, :] snake_case__ : int = val[dim : dim * 2, :] snake_case__ : Tuple = val[-dim:, :] else: snake_case__ : Optional[Any] = val[:dim] snake_case__ : Any = val[dim : dim * 2] snake_case__ : List[str] = val[-dim:] else: snake_case__ : Any = key_split[2] snake_case__ : Any = config.text_config.hidden_size if "weight" in key: snake_case__ : int = val[:dim, :] snake_case__ : Optional[Any] = val[ dim : dim * 2, : ] snake_case__ : str = val[-dim:, :] else: snake_case__ : Any = val[:dim] snake_case__ : Tuple = val[ dim : dim * 2 ] snake_case__ : List[Any] = val[-dim:] else: snake_case__ : List[Any] = rename_key(A__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: snake_case__ : List[str] = val.T snake_case__ : List[str] = val return orig_state_dict def UpperCamelCase__ ( A__ ) -> List[Any]: if num_frames == 8: snake_case__ : int = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: snake_case__ : List[str] = 'eating_spaghetti.npy' elif num_frames == 32: snake_case__ : List[Any] = 'eating_spaghetti_32_frames.npy' snake_case__ : str = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=A__ , repo_type='dataset' , ) snake_case__ : str = np.load(A__ ) return list(A__ ) def UpperCamelCase__ ( A__ , A__=None , A__=False ) -> Optional[Any]: snake_case__ : Optional[Any] = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } snake_case__ : Union[str, Any] = model_to_url[model_name] snake_case__ : Dict = 8 if "16-frames" in model_name: snake_case__ : List[str] = 16 elif "shot" in model_name: snake_case__ : str = 32 snake_case__ : Tuple = get_xclip_config(A__ , A__ ) snake_case__ : Optional[Any] = XCLIPModel(A__ ) model.eval() if "drive" in checkpoint_url: snake_case__ : Tuple = 'pytorch_model.bin' gdown.cached_download(A__ , A__ , quiet=A__ ) snake_case__ : Dict = torch.load(A__ , map_location='cpu' )['model'] else: snake_case__ : Dict = torch.hub.load_state_dict_from_url(A__ )['model'] snake_case__ : Tuple = convert_state_dict(A__ , A__ ) snake_case__ : Dict = XCLIPModel(A__ ) snake_case__ : int = model.load_state_dict(A__ , strict=A__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() snake_case__ : str = 336 if model_name == 'xclip-large-patch14-16-frames' else 224 snake_case__ : int = VideoMAEImageProcessor(size=A__ ) snake_case__ : int = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) snake_case__ : List[str] = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) snake_case__ : Dict = XCLIPProcessor(image_processor=A__ , tokenizer=A__ ) snake_case__ : Union[str, Any] = prepare_video(A__ ) snake_case__ : int = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=A__ , return_tensors='pt' , padding=A__ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): snake_case__ : Dict = model(**A__ ) # Verify outputs snake_case__ : Union[str, Any] = outputs.logits_per_video snake_case__ : Optional[Any] = logits_per_video.softmax(dim=1 ) print('Probs:' , A__ ) # kinetics-400 if model_name == "xclip-base-patch32": snake_case__ : Tuple = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": snake_case__ : Tuple = torch.tensor([[7.0_9_9_9e-0_4, 9.9_8_8_3e-0_1, 4.5_5_8_0e-0_4]] ) elif model_name == "xclip-base-patch16": snake_case__ : List[str] = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": snake_case__ : Dict = torch.tensor([[7.6_9_3_7e-0_4, 9.9_7_2_8e-0_1, 1.9_4_7_3e-0_3]] ) elif model_name == "xclip-large-patch14": snake_case__ : List[Any] = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": snake_case__ : int = torch.tensor([[3.3_8_7_7e-0_4, 9.9_9_3_7e-0_1, 2.8_8_8_8e-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": snake_case__ : str = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": snake_case__ : str = torch.tensor([[3.8_5_5_4e-0_4, 9.9_9_2_9e-0_1, 3.2_7_5_4e-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": snake_case__ : Optional[int] = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": snake_case__ : str = torch.tensor([[7.1_8_9_0e-0_6, 9.9_9_9_4e-0_1, 5.6_5_5_9e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": snake_case__ : int = torch.tensor([[1.0_3_2_0e-0_5, 9.9_9_9_3e-0_1, 6.2_4_3_5e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": snake_case__ : List[Any] = torch.tensor([[4.1_3_7_7e-0_6, 9.9_9_9_0e-0_1, 9.8_3_8_6e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": snake_case__ : List[Any] = torch.tensor([[4.1_3_4_7e-0_5, 9.9_9_6_2e-0_1, 3.3_4_1_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": snake_case__ : Optional[int] = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": snake_case__ : Union[str, Any] = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": snake_case__ : Any = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": snake_case__ : Tuple = torch.tensor([[9.8_2_1_9e-0_4, 9.9_5_9_3e-0_1, 3.0_8_6_3e-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": snake_case__ : Tuple = torch.tensor([[3.5_0_8_2e-0_4, 9.9_7_8_5e-0_1, 1.7_9_6_6e-0_3]] ) else: raise ValueError(F"""Model name {model_name} not supported""" ) assert torch.allclose(A__ , A__ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(A__ , organization='nielsr' ) processor.push_to_hub(A__ , organization='nielsr' ) slow_tokenizer.push_to_hub(A__ , organization='nielsr' ) if __name__ == "__main__": lowerCAmelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCAmelCase__ : Tuple = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
715
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = IFInpaintingPipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCamelCase = PipelineTesterMixin.required_optional_params - {"""latents"""} def __a ( self ) -> Optional[Any]: '''simple docstring''' return self._get_dummy_components() def __a ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> str: '''simple docstring''' if str(__UpperCamelCase ).startswith('mps' ): snake_case__ : int = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : Union[str, Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __a ( self ) -> List[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __a ( self ) -> Optional[int]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __a ( self ) -> List[str]: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def __a ( self ) -> List[str]: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __a ( self ) -> int: '''simple docstring''' self._test_save_load_local() def __a ( self ) -> List[str]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
699
0
class __snake_case : def __init__( self ) -> List[str]: '''simple docstring''' snake_case__ : str = 0 snake_case__ : int = 0 snake_case__ : int = {} def __a ( self , __UpperCamelCase ) -> List[Any]: '''simple docstring''' if vertex not in self.adjacency: snake_case__ : Optional[int] = {} self.num_vertices += 1 def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: '''simple docstring''' self.add_vertex(__UpperCamelCase ) self.add_vertex(__UpperCamelCase ) if head == tail: return snake_case__ : Optional[Any] = weight snake_case__ : Union[str, Any] = weight def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Optional[int] = self.get_edges() for edge in edges: snake_case__ : str = edge edges.remove((tail, head, weight) ) for i in range(len(__UpperCamelCase ) ): snake_case__ : Tuple = list(edges[i] ) edges.sort(key=lambda __UpperCamelCase : e[2] ) for i in range(len(__UpperCamelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: snake_case__ : str = edges[i][2] + 1 for edge in edges: snake_case__ : List[Any] = edge snake_case__ : Tuple = weight snake_case__ : str = weight def __str__( self ) -> int: '''simple docstring''' snake_case__ : Tuple = '' for tail in self.adjacency: for head in self.adjacency[tail]: snake_case__ : List[str] = self.adjacency[head][tail] string += F"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : str = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __a ( self ) -> Dict: '''simple docstring''' return self.adjacency.keys() @staticmethod def __a ( __UpperCamelCase=None , __UpperCamelCase=None ) -> List[str]: '''simple docstring''' snake_case__ : int = Graph() if vertices is None: snake_case__ : List[str] = [] if edges is None: snake_case__ : Tuple = [] for vertex in vertices: g.add_vertex(__UpperCamelCase ) for edge in edges: g.add_edge(*__UpperCamelCase ) return g class __snake_case : def __init__( self ) -> Optional[int]: '''simple docstring''' snake_case__ : int = {} snake_case__ : str = {} def __len__( self ) -> Optional[int]: '''simple docstring''' return len(self.parent ) def __a ( self , __UpperCamelCase ) -> Any: '''simple docstring''' if item in self.parent: return self.find(__UpperCamelCase ) snake_case__ : Optional[int] = item snake_case__ : str = 0 return item def __a ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' if item not in self.parent: return self.make_set(__UpperCamelCase ) if item != self.parent[item]: snake_case__ : List[str] = self.find(self.parent[item] ) return self.parent[item] def __a ( self , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: '''simple docstring''' snake_case__ : Any = self.find(__UpperCamelCase ) snake_case__ : List[Any] = self.find(__UpperCamelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: snake_case__ : str = roota return roota if self.rank[roota] < self.rank[roota]: snake_case__ : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 snake_case__ : Dict = roota return roota return None @staticmethod def __a ( __UpperCamelCase ) -> List[Any]: '''simple docstring''' snake_case__ : Tuple = graph.num_vertices snake_case__ : str = Graph.UnionFind() snake_case__ : Dict = [] while num_components > 1: snake_case__ : Optional[Any] = {} for vertex in graph.get_vertices(): snake_case__ : List[str] = -1 snake_case__ : str = graph.get_edges() for edge in edges: snake_case__ : Optional[int] = edge edges.remove((tail, head, weight) ) for edge in edges: snake_case__ : Optional[int] = edge snake_case__ : List[Any] = union_find.find(__UpperCamelCase ) snake_case__ : List[Any] = union_find.find(__UpperCamelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case__ : Dict = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case__ : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: snake_case__ : Dict = cheap_edge[vertex] if union_find.find(__UpperCamelCase ) != union_find.find(__UpperCamelCase ): union_find.union(__UpperCamelCase , __UpperCamelCase ) mst_edges.append(cheap_edge[vertex] ) snake_case__ : Union[str, Any] = num_components - 1 snake_case__ : Tuple = Graph.build(edges=__UpperCamelCase ) return mst
716
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ : List[Any] = '''▁''' lowerCAmelCase__ : int = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = BertGenerationTokenizer __lowerCamelCase = False __lowerCamelCase = True def __a ( self ) -> Optional[int]: '''simple docstring''' super().setUp() snake_case__ : str = BertGenerationTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[str] = '<s>' snake_case__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(__UpperCamelCase ) , 1002 ) def __a ( self ) -> int: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Optional[Any] = BertGenerationTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) snake_case__ : int = tokenizer.tokenize('This is a test' ) self.assertListEqual(__UpperCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [285, 46, 10, 170, 382] , ) snake_case__ : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) snake_case__ : Optional[Any] = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) snake_case__ : int = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def __a ( self ) -> Dict: '''simple docstring''' return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def __a ( self ) -> Any: '''simple docstring''' snake_case__ : int = 'Hello World!' snake_case__ : Union[str, Any] = [18536, 2260, 101] self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @slow def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : str = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) snake_case__ : List[Any] = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @require_torch @slow def __a ( self ) -> List[str]: '''simple docstring''' import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence snake_case__ : Optional[int] = list(self.big_tokenizer.get_vocab().keys() )[:10] snake_case__ : Optional[int] = ' '.join(__UpperCamelCase ) snake_case__ : int = self.big_tokenizer.encode_plus(__UpperCamelCase , return_tensors='pt' , return_token_type_ids=__UpperCamelCase ) snake_case__ : Tuple = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=__UpperCamelCase ) snake_case__ : Dict = BertGenerationConfig() snake_case__ : List[str] = BertGenerationEncoder(__UpperCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCamelCase ) model(**__UpperCamelCase ) @slow def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
699
0
import numpy class __snake_case : def __init__( self , __UpperCamelCase , __UpperCamelCase ) -> None: '''simple docstring''' snake_case__ : Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. snake_case__ : Tuple = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. snake_case__ : Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. snake_case__ : List[Any] = numpy.random.rand(3 , 1 ) # Real output values provided. snake_case__ : Any = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. snake_case__ : Optional[int] = numpy.zeros(output_array.shape ) def __a ( self ) -> numpy.ndarray: '''simple docstring''' snake_case__ : Optional[int] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. snake_case__ : Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. snake_case__ : Tuple = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __a ( self ) -> None: '''simple docstring''' snake_case__ : Optional[int] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) snake_case__ : str = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) snake_case__ : int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> None: '''simple docstring''' for iteration in range(1 , iterations + 1 ): snake_case__ : List[str] = self.feedforward() self.back_propagation() if give_loss: snake_case__ : Any = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' snake_case__ : Union[str, Any] = input_arr snake_case__ : Optional[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) snake_case__ : Dict = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) snake_case__ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCamelCase__ ( A__ ) -> numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def UpperCamelCase__ ( A__ ) -> numpy.ndarray: return (value) * (1 - (value)) def UpperCamelCase__ ( ) -> int: snake_case__ : List[str] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. snake_case__ : str = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. snake_case__ : Optional[int] = TwoHiddenLayerNeuralNetwork( input_array=A__ , output_array=A__ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=A__ , iterations=10 , give_loss=A__ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
717
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowerCAmelCase__ : List[str] = HfApi() lowerCAmelCase__ : str = {} # fmt: off lowerCAmelCase__ : int = torch.tensor([ -0.75_15, -1.68_83, 0.24_20, 0.03_00, 0.63_47, 1.34_33, -1.17_43, -3.74_67, 1.23_42, -2.24_85, 0.46_36, 0.80_76, -0.79_91, 0.39_69, 0.84_98, 0.91_89, -1.88_87, -3.35_22, 0.76_39, 0.20_40, 0.62_71, -2.71_48, -1.63_16, 3.08_39, 0.31_86, 0.27_21, -0.97_59, -1.24_61, 2.62_57, 1.35_57 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.36_39, -2.53_44, 0.00_54, -0.66_74, 1.59_90, 1.01_58, 0.31_24, -2.14_36, 1.87_95, -2.54_29, -0.15_66, -0.39_73, 1.24_90, 2.64_47, 1.22_83, -0.52_08, -2.81_54, -3.51_19, 2.38_38, 1.20_33, 1.72_01, -2.12_56, -1.45_76, 2.79_48, 2.42_04, -0.97_52, -1.25_46, 0.80_27, 3.27_58, 3.13_65 ]) lowerCAmelCase__ : Dict = torch.tensor([ -0.65_31, -0.68_91, -0.31_72, -0.53_75, -0.91_40, -0.53_67, -0.11_75, -0.78_69, -0.38_08, -0.45_13, -0.20_98, -0.00_83, 0.31_83, 0.51_40, 0.22_47, -0.13_04, -0.13_02, -0.28_02, -0.20_84, -0.20_25, -0.49_67, -0.48_73, -0.08_61, 0.69_25, 0.02_50, 0.12_90, -0.15_43, 0.63_16, 1.04_60, 1.49_43 ]) lowerCAmelCase__ : List[str] = torch.tensor([ 0.09_11, 0.11_07, 0.01_82, 0.04_35, -0.08_05, -0.06_08, 0.03_81, 0.21_72, -0.02_80, 0.13_27, -0.02_99, -0.02_55, -0.00_50, -0.11_70, -0.10_46, 0.03_09, 0.13_67, 0.17_28, -0.05_33, -0.07_48, -0.05_34, 0.16_24, 0.03_84, -0.18_05, -0.07_07, 0.06_42, 0.02_20, -0.01_34, -0.13_33, -0.15_05 ]) lowerCAmelCase__ : Union[str, Any] = torch.tensor([ 0.13_21, 0.13_37, 0.04_40, 0.06_22, -0.05_91, -0.03_70, 0.05_03, 0.21_33, -0.01_77, 0.14_15, -0.01_16, -0.01_12, 0.00_44, -0.09_80, -0.07_89, 0.03_95, 0.15_02, 0.17_85, -0.04_88, -0.05_14, -0.04_04, 0.15_39, 0.04_54, -0.15_59, -0.06_65, 0.06_59, 0.03_83, -0.00_05, -0.12_66, -0.13_86 ]) lowerCAmelCase__ : List[Any] = torch.tensor([ 0.11_54, 0.12_18, 0.03_07, 0.05_26, -0.07_11, -0.05_41, 0.03_66, 0.20_78, -0.02_67, 0.13_17, -0.02_26, -0.01_93, -0.00_14, -0.10_55, -0.09_02, 0.03_30, 0.13_91, 0.17_09, -0.05_62, -0.06_93, -0.05_60, 0.14_82, 0.03_81, -0.16_83, -0.06_81, 0.06_61, 0.03_31, -0.00_46, -0.12_68, -0.14_31 ]) lowerCAmelCase__ : Optional[Any] = torch.tensor([ 0.11_92, 0.12_40, 0.04_14, 0.06_06, -0.05_57, -0.04_12, 0.04_30, 0.20_42, -0.02_00, 0.13_85, -0.01_15, -0.01_32, 0.00_17, -0.09_65, -0.08_02, 0.03_98, 0.14_33, 0.17_47, -0.04_58, -0.05_33, -0.04_07, 0.15_45, 0.04_19, -0.15_74, -0.06_45, 0.06_26, 0.03_41, -0.00_10, -0.11_99, -0.13_90 ]) lowerCAmelCase__ : List[str] = torch.tensor([ 0.10_75, 0.10_74, 0.02_05, 0.04_31, -0.07_74, -0.06_07, 0.02_98, 0.20_42, -0.03_20, 0.12_67, -0.02_81, -0.02_50, -0.00_64, -0.10_91, -0.09_46, 0.02_90, 0.13_28, 0.16_50, -0.05_80, -0.07_38, -0.05_86, 0.14_40, 0.03_37, -0.17_46, -0.07_12, 0.06_05, 0.02_50, -0.00_99, -0.13_16, -0.14_73 ]) lowerCAmelCase__ : List[str] = torch.tensor([ -1.45_72, -2.04_81, -0.04_14, -0.60_05, 1.41_36, 0.58_48, 0.40_28, -2.73_30, 1.22_12, -2.12_28, 0.21_55, 0.40_39, 0.76_62, 2.05_35, 0.74_77, -0.32_43, -2.17_58, -2.76_48, 1.69_47, 0.70_26, 1.23_38, -1.60_78, -0.86_82, 2.28_10, 1.85_74, -0.57_18, -0.55_86, -0.01_86, 2.34_15, 2.12_51]) lowerCAmelCase__ : List[Any] = torch.tensor([ -1.36_90, -1.97_20, -0.40_90, -0.69_66, 1.46_60, 0.99_38, -0.13_85, -2.73_24, 0.77_36, -1.89_17, 0.29_23, 0.42_93, 0.16_93, 1.41_12, 1.18_87, -0.31_81, -2.21_60, -2.63_81, 1.31_70, 0.81_63, 0.92_40, -1.65_44, -0.60_99, 2.52_59, 1.64_30, -0.90_90, -0.93_92, -0.01_26, 2.42_68, 2.32_66 ]) lowerCAmelCase__ : Tuple = torch.tensor([ -1.35_25, -1.96_28, -0.39_56, -0.68_60, 1.46_64, 1.00_14, -0.12_59, -2.72_12, 0.77_72, -1.88_11, 0.29_96, 0.43_88, 0.17_04, 1.40_29, 1.17_01, -0.30_27, -2.20_53, -2.62_87, 1.33_50, 0.81_31, 0.92_74, -1.62_92, -0.60_98, 2.51_31, 1.65_05, -0.89_58, -0.92_98, -0.01_51, 2.42_57, 2.33_55 ]) lowerCAmelCase__ : List[str] = torch.tensor([ -2.05_85, -2.78_97, -0.28_50, -0.89_40, 1.90_52, 0.57_02, 0.63_45, -3.89_59, 1.59_32, -3.23_19, 0.19_74, 0.02_87, 1.75_66, 2.65_43, 0.83_87, -0.53_51, -3.27_36, -4.33_75, 2.90_29, 1.63_90, 1.46_40, -2.17_01, -1.90_13, 2.93_41, 3.49_81, -0.62_55, -1.16_44, -0.15_91, 3.70_97, 3.20_66 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.31_39, -2.55_94, -0.01_97, -0.67_85, 1.70_01, 1.16_06, 0.30_75, -2.17_40, 1.80_71, -2.56_30, -0.09_26, -0.38_11, 1.21_16, 2.62_46, 1.27_31, -0.53_98, -2.81_53, -3.61_40, 2.38_93, 1.32_62, 1.62_58, -2.18_56, -1.32_67, 2.83_95, 2.37_79, -1.06_23, -1.24_68, 0.89_59, 3.33_67, 3.22_43 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.06_28, -2.76_67, -0.20_89, -0.82_63, 2.05_39, 0.59_92, 0.64_95, -3.83_36, 1.60_25, -3.28_17, 0.17_21, -0.06_33, 1.75_16, 2.70_39, 0.81_00, -0.59_08, -3.21_13, -4.43_43, 2.92_57, 1.36_32, 1.55_62, -2.14_89, -1.98_94, 3.05_60, 3.33_96, -0.73_28, -1.04_17, 0.03_83, 3.70_93, 3.23_43 ]) lowerCAmelCase__ : Any = torch.tensor([ -1.45_74, -2.05_69, -0.04_73, -0.61_17, 1.40_18, 0.57_69, 0.41_29, -2.73_44, 1.22_41, -2.13_97, 0.20_00, 0.39_37, 0.76_16, 2.04_53, 0.73_24, -0.33_91, -2.17_46, -2.77_44, 1.69_63, 0.69_21, 1.21_87, -1.61_72, -0.88_77, 2.24_39, 1.84_71, -0.58_39, -0.56_05, -0.04_64, 2.32_50, 2.12_19 ]) # fmt: on lowerCAmelCase__ : Any = api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowerCAmelCase__ : List[str] = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith('''CompVis'''): lowerCAmelCase__ : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: lowerCAmelCase__ : str = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowerCAmelCase__ : Any = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowerCAmelCase__ : List[str] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowerCAmelCase__ : int = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
699
0
def UpperCamelCase__ ( A__ ) -> list[int]: if length <= 0 or not isinstance(A__ , A__ ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(A__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
718
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCAmelCase__ : Dict = logging.get_logger(__name__) class __snake_case ( _lowerCamelCase ): def __init__( self , *__UpperCamelCase , **__UpperCamelCase ) -> None: '''simple docstring''' warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , __UpperCamelCase , ) super().__init__(*__UpperCamelCase , **__UpperCamelCase )
699
0
from cva import destroyAllWindows, imread, imshow, waitKey def UpperCamelCase__ ( A__ ) -> str: # getting number of pixels in the image snake_case__ : int = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(A__ ): for j in range(A__ ): snake_case__ : List[Any] = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image lowerCAmelCase__ : Any = imread('''image_data/lena.jpg''', 1) # convert to its negative lowerCAmelCase__ : Optional[Any] = convert_to_negative(img) # show result image imshow('''negative of original image''', img) waitKey(0) destroyAllWindows()
719
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __snake_case ( datasets.BuilderConfig ): __lowerCamelCase = None __lowerCamelCase = "utf-8" __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = True # deprecated __lowerCamelCase = None # deprecated __lowerCamelCase = 10 << 20 # 10MB __lowerCamelCase = None class __snake_case ( datasets.ArrowBasedBuilder ): __lowerCamelCase = JsonConfig def __a ( self ) -> Optional[Any]: '''simple docstring''' if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead' ) snake_case__ : str = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.' ) if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported' ) return datasets.DatasetInfo(features=self.config.features ) def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) snake_case__ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__UpperCamelCase , (str, list, tuple) ): snake_case__ : Any = data_files if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : Optional[Any] = [files] snake_case__ : List[str] = [dl_manager.iter_files(__UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] snake_case__ : List[Any] = [] for split_name, files in data_files.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : List[Any] = [files] snake_case__ : Any = [dl_manager.iter_files(__UpperCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__UpperCamelCase , gen_kwargs={'files': files} ) ) return splits def __a ( self , __UpperCamelCase ) -> pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): snake_case__ : List[Any] = self.config.features.arrow_schema.field(__UpperCamelCase ).type snake_case__ : List[str] = pa_table.append_column(__UpperCamelCase , pa.array([None] * len(__UpperCamelCase ) , type=__UpperCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example snake_case__ : List[str] = table_cast(__UpperCamelCase , self.config.features.arrow_schema ) return pa_table def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(__UpperCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__UpperCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case__ : Union[str, Any] = json.load(__UpperCamelCase ) # We keep only the field we are interested in snake_case__ : Tuple = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__UpperCamelCase , (list, tuple) ): snake_case__ : List[Any] = set().union(*[row.keys() for row in dataset] ) snake_case__ : List[Any] = {col: [row.get(__UpperCamelCase ) for row in dataset] for col in keys} else: snake_case__ : List[Any] = dataset snake_case__ : Dict = pa.Table.from_pydict(__UpperCamelCase ) yield file_idx, self._cast_table(__UpperCamelCase ) # If the file has one json object per line else: with open(__UpperCamelCase , 'rb' ) as f: snake_case__ : Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small snake_case__ : Tuple = max(self.config.chunksize // 32 , 16 << 10 ) snake_case__ : Optional[Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: snake_case__ : Optional[int] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__UpperCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": snake_case__ : int = batch.decode(self.config.encoding , errors=__UpperCamelCase ).encode('utf-8' ) try: while True: try: snake_case__ : List[str] = paj.read_json( io.BytesIO(__UpperCamelCase ) , read_options=paj.ReadOptions(block_size=__UpperCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__UpperCamelCase , pa.ArrowInvalid ) and "straddling" not in str(__UpperCamelCase ) or block_size > len(__UpperCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(__UpperCamelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __UpperCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case__ : Tuple = json.load(__UpperCamelCase ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__UpperCamelCase , __UpperCamelCase ): # list is the only sequence type supported in JSON try: snake_case__ : str = set().union(*[row.keys() for row in dataset] ) snake_case__ : Union[str, Any] = {col: [row.get(__UpperCamelCase ) for row in dataset] for col in keys} snake_case__ : List[str] = pa.Table.from_pydict(__UpperCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(__UpperCamelCase ) break else: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__UpperCamelCase ) batch_idx += 1
699
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=32 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=[10, 20, 30, 40] , __UpperCamelCase=[2, 2, 3, 2] , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=10 , __UpperCamelCase=0.0_2 , __UpperCamelCase=["stage2", "stage3", "stage4"] , __UpperCamelCase=[2, 3, 4] , __UpperCamelCase=None , ) -> int: '''simple docstring''' snake_case__ : List[str] = parent snake_case__ : Optional[int] = batch_size snake_case__ : Dict = image_size snake_case__ : str = num_channels snake_case__ : Tuple = num_stages snake_case__ : Optional[Any] = hidden_sizes snake_case__ : int = depths snake_case__ : Tuple = is_training snake_case__ : Dict = use_labels snake_case__ : List[Any] = intermediate_size snake_case__ : Union[str, Any] = hidden_act snake_case__ : Optional[Any] = num_labels snake_case__ : Dict = initializer_range snake_case__ : List[Any] = out_features snake_case__ : List[Any] = out_indices snake_case__ : Any = scope def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : str = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : Dict = self.get_config() return config, pixel_values, labels def __a ( self ) -> int: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: '''simple docstring''' snake_case__ : Any = ConvNextModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : List[str] = model(__UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = ConvNextForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : Optional[Any] = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: '''simple docstring''' snake_case__ : Dict = ConvNextBackbone(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : List[Any] = model(__UpperCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case__ : List[str] = None snake_case__ : int = ConvNextBackbone(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : Optional[Any] = model(__UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[Any] = self.prepare_config_and_inputs() snake_case__ : str = config_and_inputs snake_case__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __lowerCamelCase = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Any = ConvNextModelTester(self ) snake_case__ : Union[str, Any] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __a ( self ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self ) -> Tuple: '''simple docstring''' return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def __a ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def __a ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def __a ( self ) -> str: '''simple docstring''' pass def __a ( self ) -> Any: '''simple docstring''' snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Union[str, Any] = model_class(__UpperCamelCase ) snake_case__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[Any] = [*signature.parameters.keys()] snake_case__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __a ( self ) -> int: '''simple docstring''' snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__UpperCamelCase ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): snake_case__ : Tuple = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case__ : Optional[int] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case__ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ : int = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[str] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[str] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def __a ( self ) -> int: '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Dict = ConvNextModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def UpperCamelCase__ ( ) -> Union[str, Any]: snake_case__ : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def __a ( self ) -> Union[str, Any]: '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(__UpperCamelCase ) snake_case__ : Optional[Any] = self.default_image_processor snake_case__ : List[str] = prepare_img() snake_case__ : str = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case__ : Any = model(**__UpperCamelCase ) # verify the logits snake_case__ : List[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case__ : Union[str, Any] = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) ) @require_torch class __snake_case ( unittest.TestCase ,_lowerCamelCase ): __lowerCamelCase = (ConvNextBackbone,) if is_torch_available() else () __lowerCamelCase = ConvNextConfig __lowerCamelCase = False def __a ( self ) -> Any: '''simple docstring''' snake_case__ : List[str] = ConvNextModelTester(self )
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
699
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowerCAmelCase__ : str = False @skip_mps class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = StableDiffusionAttendAndExcitePipeline __lowerCamelCase = False __lowerCamelCase = TEXT_TO_IMAGE_PARAMS __lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) __lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __a ( cls ) -> Any: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__UpperCamelCase ) @classmethod def __a ( cls ) -> Any: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__UpperCamelCase ) def __a ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__UpperCamelCase , ) snake_case__ : Dict = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) torch.manual_seed(0 ) snake_case__ : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) snake_case__ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) snake_case__ : Tuple = CLIPTextModel(__UpperCamelCase ) snake_case__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ : Any = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __a ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> Dict: '''simple docstring''' if str(__UpperCamelCase ).startswith('mps' ): snake_case__ : str = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : Any = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ : List[str] = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : List[Any] = 'cpu' snake_case__ : int = self.get_dummy_components() snake_case__ : Tuple = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Union[str, Any] = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : List[Any] = pipe(**__UpperCamelCase ).images snake_case__ : List[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) snake_case__ : Dict = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] ) snake_case__ : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__UpperCamelCase , 1E-3 ) def __a ( self ) -> str: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def __a ( self ) -> Dict: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def __a ( self ) -> List[Any]: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __a ( self ) -> List[str]: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def __a ( self ) -> List[str]: '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def __a ( self ) -> List[str]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class __snake_case ( unittest.TestCase ): @classmethod def __a ( cls ) -> List[str]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__UpperCamelCase ) @classmethod def __a ( cls ) -> Optional[Any]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__UpperCamelCase ) def __a ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> int: '''simple docstring''' snake_case__ : Union[str, Any] = torch.manual_seed(51 ) snake_case__ : Dict = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) pipe.to('cuda' ) snake_case__ : Optional[int] = 'a painting of an elephant with glasses' snake_case__ : Any = [5, 7] snake_case__ : List[Any] = pipe( prompt=__UpperCamelCase , token_indices=__UpperCamelCase , guidance_scale=7.5 , generator=__UpperCamelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] snake_case__ : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
721
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCAmelCase__ : Dict = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCAmelCase__ : List[str] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCAmelCase__ : List[str] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def UpperCamelCase__ ( A__ , A__ ) -> tuple[str, float]: snake_case__ : Tuple = len([g for position, g in enumerate(A__ ) if g == main_target[position]] ) return (item, float(A__ )) def UpperCamelCase__ ( A__ , A__ ) -> tuple[str, str]: snake_case__ : str = random.randint(0 , len(A__ ) - 1 ) snake_case__ : int = parent_a[:random_slice] + parent_a[random_slice:] snake_case__ : Any = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def UpperCamelCase__ ( A__ , A__ ) -> str: snake_case__ : List[Any] = list(A__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: snake_case__ : Optional[Any] = random.choice(A__ ) return "".join(A__ ) def UpperCamelCase__ ( A__ , A__ , A__ , ) -> list[str]: snake_case__ : Tuple = [] # Generate more children proportionally to the fitness score. snake_case__ : Optional[Any] = int(parent_a[1] * 100 ) + 1 snake_case__ : str = 10 if child_n >= 10 else child_n for _ in range(A__ ): snake_case__ : Any = population_score[random.randint(0 , A__ )][0] snake_case__ , snake_case__ : int = crossover(parent_a[0] , A__ ) # Append new string to the population list. pop.append(mutate(A__ , A__ ) ) pop.append(mutate(A__ , A__ ) ) return pop def UpperCamelCase__ ( A__ , A__ , A__ = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: snake_case__ : Union[str, Any] = F"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(A__ ) # Verify that the target contains no genes besides the ones inside genes variable. snake_case__ : Tuple = sorted({c for c in target if c not in genes} ) if not_in_genes_list: snake_case__ : int = F"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(A__ ) # Generate random starting population. snake_case__ : Union[str, Any] = [] for _ in range(A__ ): population.append(''.join([random.choice(A__ ) for i in range(len(A__ ) )] ) ) # Just some logs to know what the algorithms is doing. snake_case__ , snake_case__ : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(A__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. snake_case__ : List[Any] = [evaluate(A__ , A__ ) for item in population] # Check if there is a matching evolution. snake_case__ : int = sorted(A__ , key=lambda A__ : x[1] , reverse=A__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"""\nGeneration: {generation}""" F"""\nTotal Population:{total_population}""" F"""\nBest score: {population_score[0][1]}""" F"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. snake_case__ : Optional[int] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(A__ ) # Normalize population score to be between 0 and 1. snake_case__ : str = [ (item, score / len(A__ )) for item, score in population_score ] # This is selection for i in range(A__ ): population.extend(select(population_score[int(A__ )] , A__ , A__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(A__ ) > N_POPULATION: break if __name__ == "__main__": lowerCAmelCase__ : str = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) lowerCAmelCase__ : Optional[Any] = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ : List[str] = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
699
0
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class __snake_case ( yaml.SafeLoader ): def __a ( self , __UpperCamelCase ) -> Any: '''simple docstring''' snake_case__ : List[str] = [self.constructed_objects[key_node] for key_node, _ in node.value] snake_case__ : Optional[Any] = [tuple(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else key for key in keys] snake_case__ : int = Counter(__UpperCamelCase ) snake_case__ : Optional[int] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" ) def __a ( self , __UpperCamelCase , __UpperCamelCase=False ) -> Tuple: '''simple docstring''' snake_case__ : int = super().construct_mapping(__UpperCamelCase , deep=__UpperCamelCase ) self._check_no_duplicates_on_constructed_node(__UpperCamelCase ) return mapping def UpperCamelCase__ ( A__ ) -> Tuple[Optional[str], str]: snake_case__ : Optional[int] = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: snake_case__ : List[Any] = full_content[1:].index('---' ) + 1 snake_case__ : Union[str, Any] = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(A__ ) class __snake_case ( _lowerCamelCase ): # class attributes __lowerCamelCase = {"""train_eval_index"""} # train-eval-index in the YAML metadata @classmethod def __a ( cls , __UpperCamelCase ) -> "DatasetMetadata": '''simple docstring''' with open(__UpperCamelCase , encoding='utf-8' ) as readme_file: snake_case__ : Any = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__UpperCamelCase ) else: return cls() def __a ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' if path.exists(): with open(__UpperCamelCase , encoding='utf-8' ) as readme_file: snake_case__ : Tuple = readme_file.read() else: snake_case__ : Tuple = None snake_case__ : Union[str, Any] = self._to_readme(__UpperCamelCase ) with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(__UpperCamelCase ) def __a ( self , __UpperCamelCase = None ) -> str: '''simple docstring''' if readme_content is not None: snake_case__ : Dict = _split_yaml_from_readme(__UpperCamelCase ) snake_case__ : List[str] = '---\n' + self.to_yaml_string() + '---\n' + content else: snake_case__ : List[str] = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def __a ( cls , __UpperCamelCase ) -> "DatasetMetadata": '''simple docstring''' snake_case__ : Union[str, Any] = yaml.load(__UpperCamelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields snake_case__ : Tuple = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__UpperCamelCase ) def __a ( self ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=__UpperCamelCase , allow_unicode=__UpperCamelCase , encoding='utf-8' , ).decode('utf-8' ) lowerCAmelCase__ : Any = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser lowerCAmelCase__ : Dict = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') lowerCAmelCase__ : Optional[Any] = ap.parse_args() lowerCAmelCase__ : Tuple = Path(args.readme_filepath) lowerCAmelCase__ : Dict = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
700
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCAmelCase__ : Optional[int] = TypeVar('''T''') class __snake_case ( Generic[T] ): def __init__( self , __UpperCamelCase ) -> Any: '''simple docstring''' snake_case__ : Optional[int] = data snake_case__ : Node[T] | None = None def __str__( self ) -> str: '''simple docstring''' return F"""{self.data}""" class __snake_case ( Generic[T] ): def __init__( self ) -> None: '''simple docstring''' snake_case__ : Node[T] | None = None def __iter__( self ) -> Iterator[T]: '''simple docstring''' snake_case__ : str = self.top while node: yield node.data snake_case__ : Dict = node.next def __str__( self ) -> str: '''simple docstring''' return "->".join([str(__UpperCamelCase ) for item in self] ) def __len__( self ) -> int: '''simple docstring''' return len(tuple(iter(self ) ) ) def __a ( self ) -> bool: '''simple docstring''' return self.top is None def __a ( self , __UpperCamelCase ) -> None: '''simple docstring''' snake_case__ : str = Node(__UpperCamelCase ) if not self.is_empty(): snake_case__ : List[str] = self.top snake_case__ : Tuple = node def __a ( self ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , __UpperCamelCase ) snake_case__ : List[str] = self.top snake_case__ : Union[str, Any] = self.top.next return pop_node.data def __a ( self ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def __a ( self ) -> None: '''simple docstring''' snake_case__ : Any = None if __name__ == "__main__": from doctest import testmod testmod()
699
0
from __future__ import annotations import math from collections.abc import Callable def UpperCamelCase__ ( A__ , A__ , A__ , A__ = 100 , ) -> float: snake_case__ : Optional[int] = x_start snake_case__ : Any = fnc(A__ ) snake_case__ : List[str] = 0.0 for _ in range(A__ ): # Approximates curve as a sequence of linear lines and sums their length snake_case__ : Optional[int] = (x_end - x_start) / steps + xa snake_case__ : Tuple = fnc(A__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step snake_case__ : str = xa snake_case__ : Any = fxa return length if __name__ == "__main__": def UpperCamelCase__ ( A__ ) -> Optional[int]: return math.sin(10 * x ) print('''f(x) = sin(10 * x)''') print('''The length of the curve from x = -10 to x = 10 is:''') lowerCAmelCase__ : Dict = 10 while i <= 10_00_00: print(F'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
701
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : int = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = """poolformer""" def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=16 , __UpperCamelCase=16 , __UpperCamelCase=3 , __UpperCamelCase=4.0 , __UpperCamelCase=[2, 2, 6, 2] , __UpperCamelCase=[64, 128, 320, 512] , __UpperCamelCase=[7, 3, 3, 3] , __UpperCamelCase=[4, 2, 2, 2] , __UpperCamelCase=[2, 1, 1, 1] , __UpperCamelCase=4 , __UpperCamelCase=0.0 , __UpperCamelCase="gelu" , __UpperCamelCase=True , __UpperCamelCase=1E-5 , __UpperCamelCase=0.0_2 , **__UpperCamelCase , ) -> Any: '''simple docstring''' snake_case__ : List[str] = num_channels snake_case__ : Dict = patch_size snake_case__ : Optional[int] = stride snake_case__ : str = padding snake_case__ : List[str] = pool_size snake_case__ : List[Any] = hidden_sizes snake_case__ : List[Any] = mlp_ratio snake_case__ : Union[str, Any] = depths snake_case__ : Dict = patch_sizes snake_case__ : Dict = strides snake_case__ : Dict = num_encoder_blocks snake_case__ : Union[str, Any] = drop_path_rate snake_case__ : List[str] = hidden_act snake_case__ : Optional[Any] = use_layer_scale snake_case__ : int = layer_scale_init_value snake_case__ : Dict = initializer_range super().__init__(**__UpperCamelCase ) class __snake_case ( _lowerCamelCase ): __lowerCamelCase = version.parse("""1.11""" ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __a ( self ) -> float: '''simple docstring''' return 2E-3
699
0
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __snake_case : def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=64 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=10 , __UpperCamelCase=0.0_2 , __UpperCamelCase=[1, 16, 4, 4] , __UpperCamelCase=None , ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Any = parent snake_case__ : str = batch_size snake_case__ : List[str] = image_size snake_case__ : Tuple = patch_size snake_case__ : str = num_channels snake_case__ : Dict = is_training snake_case__ : List[Any] = use_labels snake_case__ : Tuple = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : List[str] = intermediate_size snake_case__ : List[str] = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : Dict = type_sequence_label_size snake_case__ : Optional[int] = initializer_range snake_case__ : Optional[int] = scope snake_case__ : Union[str, Any] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size snake_case__ : Dict = (self.image_size // 32) ** 2 snake_case__ : Optional[Any] = num_patches + 1 def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : List[Any] = None if self.use_labels: snake_case__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Any = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__UpperCamelCase , ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[Any] = ViTHybridModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict: '''simple docstring''' snake_case__ : Any = self.type_sequence_label_size snake_case__ : Dict = ViTHybridForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : Tuple = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Dict = self.prepare_config_and_inputs() snake_case__ : str = config_and_inputs snake_case__ : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __lowerCamelCase = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = ViTHybridModelTester(self ) snake_case__ : Optional[Any] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __a ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' pass def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Dict = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = model_class(__UpperCamelCase ) snake_case__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Tuple = [*signature.parameters.keys()] snake_case__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Tuple = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: snake_case__ : Optional[Any] = model_class(config=__UpperCamelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": snake_case__ : Dict = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def __a ( self ) -> List[str]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : List[str] = ViTHybridModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def UpperCamelCase__ ( ) -> Dict: snake_case__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def __a ( self ) -> Union[str, Any]: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Any = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __UpperCamelCase ) snake_case__ : Tuple = self.default_image_processor snake_case__ : Tuple = prepare_img() snake_case__ : Optional[Any] = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case__ : int = model(**__UpperCamelCase ) # verify the logits snake_case__ : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case__ : Optional[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow @require_accelerate def __a ( self ) -> int: '''simple docstring''' snake_case__ : List[Any] = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) snake_case__ : str = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) snake_case__ : Optional[int] = prepare_img() snake_case__ : Optional[int] = image_processor(images=__UpperCamelCase , return_tensors='pt' ) snake_case__ : Optional[int] = model(**__UpperCamelCase ) snake_case__ : Tuple = outputs.logits # model predicts one of the 1000 ImageNet classes snake_case__ : Optional[int] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
702
import numpy as np import qiskit def UpperCamelCase__ ( A__ = 8 , A__ = None ) -> str: snake_case__ : Optional[int] = np.random.default_rng(seed=A__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. snake_case__ : Tuple = 6 * key_len # Measurement basis for Alice's qubits. snake_case__ : Tuple = rng.integers(2 , size=A__ ) # The set of states Alice will prepare. snake_case__ : List[str] = rng.integers(2 , size=A__ ) # Measurement basis for Bob's qubits. snake_case__ : List[Any] = rng.integers(2 , size=A__ ) # Quantum Circuit to simulate BB84 snake_case__ : Any = qiskit.QuantumCircuit(A__ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(A__ ): if alice_state[index] == 1: bbaa_circ.x(A__ ) if alice_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(A__ ): if bob_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. snake_case__ : List[str] = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. snake_case__ : Optional[Any] = qiskit.execute(A__ , A__ , shots=1 , seed_simulator=A__ ) # Returns the result of measurement. snake_case__ : Union[str, Any] = job.result().get_counts(A__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. snake_case__ : Optional[Any] = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( A__ , A__ , A__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. snake_case__ : Tuple = gen_key[:key_len] if len(A__ ) >= key_len else gen_key.ljust(A__ , '0' ) return key if __name__ == "__main__": print(F'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
699
0
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __snake_case ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.0_2 , __UpperCamelCase=4 , ) -> Optional[Any]: '''simple docstring''' snake_case__ : str = parent snake_case__ : List[str] = batch_size snake_case__ : List[Any] = seq_length snake_case__ : Optional[int] = is_training snake_case__ : Union[str, Any] = use_attention_mask snake_case__ : Dict = use_token_type_ids snake_case__ : str = use_labels snake_case__ : List[Any] = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : List[Any] = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : Dict = attention_probs_dropout_prob snake_case__ : List[str] = max_position_embeddings snake_case__ : int = type_vocab_size snake_case__ : List[str] = type_sequence_label_size snake_case__ : List[str] = initializer_range snake_case__ : Any = num_choices def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : List[Any] = None if self.use_attention_mask: snake_case__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_token_type_ids: snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Any = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __a ( self ) -> Any: '''simple docstring''' snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ : str = config_and_inputs snake_case__ : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = True __lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[str] = FlaxRoFormerModelTester(self ) @slow def __a ( self ) -> Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case__ : List[str] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=__UpperCamelCase ) snake_case__ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCamelCase ) @require_flax class __snake_case ( unittest.TestCase ): @slow def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Any = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) snake_case__ : Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case__ : int = model(__UpperCamelCase )[0] snake_case__ : Optional[Any] = 50000 snake_case__ : int = (1, 6, vocab_size) self.assertEqual(output.shape , __UpperCamelCase ) snake_case__ : List[Any] = jnp.array( [[[-0.1_2_0_5, -1.0_2_6_5, 0.2_9_2_2], [-1.5_1_3_4, 0.1_9_7_4, 0.1_5_1_9], [-5.0_1_3_5, -3.9_0_0_3, -0.8_4_0_4]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 ) )
703
def UpperCamelCase__ ( A__ , A__ , A__ ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case__ : Dict = _modexpt(A__ , exponent // 2 , A__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(A__ , exponent - 1 , A__ )) % modulo_value def UpperCamelCase__ ( A__ = 1777 , A__ = 1855 , A__ = 8 ) -> int: snake_case__ : Tuple = base for _ in range(1 , A__ ): snake_case__ : Any = _modexpt(A__ , A__ , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
699
0
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __snake_case ( _lowerCamelCase ): def __a ( self ) -> int: '''simple docstring''' snake_case__ : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCamelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , 'num_attention_heads' ) ) class __snake_case : def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=640 , __UpperCamelCase=4 , __UpperCamelCase="silu" , __UpperCamelCase=3 , __UpperCamelCase=32 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0_2 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=10 , __UpperCamelCase=None , ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[str] = parent snake_case__ : Tuple = batch_size snake_case__ : Any = image_size snake_case__ : Any = patch_size snake_case__ : Optional[int] = num_channels snake_case__ : int = last_hidden_size snake_case__ : Optional[int] = num_attention_heads snake_case__ : List[str] = hidden_act snake_case__ : List[Any] = conv_kernel_size snake_case__ : List[Any] = output_stride snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : Dict = attention_probs_dropout_prob snake_case__ : str = classifier_dropout_prob snake_case__ : str = use_labels snake_case__ : Tuple = is_training snake_case__ : str = num_labels snake_case__ : Optional[Any] = initializer_range snake_case__ : Optional[int] = scope def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Optional[int] = None snake_case__ : Any = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self ) -> Optional[int]: '''simple docstring''' return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: '''simple docstring''' snake_case__ : List[str] = MobileViTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: '''simple docstring''' snake_case__ : Optional[Any] = self.num_labels snake_case__ : Tuple = MobileViTForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : Optional[Any] = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: '''simple docstring''' snake_case__ : str = self.num_labels snake_case__ : int = MobileViTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : int = model(__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __a ( self ) -> str: '''simple docstring''' snake_case__ : str = self.prepare_config_and_inputs() snake_case__ : Tuple = config_and_inputs snake_case__ : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __lowerCamelCase = ( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Any = MobileViTModelTester(self ) snake_case__ : Optional[int] = MobileViTConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def __a ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def __a ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def __a ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='MobileViT does not output attentions' ) def __a ( self ) -> Optional[int]: '''simple docstring''' pass def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : int = model_class(__UpperCamelCase ) snake_case__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[int] = [*signature.parameters.keys()] snake_case__ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __a ( self ) -> List[Any]: '''simple docstring''' pass def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __a ( self ) -> Optional[Any]: '''simple docstring''' def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): snake_case__ : List[str] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case__ : str = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case__ : Optional[Any] = outputs.hidden_states snake_case__ : Tuple = 5 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. snake_case__ : Dict = 2 for i in range(len(__UpperCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Union[str, Any] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : Optional[Any] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) @slow def __a ( self ) -> List[str]: '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : List[str] = MobileViTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def UpperCamelCase__ ( ) -> Optional[Any]: '''simple docstring''' snake_case__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def __a ( self ) -> int: '''simple docstring''' return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : List[str] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(__UpperCamelCase ) snake_case__ : Union[str, Any] = self.default_image_processor snake_case__ : List[str] = prepare_img() snake_case__ : List[str] = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case__ : Tuple = model(**__UpperCamelCase ) # verify the logits snake_case__ : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case__ : Optional[Any] = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Any = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case__ : str = model.to(__UpperCamelCase ) snake_case__ : Union[str, Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case__ : int = prepare_img() snake_case__ : Optional[Any] = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case__ : Any = model(**__UpperCamelCase ) snake_case__ : Tuple = outputs.logits # verify the logits snake_case__ : Optional[int] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __UpperCamelCase ) snake_case__ : Dict = torch.tensor( [ [[6.9_7_1_3, 6.9_7_8_6, 7.2_4_2_2], [7.2_8_9_3, 7.2_8_2_5, 7.4_4_4_6], [7.6_5_8_0, 7.8_7_9_7, 7.9_4_2_0]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9_8_6_8, -9.7_1_3_2], [-11.0405, -11.0221, -10.7318]], [[-3.3_0_8_9, -2.8_5_3_9, -2.6_7_4_0], [-3.2_7_0_6, -2.5_6_2_1, -2.5_1_0_8], [-3.2_5_3_4, -2.6_6_1_5, -2.6_6_5_1]], ] , device=__UpperCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case__ : List[str] = model.to(__UpperCamelCase ) snake_case__ : Any = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case__ : str = prepare_img() snake_case__ : Optional[int] = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case__ : Tuple = model(**__UpperCamelCase ) snake_case__ : str = outputs.logits.detach().cpu() snake_case__ : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase , target_sizes=[(50, 60)] ) snake_case__ : List[str] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __UpperCamelCase ) snake_case__ : Tuple = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase ) snake_case__ : Tuple = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __UpperCamelCase )
704
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ : Tuple = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase__ ( A__ ) -> Optional[Any]: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(A__ ) def UpperCamelCase__ ( A__ ) -> Optional[Any]: from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Union[str, Any] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(A__ , id=A__ )
699
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ : Dict = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Any = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[Any] = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
705
def UpperCamelCase__ ( A__ ) -> list[int]: if length <= 0 or not isinstance(A__ , A__ ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(A__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
699
0
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCAmelCase__ : List[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
706
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Dict = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase__ : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> List[str]: snake_case__ : int = state_dict.pop(A__ ) snake_case__ : Union[str, Any] = val def UpperCamelCase__ ( A__ ) -> int: snake_case__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case__ : Any = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) snake_case__ : Optional[int] = value else: snake_case__ : Optional[int] = value return new_state_dict def UpperCamelCase__ ( A__ , A__=False ) -> Optional[int]: snake_case__ : Optional[int] = '' if is_panoptic: snake_case__ : Tuple = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case__ : int = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) snake_case__ : str = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Union[str, Any] = in_proj_weight[:256, :] snake_case__ : Union[str, Any] = in_proj_bias[:256] snake_case__ : Union[str, Any] = in_proj_weight[256:512, :] snake_case__ : Optional[Any] = in_proj_bias[256:512] snake_case__ : List[str] = in_proj_weight[-256:, :] snake_case__ : Tuple = in_proj_bias[-256:] def UpperCamelCase__ ( ) -> Tuple: snake_case__ : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : str = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( A__ , A__ ) -> str: snake_case__ : List[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case__ : Any = 'resnet101' if "dc5" in model_name: snake_case__ : Any = True snake_case__ : int = 'panoptic' in model_name if is_panoptic: snake_case__ : str = 250 else: snake_case__ : Union[str, Any] = 91 snake_case__ : Optional[int] = 'huggingface/label-files' snake_case__ : Optional[Any] = 'coco-detection-id2label.json' snake_case__ : str = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) snake_case__ : List[Any] = {int(A__ ): v for k, v in idalabel.items()} snake_case__ : Any = idalabel snake_case__ : int = {v: k for k, v in idalabel.items()} # load image processor snake_case__ : List[Any] = 'coco_panoptic' if is_panoptic else 'coco_detection' snake_case__ : List[Any] = ConditionalDetrImageProcessor(format=A__ ) # prepare image snake_case__ : List[str] = prepare_img() snake_case__ : Any = image_processor(images=A__ , return_tensors='pt' ) snake_case__ : Dict = encoding['pixel_values'] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub snake_case__ : Any = torch.hub.load('DeppMeng/ConditionalDETR' , A__ , pretrained=A__ ).eval() snake_case__ : Tuple = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case__ : List[Any] = 'conditional_detr.' + src rename_key(A__ , A__ , A__ ) snake_case__ : Dict = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ , is_panoptic=A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case__ : Optional[int] = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): snake_case__ : List[Any] = state_dict.pop(A__ ) snake_case__ : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case__ : str = state_dict.pop(A__ ) snake_case__ : List[Any] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: snake_case__ : Union[str, Any] = state_dict.pop(A__ ) snake_case__ : Dict = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): snake_case__ : List[Any] = state_dict.pop(A__ ) snake_case__ : Optional[int] = val # finally, create HuggingFace model and load state dict snake_case__ : Union[str, Any] = ConditionalDetrForSegmentation(A__ ) if is_panoptic else ConditionalDetrForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() model.push_to_hub(repo_id=A__ , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion snake_case__ : Tuple = conditional_detr(A__ ) snake_case__ : str = model(A__ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
699
0
from collections import namedtuple lowerCAmelCase__ : Union[str, Any] = namedtuple('''from_to''', '''from_ to''') lowerCAmelCase__ : Tuple = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.0_01, 10_00), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_04_54, 2_64.1_72), '''cubicyard''': from_to(0.7_64_55, 1.3_07_95), '''cubicfoot''': from_to(0.0_28, 35.31_47), '''cup''': from_to(0.0_00_23_65_88, 42_26.75), } def UpperCamelCase__ ( A__ , A__ , A__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ', '.join(A__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ', '.join(A__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
707
from collections import namedtuple lowerCAmelCase__ : Union[str, Any] = namedtuple('''from_to''', '''from_ to''') lowerCAmelCase__ : Tuple = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.0_01, 10_00), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_04_54, 2_64.1_72), '''cubicyard''': from_to(0.7_64_55, 1.3_07_95), '''cubicfoot''': from_to(0.0_28, 35.31_47), '''cup''': from_to(0.0_00_23_65_88, 42_26.75), } def UpperCamelCase__ ( A__ , A__ , A__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ', '.join(A__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ', '.join(A__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
699
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = StableDiffusionInstructPixaPixPipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def __a ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) snake_case__ : Any = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) torch.manual_seed(0 ) snake_case__ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case__ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) snake_case__ : Tuple = CLIPTextModel(__UpperCamelCase ) snake_case__ : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __a ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : Union[str, Any] = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('RGB' ) if str(__UpperCamelCase ).startswith('mps' ): snake_case__ : str = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : Dict = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ : str = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[int] = self.get_dummy_components() snake_case__ : str = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : Optional[int] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Tuple = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : List[str] = sd_pipe(**__UpperCamelCase ).images snake_case__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ : str = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : Union[str, Any] = self.get_dummy_components() snake_case__ : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : List[Any] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Union[str, Any] = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : List[str] = 'french fries' snake_case__ : Optional[Any] = sd_pipe(**__UpperCamelCase , negative_prompt=__UpperCamelCase ) snake_case__ : Union[str, Any] = output.images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ : Any = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> int: '''simple docstring''' snake_case__ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : List[str] = self.get_dummy_components() snake_case__ : str = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : str = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Dict = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : Any = [inputs['prompt']] * 2 snake_case__ : Optional[int] = np.array(inputs['image'] ).astype(np.floataa ) / 255.0 snake_case__ : Optional[int] = torch.from_numpy(__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) snake_case__ : Any = image / 2 + 0.5 snake_case__ : Optional[Any] = image.permute(0 , 3 , 1 , 2 ) snake_case__ : List[Any] = image.repeat(2 , 1 , 1 , 1 ) snake_case__ : Optional[int] = sd_pipe(**__UpperCamelCase ).images snake_case__ : Union[str, Any] = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) snake_case__ : List[Any] = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[int] = self.get_dummy_components() snake_case__ : Tuple = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' ) snake_case__ : int = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : List[str] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : str = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : Any = sd_pipe(**__UpperCamelCase ).images snake_case__ : int = image[0, -3:, -3:, -1] snake_case__ : Tuple = [round(__UpperCamelCase , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(__UpperCamelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) snake_case__ : List[Any] = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Optional[int] = self.get_dummy_components() snake_case__ : int = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : Union[str, Any] = VaeImageProcessor(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase ) snake_case__ : Optional[int] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Optional[Any] = pipe(**self.get_dummy_inputs_by_type(__UpperCamelCase , input_image_type='pt' ) )[0] snake_case__ : Union[str, Any] = components['vae'] snake_case__ : str = self.get_dummy_inputs_by_type(__UpperCamelCase , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): snake_case__ : List[str] = vae.encode(inputs[image_param] ).latent_dist.mode() snake_case__ : Dict = pipe(**__UpperCamelCase )[0] snake_case__ : str = np.abs(out - out_latents_inputs ).max() self.assertLess(__UpperCamelCase , 1E-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self , __UpperCamelCase=0 ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = torch.manual_seed(__UpperCamelCase ) snake_case__ : List[str] = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) snake_case__ : int = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : Tuple = self.get_inputs() snake_case__ : List[Any] = pipe(**__UpperCamelCase ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ : Dict = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ) -> str: '''simple docstring''' snake_case__ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase ) snake_case__ : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : Dict = self.get_inputs() snake_case__ : Dict = pipe(**__UpperCamelCase ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ : List[Any] = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase ) snake_case__ : Tuple = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : Optional[int] = self.get_inputs() snake_case__ : Optional[int] = pipe(**__UpperCamelCase ).images snake_case__ : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ : int = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = 0 def callback_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> None: snake_case__ : List[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case__ : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) snake_case__ : int = latents[0, -3:, -3:, -1] snake_case__ : List[str] = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: snake_case__ : Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) snake_case__ : Dict = latents[0, -3:, -3:, -1] snake_case__ : Optional[Any] = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 snake_case__ : str = False snake_case__ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) snake_case__ : int = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : int = self.get_inputs() pipe(**__UpperCamelCase , callback=__UpperCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __a ( self ) -> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) snake_case__ : Dict = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ : str = self.get_inputs() snake_case__ : Tuple = pipe(**__UpperCamelCase ) snake_case__ : List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __a ( self ) -> int: '''simple docstring''' snake_case__ : int = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 snake_case__ : Tuple = inputs['image'].resize((504, 504) ) snake_case__ : str = 'timbrooks/instruct-pix2pix' snake_case__ : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : str = pipe(**__UpperCamelCase ) snake_case__ : List[Any] = output.images[0] snake_case__ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) snake_case__ : List[str] = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
708
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : Tuple = logging.get_logger(__name__) lowerCAmelCase__ : Union[str, Any] = '''▁''' lowerCAmelCase__ : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ : Optional[Any] = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } lowerCAmelCase__ : str = { '''facebook/xglm-564M''': 20_48, } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCamelCase , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase = None , **__UpperCamelCase , ) -> None: '''simple docstring''' snake_case__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case__ : Tuple = 7 snake_case__ : Dict = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case__ : Union[str, Any] = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) snake_case__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) snake_case__ : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case__ : Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case__ : Tuple = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case__ : List[Any] = len(self.sp_model ) snake_case__ : Optional[Any] = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__UpperCamelCase ) snake_case__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = self.__dict__.copy() snake_case__ : Optional[Any] = None snake_case__ : Tuple = self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case__ : Any = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case__ : str = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __a ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' snake_case__ : int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __a ( self ) -> Tuple: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def __a ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case__ : Optional[Any] = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' snake_case__ : int = ''.join(__UpperCamelCase ).replace(__UpperCamelCase , ' ' ).strip() return out_string def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ : List[str] = os.path.join( __UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , 'wb' ) as fi: snake_case__ : Any = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
699
0
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def UpperCamelCase__ ( ) -> Tuple: snake_case__ : Tuple = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) snake_case__ : Dict = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(A__ ) DownloadCommand.register_subcommand(A__ ) EnvironmentCommand.register_subcommand(A__ ) RunCommand.register_subcommand(A__ ) ServeCommand.register_subcommand(A__ ) UserCommands.register_subcommand(A__ ) AddNewModelCommand.register_subcommand(A__ ) AddNewModelLikeCommand.register_subcommand(A__ ) LfsCommands.register_subcommand(A__ ) PTtoTFCommand.register_subcommand(A__ ) # Let's go snake_case__ : Any = parser.parse_args() if not hasattr(A__ , 'func' ): parser.print_help() exit(1 ) # Run snake_case__ : List[str] = args.func(A__ ) service.run() if __name__ == "__main__": main()
709
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCAmelCase__ : Any = logging.get_logger(__name__) lowerCAmelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : Any = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Any = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Tuple = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Dict = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_12, '''facebook/dpr-ctx_encoder-multiset-base''': 5_12, } lowerCAmelCase__ : Union[str, Any] = { '''facebook/dpr-question_encoder-single-nq-base''': 5_12, '''facebook/dpr-question_encoder-multiset-base''': 5_12, } lowerCAmelCase__ : Optional[Any] = { '''facebook/dpr-reader-single-nq-base''': 5_12, '''facebook/dpr-reader-multiset-base''': 5_12, } lowerCAmelCase__ : Tuple = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase__ : Any = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase__ : List[str] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = DPRContextEncoderTokenizer class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = DPRQuestionEncoderTokenizer lowerCAmelCase__ : Tuple = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCAmelCase__ : List[Any] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCAmelCase__ : int = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_lowerCamelCase ) class __snake_case : def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) elif titles is None or texts is None: snake_case__ : Optional[Any] = titles if texts is None else texts return super().__call__( __UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ : int = titles if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [titles] snake_case__ : Optional[int] = texts if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [texts] snake_case__ : List[Any] = len(__UpperCamelCase ) snake_case__ : str = questions if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [questions] * n_passages assert len(__UpperCamelCase ) == len( __UpperCamelCase ), F"""There should be as many titles than texts but got {len(__UpperCamelCase )} titles and {len(__UpperCamelCase )} texts.""" snake_case__ : Optional[int] = super().__call__(__UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )['input_ids'] snake_case__ : Optional[Any] = super().__call__(__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )['input_ids'] snake_case__ : Union[str, Any] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCamelCase , __UpperCamelCase ) ] } if return_attention_mask is not False: snake_case__ : List[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case__ : Union[str, Any] = attention_mask return self.pad(__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 16 , __UpperCamelCase = 64 , __UpperCamelCase = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' snake_case__ : Optional[Any] = reader_input['input_ids'] snake_case__ , snake_case__ , snake_case__ : Any = reader_output[:3] snake_case__ : List[str] = len(__UpperCamelCase ) snake_case__ : Tuple = sorted(range(__UpperCamelCase ) , reverse=__UpperCamelCase , key=relevance_logits.__getitem__ ) snake_case__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: snake_case__ : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case__ : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case__ : Union[str, Any] = sequence_ids.index(self.pad_token_id ) else: snake_case__ : str = len(__UpperCamelCase ) snake_case__ : Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCamelCase , top_spans=__UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCamelCase , start_index=__UpperCamelCase , end_index=__UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> List[DPRSpanPrediction]: '''simple docstring''' snake_case__ : Any = [] for start_index, start_score in enumerate(__UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case__ : str = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] , reverse=__UpperCamelCase ) snake_case__ : Any = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" snake_case__ : str = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_lowerCamelCase ) class __snake_case ( _lowerCamelCase ,_lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = READER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = ["""input_ids""", """attention_mask"""] __lowerCamelCase = DPRReaderTokenizer
699
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __snake_case : def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=10 , __UpperCamelCase=3 , __UpperCamelCase=2 , __UpperCamelCase=2 , __UpperCamelCase=2 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=10 , __UpperCamelCase=0.0_2 , __UpperCamelCase=0.9 , __UpperCamelCase=None , ) -> int: '''simple docstring''' snake_case__ : List[Any] = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Any = image_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Union[str, Any] = patch_size snake_case__ : List[Any] = tubelet_size snake_case__ : List[str] = num_frames snake_case__ : Dict = is_training snake_case__ : Optional[Any] = use_labels snake_case__ : Dict = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : int = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : Dict = hidden_act snake_case__ : Dict = hidden_dropout_prob snake_case__ : Dict = attention_probs_dropout_prob snake_case__ : Optional[Any] = type_sequence_label_size snake_case__ : Optional[int] = initializer_range snake_case__ : List[str] = mask_ratio snake_case__ : Tuple = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame snake_case__ : str = (image_size // patch_size) ** 2 snake_case__ : Dict = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos snake_case__ : List[Any] = int(mask_ratio * self.seq_length ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Union[str, Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : List[Any] = self.get_config() return config, pixel_values, labels def __a ( self ) -> Optional[int]: '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: '''simple docstring''' snake_case__ : Any = VideoMAEModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : Dict = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = VideoMAEForPreTraining(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case__ : Any = torch.ones((self.num_masks,) ) snake_case__ : str = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) snake_case__ : Union[str, Any] = mask.expand(self.batch_size , -1 ).bool() snake_case__ : str = model(__UpperCamelCase , __UpperCamelCase ) # model only returns predictions for masked patches snake_case__ : str = mask.sum().item() snake_case__ : Dict = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ : Optional[int] = config_and_inputs snake_case__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __lowerCamelCase = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Optional[Any] = VideoMAEModelTester(self ) snake_case__ : Optional[Any] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> Optional[Any]: '''simple docstring''' snake_case__ : List[Any] = copy.deepcopy(__UpperCamelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case__ : int = torch.ones((self.model_tester.num_masks,) ) snake_case__ : Optional[int] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) snake_case__ : List[Any] = mask.expand(self.model_tester.batch_size , -1 ).bool() snake_case__ : List[str] = bool_masked_pos.to(__UpperCamelCase ) if return_labels: if model_class in [ *get_values(__UpperCamelCase ), ]: snake_case__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def __a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def __a ( self ) -> str: '''simple docstring''' pass def __a ( self ) -> int: '''simple docstring''' snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Dict = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : str = model_class(__UpperCamelCase ) snake_case__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : str = [*signature.parameters.keys()] snake_case__ : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCamelCase ) @slow def __a ( self ) -> List[str]: '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[int] = VideoMAEModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __a ( self ) -> int: '''simple docstring''' if not self.has_attentions: pass else: snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[str] = True for model_class in self.all_model_classes: snake_case__ : Optional[int] = self.model_tester.seq_length - self.model_tester.num_masks snake_case__ : int = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) snake_case__ : List[Any] = True snake_case__ : Dict = False snake_case__ : Dict = True snake_case__ : Tuple = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case__ : List[Any] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case__ : List[Any] = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case__ : Union[str, Any] = True snake_case__ : Union[str, Any] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case__ : Optional[int] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case__ : Optional[Any] = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) snake_case__ : Dict = len(__UpperCamelCase ) # Check attention is always last and order is fine snake_case__ : int = True snake_case__ : Optional[Any] = True snake_case__ : List[str] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case__ : List[Any] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(out_len + 1 , len(__UpperCamelCase ) ) snake_case__ : Union[str, Any] = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __a ( self ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): snake_case__ : List[Any] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case__ : List[Any] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case__ : Optional[Any] = outputs.hidden_states snake_case__ : Optional[int] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) snake_case__ : Tuple = self.model_tester.seq_length - self.model_tester.num_masks snake_case__ : Optional[int] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[str] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : str = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __a ( self ) -> List[str]: '''simple docstring''' pass def UpperCamelCase__ ( ) -> int: snake_case__ : List[str] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) snake_case__ : Optional[Any] = np.load(A__ ) return list(A__ ) @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def __a ( self ) -> Optional[Any]: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[Any] = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( __UpperCamelCase ) snake_case__ : str = self.default_image_processor snake_case__ : Optional[int] = prepare_video() snake_case__ : Optional[Any] = image_processor(__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case__ : Optional[int] = model(**__UpperCamelCase ) # verify the logits snake_case__ : List[Any] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case__ : List[Any] = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Dict = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(__UpperCamelCase ) snake_case__ : str = self.default_image_processor snake_case__ : Optional[int] = prepare_video() snake_case__ : Tuple = image_processor(__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # add boolean mask, indicating which patches to mask snake_case__ : Optional[Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) snake_case__ : Dict = torch.load(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case__ : Tuple = model(**__UpperCamelCase ) # verify the logits snake_case__ : List[str] = torch.Size([1, 1408, 1536] ) snake_case__ : List[Any] = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=__UpperCamelCase ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __UpperCamelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) snake_case__ : int = torch.tensor([0.5_1_4_2] , device=__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.loss , __UpperCamelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) snake_case__ : Tuple = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=__UpperCamelCase ).to( __UpperCamelCase ) with torch.no_grad(): snake_case__ : Dict = model(**__UpperCamelCase ) snake_case__ : List[Any] = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.loss , __UpperCamelCase , atol=1E-4 ) )
710
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = StableDiffusionInstructPixaPixPipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def __a ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) snake_case__ : Any = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) torch.manual_seed(0 ) snake_case__ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case__ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) snake_case__ : Tuple = CLIPTextModel(__UpperCamelCase ) snake_case__ : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __a ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : Union[str, Any] = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('RGB' ) if str(__UpperCamelCase ).startswith('mps' ): snake_case__ : str = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : Dict = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ : str = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[int] = self.get_dummy_components() snake_case__ : str = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : Optional[int] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Tuple = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : List[str] = sd_pipe(**__UpperCamelCase ).images snake_case__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ : str = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : Union[str, Any] = self.get_dummy_components() snake_case__ : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : List[Any] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Union[str, Any] = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : List[str] = 'french fries' snake_case__ : Optional[Any] = sd_pipe(**__UpperCamelCase , negative_prompt=__UpperCamelCase ) snake_case__ : Union[str, Any] = output.images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ : Any = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> int: '''simple docstring''' snake_case__ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : List[str] = self.get_dummy_components() snake_case__ : str = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : str = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Dict = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : Any = [inputs['prompt']] * 2 snake_case__ : Optional[int] = np.array(inputs['image'] ).astype(np.floataa ) / 2_5_5.0 snake_case__ : Optional[int] = torch.from_numpy(__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) snake_case__ : Any = image / 2 + 0.5 snake_case__ : Optional[Any] = image.permute(0 , 3 , 1 , 2 ) snake_case__ : List[Any] = image.repeat(2 , 1 , 1 , 1 ) snake_case__ : Optional[int] = sd_pipe(**__UpperCamelCase ).images snake_case__ : Union[str, Any] = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) snake_case__ : List[Any] = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[int] = self.get_dummy_components() snake_case__ : Tuple = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' ) snake_case__ : int = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : List[str] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : str = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : Any = sd_pipe(**__UpperCamelCase ).images snake_case__ : int = image[0, -3:, -3:, -1] snake_case__ : Tuple = [round(__UpperCamelCase , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(__UpperCamelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) snake_case__ : List[Any] = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Optional[int] = self.get_dummy_components() snake_case__ : int = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : Union[str, Any] = VaeImageProcessor(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase ) snake_case__ : Optional[int] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Optional[Any] = pipe(**self.get_dummy_inputs_by_type(__UpperCamelCase , input_image_type='pt' ) )[0] snake_case__ : Union[str, Any] = components['vae'] snake_case__ : str = self.get_dummy_inputs_by_type(__UpperCamelCase , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): snake_case__ : List[str] = vae.encode(inputs[image_param] ).latent_dist.mode() snake_case__ : Dict = pipe(**__UpperCamelCase )[0] snake_case__ : str = np.abs(out - out_latents_inputs ).max() self.assertLess(__UpperCamelCase , 1E-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self , __UpperCamelCase=0 ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = torch.manual_seed(__UpperCamelCase ) snake_case__ : List[str] = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) snake_case__ : int = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : Tuple = self.get_inputs() snake_case__ : List[Any] = pipe(**__UpperCamelCase ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ : Dict = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ) -> str: '''simple docstring''' snake_case__ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase ) snake_case__ : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : Dict = self.get_inputs() snake_case__ : Dict = pipe(**__UpperCamelCase ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ : List[Any] = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase ) snake_case__ : Tuple = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : Optional[int] = self.get_inputs() snake_case__ : Optional[int] = pipe(**__UpperCamelCase ).images snake_case__ : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ : int = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = 0 def callback_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> None: snake_case__ : List[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case__ : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) snake_case__ : int = latents[0, -3:, -3:, -1] snake_case__ : List[str] = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: snake_case__ : Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) snake_case__ : Dict = latents[0, -3:, -3:, -1] snake_case__ : Optional[Any] = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 snake_case__ : str = False snake_case__ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) snake_case__ : int = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : int = self.get_inputs() pipe(**__UpperCamelCase , callback=__UpperCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __a ( self ) -> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) snake_case__ : Dict = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ : str = self.get_inputs() snake_case__ : Tuple = pipe(**__UpperCamelCase ) snake_case__ : List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __a ( self ) -> int: '''simple docstring''' snake_case__ : int = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 snake_case__ : Tuple = inputs['image'].resize((504, 504) ) snake_case__ : str = 'timbrooks/instruct-pix2pix' snake_case__ : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : str = pipe(**__UpperCamelCase ) snake_case__ : List[Any] = output.images[0] snake_case__ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) snake_case__ : List[str] = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
699
0
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase__ : Optional[Any] = ''' IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. ''' lowerCAmelCase__ : Optional[Any] = ''' Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric("mean_iou") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} ''' lowerCAmelCase__ : List[Any] = '''\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }''' def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ = None , A__ = False , ) -> Optional[int]: if label_map is not None: for old_id, new_id in label_map.items(): snake_case__ : str = new_id # turn into Numpy arrays snake_case__ : Union[str, Any] = np.array(A__ ) snake_case__ : Any = np.array(A__ ) if reduce_labels: snake_case__ : Optional[Any] = 255 snake_case__ : Union[str, Any] = label - 1 snake_case__ : Union[str, Any] = 255 snake_case__ : Tuple = label != ignore_index snake_case__ : Any = np.not_equal(A__ , A__ ) snake_case__ : str = pred_label[mask] snake_case__ : Any = np.array(A__ )[mask] snake_case__ : Tuple = pred_label[pred_label == label] snake_case__ : Dict = np.histogram(A__ , bins=A__ , range=(0, num_labels - 1) )[0] snake_case__ : str = np.histogram(A__ , bins=A__ , range=(0, num_labels - 1) )[0] snake_case__ : str = np.histogram(A__ , bins=A__ , range=(0, num_labels - 1) )[0] snake_case__ : List[str] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ = None , A__ = False , ) -> Dict: snake_case__ : str = np.zeros((num_labels,) , dtype=np.floataa ) snake_case__ : Optional[Any] = np.zeros((num_labels,) , dtype=np.floataa ) snake_case__ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) snake_case__ : Union[str, Any] = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(A__ , A__ ): snake_case__ : Any = intersect_and_union( A__ , A__ , A__ , A__ , A__ , A__ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ = None , A__ = None , A__ = False , ) -> List[Any]: snake_case__ : Dict = total_intersect_and_union( A__ , A__ , A__ , A__ , A__ , A__ ) # compute metrics snake_case__ : Tuple = {} snake_case__ : str = total_area_intersect.sum() / total_area_label.sum() snake_case__ : Union[str, Any] = total_area_intersect / total_area_union snake_case__ : Optional[int] = total_area_intersect / total_area_label snake_case__ : Optional[Any] = np.nanmean(A__ ) snake_case__ : Tuple = np.nanmean(A__ ) snake_case__ : Tuple = all_acc snake_case__ : str = iou snake_case__ : List[str] = acc if nan_to_num is not None: snake_case__ : str = {metric: np.nan_to_num(A__ , nan=A__ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def __a ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , ) -> int: '''simple docstring''' snake_case__ : Dict = mean_iou( results=__UpperCamelCase , gt_seg_maps=__UpperCamelCase , num_labels=__UpperCamelCase , ignore_index=__UpperCamelCase , nan_to_num=__UpperCamelCase , label_map=__UpperCamelCase , reduce_labels=__UpperCamelCase , ) return iou_result
711
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
699
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') lowerCAmelCase__ : Tuple = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:]) lowerCAmelCase__ : List[Any] = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase__ : Optional[int] = BeautifulSoup(res.text, '''html.parser''') lowerCAmelCase__ : int = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(F'''https://google.com{link.get('href')}''')
712
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class __snake_case : __lowerCamelCase = field( metadata={"""help""": """The output directory where the model will be written."""} ,) __lowerCamelCase = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } ,) __lowerCamelCase = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } ,) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def UpperCamelCase__ ( ) -> Union[str, Any]: snake_case__ : str = HfArgumentParser((ModelArguments,) ) ((snake_case__) , ) : Dict = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: snake_case__ : List[str] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: snake_case__ : Optional[int] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: snake_case__ : Optional[Any] = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: snake_case__ : List[str] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed snake_case__ : Any = True snake_case__ : Dict = True snake_case__ : Tuple = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=A__ , decoder_config=A__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens snake_case__ : Optional[Any] = decoder_config.decoder_start_token_id snake_case__ : Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: snake_case__ : Optional[Any] = decoder_config.bos_token_id if pad_token_id is None: snake_case__ : int = decoder_config.eos_token_id # This is necessary to make Flax's generate() work snake_case__ : Union[str, Any] = decoder_config.eos_token_id snake_case__ : Optional[int] = decoder_start_token_id snake_case__ : int = pad_token_id snake_case__ : Tuple = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) snake_case__ : int = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
699
0
def UpperCamelCase__ ( A__ ) -> bool: snake_case__ : Optional[int] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
713
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ , A__ = None , ) -> Optional[int]: snake_case__ : List[str] = {} if train_file is not None: snake_case__ : Tuple = [train_file] if eval_file is not None: snake_case__ : Dict = [eval_file] if test_file is not None: snake_case__ : str = [test_file] snake_case__ : Optional[Any] = datasets.load_dataset('csv' , data_files=A__ ) snake_case__ : Any = list(ds[list(files.keys() )[0]].features.keys() ) snake_case__ : Optional[Any] = features_name.pop(A__ ) snake_case__ : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) snake_case__ : str = {label: i for i, label in enumerate(A__ )} snake_case__ : int = tokenizer.model_input_names snake_case__ : int = {} if len(A__ ) == 1: for k in files.keys(): snake_case__ : str = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=A__ , max_length=A__ , padding='max_length' ) , batched=A__ , ) elif len(A__ ) == 2: for k in files.keys(): snake_case__ : Optional[int] = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=A__ , max_length=A__ , padding='max_length' , ) , batched=A__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: snake_case__ : int = {k: v for k, v in ex.items() if k in input_names} snake_case__ : Any = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: snake_case__ : int = {k: v for k, v in ex.items() if k in input_names} snake_case__ : Union[str, Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: snake_case__ : Dict = {k: v for k, v in ex.items() if k in input_names} snake_case__ : List[str] = labelaid[ex[label_name]] yield (d, label) snake_case__ : Any = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: snake_case__ : str = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) snake_case__ : Optional[int] = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: snake_case__ : Optional[int] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) snake_case__ : List[str] = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: snake_case__ : str = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase__ : List[str] = logging.getLogger(__name__) @dataclass class __snake_case : __lowerCamelCase = field(metadata={"""help""": """Which column contains the label"""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """The path of the training file"""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """The path of the development file"""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """The path of the test file"""} ) __lowerCamelCase = field( default=128 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class __snake_case : __lowerCamelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) def UpperCamelCase__ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) snake_case__ , snake_case__ , snake_case__ : Dict = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case__ : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=A__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) snake_case__ : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(A__ ) , labelaid=A__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): snake_case__ : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) def compute_metrics(A__ ) -> Dict: snake_case__ : Optional[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer snake_case__ : Any = TFTrainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case__ : Dict = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case__ : Tuple = trainer.evaluate() snake_case__ : Any = os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(A__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(A__ ) return results if __name__ == "__main__": main()
699
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __snake_case : def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=30 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=10 , __UpperCamelCase=0.0_2 , __UpperCamelCase=3 , __UpperCamelCase=None , __UpperCamelCase=2 , ) -> Optional[int]: '''simple docstring''' snake_case__ : List[str] = parent snake_case__ : Optional[Any] = batch_size snake_case__ : List[Any] = image_size snake_case__ : int = patch_size snake_case__ : str = num_channels snake_case__ : Tuple = is_training snake_case__ : Any = use_labels snake_case__ : str = hidden_size snake_case__ : List[str] = num_hidden_layers snake_case__ : Dict = num_attention_heads snake_case__ : List[str] = intermediate_size snake_case__ : List[str] = hidden_act snake_case__ : Dict = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : Optional[Any] = type_sequence_label_size snake_case__ : str = initializer_range snake_case__ : str = scope snake_case__ : Optional[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) snake_case__ : Union[str, Any] = (image_size // patch_size) ** 2 snake_case__ : Dict = num_patches + 2 def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Optional[Any] = None if self.use_labels: snake_case__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Dict = self.get_config() return config, pixel_values, labels def __a ( self ) -> List[str]: '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' snake_case__ : int = TFDeiTModel(config=__UpperCamelCase ) snake_case__ : List[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: '''simple docstring''' snake_case__ : Optional[Any] = TFDeiTForMaskedImageModeling(config=__UpperCamelCase ) snake_case__ : Union[str, Any] = model(__UpperCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case__ : Tuple = 1 snake_case__ : List[str] = TFDeiTForMaskedImageModeling(__UpperCamelCase ) snake_case__ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: '''simple docstring''' snake_case__ : Dict = self.type_sequence_label_size snake_case__ : Optional[int] = TFDeiTForImageClassification(__UpperCamelCase ) snake_case__ : int = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ : Any = 1 snake_case__ : List[str] = TFDeiTForImageClassification(__UpperCamelCase ) snake_case__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Optional[int] = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : str = self.prepare_config_and_inputs() snake_case__ : Optional[Any] = config_and_inputs snake_case__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __lowerCamelCase = ( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = TFDeiTModelTester(self ) snake_case__ : Any = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __a ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def __a ( self ) -> Tuple: '''simple docstring''' pass def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case__ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , tf.keras.layers.Dense ) ) def __a ( self ) -> str: '''simple docstring''' snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : str = model_class(__UpperCamelCase ) snake_case__ : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[int] = [*signature.parameters.keys()] snake_case__ : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __a ( self ) -> str: '''simple docstring''' snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __a ( self ) -> str: '''simple docstring''' snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCamelCase ) def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> Tuple: '''simple docstring''' snake_case__ : Union[str, Any] = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __a ( self ) -> Tuple: '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Dict = TFDeiTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def UpperCamelCase__ ( ) -> Any: snake_case__ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __snake_case ( unittest.TestCase ): @cached_property def __a ( self ) -> Optional[Any]: '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) snake_case__ : Tuple = self.default_image_processor snake_case__ : List[Any] = prepare_img() snake_case__ : Any = image_processor(images=__UpperCamelCase , return_tensors='tf' ) # forward pass snake_case__ : Optional[Any] = model(**__UpperCamelCase ) # verify the logits snake_case__ : List[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case__ : Union[str, Any] = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
714
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) class __snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCamelCase = None __lowerCamelCase = None class __snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCamelCase = datasets.Audio() __lowerCamelCase = """audio""" __lowerCamelCase = AudioFolderConfig __lowerCamelCase = 42 # definition at the bottom of the script __lowerCamelCase = AudioClassification(audio_column="""audio""" ,label_column="""label""" ) lowerCAmelCase__ : Tuple = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] lowerCAmelCase__ : List[Any] = AUDIO_EXTENSIONS
699
0
def UpperCamelCase__ ( ) -> int: return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(A__ , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'''{solution() = }''')
715
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = IFInpaintingPipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCamelCase = PipelineTesterMixin.required_optional_params - {"""latents"""} def __a ( self ) -> Optional[Any]: '''simple docstring''' return self._get_dummy_components() def __a ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> str: '''simple docstring''' if str(__UpperCamelCase ).startswith('mps' ): snake_case__ : int = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : Union[str, Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __a ( self ) -> List[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __a ( self ) -> Optional[int]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __a ( self ) -> List[str]: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def __a ( self ) -> List[str]: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __a ( self ) -> int: '''simple docstring''' self._test_save_load_local() def __a ( self ) -> List[str]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
699
0
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = KandinskyVaaPipeline __lowerCamelCase = [ """image_embeds""", """negative_image_embeds""", ] __lowerCamelCase = ["""image_embeds""", """negative_image_embeds"""] __lowerCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowerCamelCase = False @property def __a ( self ) -> Optional[Any]: '''simple docstring''' return 32 @property def __a ( self ) -> Any: '''simple docstring''' return 32 @property def __a ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def __a ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def __a ( self ) -> int: '''simple docstring''' return 100 @property def __a ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Union[str, Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } snake_case__ : Optional[int] = UNetaDConditionModel(**__UpperCamelCase ) return model @property def __a ( self ) -> str: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Any = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self ) -> str: '''simple docstring''' snake_case__ : Optional[int] = self.dummy_unet snake_case__ : int = self.dummy_movq snake_case__ : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=__UpperCamelCase , ) snake_case__ : int = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __a ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> Dict: '''simple docstring''' snake_case__ : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __UpperCamelCase ) if str(__UpperCamelCase ).startswith('mps' ): snake_case__ : Dict = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : Union[str, Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ : Any = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = 'cpu' snake_case__ : Any = self.get_dummy_components() snake_case__ : Dict = self.pipeline_class(**__UpperCamelCase ) snake_case__ : Any = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Union[str, Any] = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) snake_case__ : List[str] = output.images snake_case__ : List[Any] = pipe( **self.get_dummy_inputs(__UpperCamelCase ) , return_dict=__UpperCamelCase , )[0] snake_case__ : Tuple = image[0, -3:, -3:, -1] snake_case__ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ : Optional[Any] = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy' ) snake_case__ : int = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCamelCase ) snake_case__ : List[str] = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) snake_case__ : Optional[Any] = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Any = 'red cat, 4k photo' snake_case__ : Tuple = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case__ : Union[str, Any] = pipe_prior( __UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() snake_case__ : List[Any] = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case__ : Dict = pipeline( image_embeds=__UpperCamelCase , negative_image_embeds=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=100 , output_type='np' , ) snake_case__ : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
716
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ : List[Any] = '''▁''' lowerCAmelCase__ : int = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = BertGenerationTokenizer __lowerCamelCase = False __lowerCamelCase = True def __a ( self ) -> Optional[int]: '''simple docstring''' super().setUp() snake_case__ : str = BertGenerationTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[str] = '<s>' snake_case__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(__UpperCamelCase ) , 1002 ) def __a ( self ) -> int: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Optional[Any] = BertGenerationTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) snake_case__ : int = tokenizer.tokenize('This is a test' ) self.assertListEqual(__UpperCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [285, 46, 10, 170, 382] , ) snake_case__ : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) snake_case__ : Optional[Any] = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) snake_case__ : int = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def __a ( self ) -> Dict: '''simple docstring''' return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def __a ( self ) -> Any: '''simple docstring''' snake_case__ : int = 'Hello World!' snake_case__ : Union[str, Any] = [18536, 2260, 101] self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @slow def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : str = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) snake_case__ : List[Any] = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @require_torch @slow def __a ( self ) -> List[str]: '''simple docstring''' import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence snake_case__ : Optional[int] = list(self.big_tokenizer.get_vocab().keys() )[:10] snake_case__ : Optional[int] = ' '.join(__UpperCamelCase ) snake_case__ : int = self.big_tokenizer.encode_plus(__UpperCamelCase , return_tensors='pt' , return_token_type_ids=__UpperCamelCase ) snake_case__ : Tuple = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=__UpperCamelCase ) snake_case__ : Dict = BertGenerationConfig() snake_case__ : List[str] = BertGenerationEncoder(__UpperCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCamelCase ) model(**__UpperCamelCase ) @slow def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
699
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def UpperCamelCase__ ( A__ ) -> np.ndarray: return input_array.reshape((input_array.size, 1) ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> np.ndarray: snake_case__ : Tuple = np.nan for i in range(A__ ): snake_case__ : Optional[Any] = features[:, labels == i] snake_case__ : Tuple = data.mean(1 ) # Centralize the data of class i snake_case__ : Optional[Any] = data - column_reshape(A__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(A__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) snake_case__ : Optional[int] = np.dot(A__ , centered_data.T ) return covariance_sum / features.shape[1] def UpperCamelCase__ ( A__ , A__ , A__ ) -> np.ndarray: snake_case__ : Tuple = features.mean(1 ) snake_case__ : Any = np.nan for i in range(A__ ): snake_case__ : Dict = features[:, labels == i] snake_case__ : Optional[Any] = data.shape[1] snake_case__ : List[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(A__ ) - column_reshape(A__ ) , (column_reshape(A__ ) - column_reshape(A__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) snake_case__ : Any = device_data * np.dot( column_reshape(A__ ) - column_reshape(A__ ) , (column_reshape(A__ ) - column_reshape(A__ )).T , ) return covariance_sum / features.shape[1] def UpperCamelCase__ ( A__ , A__ ) -> np.ndarray: # Check if the features have been loaded if features.any(): snake_case__ : List[str] = features.mean(1 ) # Center the dataset snake_case__ : Optional[Any] = features - np.reshape(A__ , (data_mean.size, 1) ) snake_case__ : List[str] = np.dot(A__ , centered_data.T ) / features.shape[1] snake_case__ : List[str] = np.linalg.eigh(A__ ) # Take all the columns in the reverse order (-1), and then takes only the first snake_case__ : Tuple = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space snake_case__ : Optional[int] = np.dot(filtered_eigenvectors.T , A__ ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=A__ ) logging.error('Dataset empty' ) raise AssertionError def UpperCamelCase__ ( A__ , A__ , A__ , A__ ) -> np.ndarray: assert classes > dimensions # Check if features have been already loaded if features.any: snake_case__ : List[str] = eigh( covariance_between_classes(A__ , A__ , A__ ) , covariance_within_classes(A__ , A__ , A__ ) , ) snake_case__ : str = eigenvectors[:, ::-1][:, :dimensions] snake_case__ : Dict = np.linalg.svd(A__ ) snake_case__ : List[str] = svd_matrix[:, 0:dimensions] snake_case__ : Any = np.dot(filtered_svd_matrix.T , A__ ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=A__ ) logging.error('Dataset empty' ) raise AssertionError def UpperCamelCase__ ( ) -> None: # Create dummy dataset with 2 classes and 3 features snake_case__ : int = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) snake_case__ : Any = np.array([0, 0, 0, 1, 1] ) snake_case__ : List[str] = 2 snake_case__ : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(A__ ) as error_info: snake_case__ : Optional[Any] = linear_discriminant_analysis( A__ , A__ , A__ , A__ ) if isinstance(A__ , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def UpperCamelCase__ ( ) -> None: snake_case__ : int = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) snake_case__ : List[Any] = 2 snake_case__ : Any = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 10.3923_0485], [3.0, 3.0, 3.0]] ) with pytest.raises(A__ ) as error_info: snake_case__ : int = principal_component_analysis(A__ , A__ ) if not np.allclose(A__ , A__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
717
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowerCAmelCase__ : List[str] = HfApi() lowerCAmelCase__ : str = {} # fmt: off lowerCAmelCase__ : int = torch.tensor([ -0.75_15, -1.68_83, 0.24_20, 0.03_00, 0.63_47, 1.34_33, -1.17_43, -3.74_67, 1.23_42, -2.24_85, 0.46_36, 0.80_76, -0.79_91, 0.39_69, 0.84_98, 0.91_89, -1.88_87, -3.35_22, 0.76_39, 0.20_40, 0.62_71, -2.71_48, -1.63_16, 3.08_39, 0.31_86, 0.27_21, -0.97_59, -1.24_61, 2.62_57, 1.35_57 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.36_39, -2.53_44, 0.00_54, -0.66_74, 1.59_90, 1.01_58, 0.31_24, -2.14_36, 1.87_95, -2.54_29, -0.15_66, -0.39_73, 1.24_90, 2.64_47, 1.22_83, -0.52_08, -2.81_54, -3.51_19, 2.38_38, 1.20_33, 1.72_01, -2.12_56, -1.45_76, 2.79_48, 2.42_04, -0.97_52, -1.25_46, 0.80_27, 3.27_58, 3.13_65 ]) lowerCAmelCase__ : Dict = torch.tensor([ -0.65_31, -0.68_91, -0.31_72, -0.53_75, -0.91_40, -0.53_67, -0.11_75, -0.78_69, -0.38_08, -0.45_13, -0.20_98, -0.00_83, 0.31_83, 0.51_40, 0.22_47, -0.13_04, -0.13_02, -0.28_02, -0.20_84, -0.20_25, -0.49_67, -0.48_73, -0.08_61, 0.69_25, 0.02_50, 0.12_90, -0.15_43, 0.63_16, 1.04_60, 1.49_43 ]) lowerCAmelCase__ : List[str] = torch.tensor([ 0.09_11, 0.11_07, 0.01_82, 0.04_35, -0.08_05, -0.06_08, 0.03_81, 0.21_72, -0.02_80, 0.13_27, -0.02_99, -0.02_55, -0.00_50, -0.11_70, -0.10_46, 0.03_09, 0.13_67, 0.17_28, -0.05_33, -0.07_48, -0.05_34, 0.16_24, 0.03_84, -0.18_05, -0.07_07, 0.06_42, 0.02_20, -0.01_34, -0.13_33, -0.15_05 ]) lowerCAmelCase__ : Union[str, Any] = torch.tensor([ 0.13_21, 0.13_37, 0.04_40, 0.06_22, -0.05_91, -0.03_70, 0.05_03, 0.21_33, -0.01_77, 0.14_15, -0.01_16, -0.01_12, 0.00_44, -0.09_80, -0.07_89, 0.03_95, 0.15_02, 0.17_85, -0.04_88, -0.05_14, -0.04_04, 0.15_39, 0.04_54, -0.15_59, -0.06_65, 0.06_59, 0.03_83, -0.00_05, -0.12_66, -0.13_86 ]) lowerCAmelCase__ : List[Any] = torch.tensor([ 0.11_54, 0.12_18, 0.03_07, 0.05_26, -0.07_11, -0.05_41, 0.03_66, 0.20_78, -0.02_67, 0.13_17, -0.02_26, -0.01_93, -0.00_14, -0.10_55, -0.09_02, 0.03_30, 0.13_91, 0.17_09, -0.05_62, -0.06_93, -0.05_60, 0.14_82, 0.03_81, -0.16_83, -0.06_81, 0.06_61, 0.03_31, -0.00_46, -0.12_68, -0.14_31 ]) lowerCAmelCase__ : Optional[Any] = torch.tensor([ 0.11_92, 0.12_40, 0.04_14, 0.06_06, -0.05_57, -0.04_12, 0.04_30, 0.20_42, -0.02_00, 0.13_85, -0.01_15, -0.01_32, 0.00_17, -0.09_65, -0.08_02, 0.03_98, 0.14_33, 0.17_47, -0.04_58, -0.05_33, -0.04_07, 0.15_45, 0.04_19, -0.15_74, -0.06_45, 0.06_26, 0.03_41, -0.00_10, -0.11_99, -0.13_90 ]) lowerCAmelCase__ : List[str] = torch.tensor([ 0.10_75, 0.10_74, 0.02_05, 0.04_31, -0.07_74, -0.06_07, 0.02_98, 0.20_42, -0.03_20, 0.12_67, -0.02_81, -0.02_50, -0.00_64, -0.10_91, -0.09_46, 0.02_90, 0.13_28, 0.16_50, -0.05_80, -0.07_38, -0.05_86, 0.14_40, 0.03_37, -0.17_46, -0.07_12, 0.06_05, 0.02_50, -0.00_99, -0.13_16, -0.14_73 ]) lowerCAmelCase__ : List[str] = torch.tensor([ -1.45_72, -2.04_81, -0.04_14, -0.60_05, 1.41_36, 0.58_48, 0.40_28, -2.73_30, 1.22_12, -2.12_28, 0.21_55, 0.40_39, 0.76_62, 2.05_35, 0.74_77, -0.32_43, -2.17_58, -2.76_48, 1.69_47, 0.70_26, 1.23_38, -1.60_78, -0.86_82, 2.28_10, 1.85_74, -0.57_18, -0.55_86, -0.01_86, 2.34_15, 2.12_51]) lowerCAmelCase__ : List[Any] = torch.tensor([ -1.36_90, -1.97_20, -0.40_90, -0.69_66, 1.46_60, 0.99_38, -0.13_85, -2.73_24, 0.77_36, -1.89_17, 0.29_23, 0.42_93, 0.16_93, 1.41_12, 1.18_87, -0.31_81, -2.21_60, -2.63_81, 1.31_70, 0.81_63, 0.92_40, -1.65_44, -0.60_99, 2.52_59, 1.64_30, -0.90_90, -0.93_92, -0.01_26, 2.42_68, 2.32_66 ]) lowerCAmelCase__ : Tuple = torch.tensor([ -1.35_25, -1.96_28, -0.39_56, -0.68_60, 1.46_64, 1.00_14, -0.12_59, -2.72_12, 0.77_72, -1.88_11, 0.29_96, 0.43_88, 0.17_04, 1.40_29, 1.17_01, -0.30_27, -2.20_53, -2.62_87, 1.33_50, 0.81_31, 0.92_74, -1.62_92, -0.60_98, 2.51_31, 1.65_05, -0.89_58, -0.92_98, -0.01_51, 2.42_57, 2.33_55 ]) lowerCAmelCase__ : List[str] = torch.tensor([ -2.05_85, -2.78_97, -0.28_50, -0.89_40, 1.90_52, 0.57_02, 0.63_45, -3.89_59, 1.59_32, -3.23_19, 0.19_74, 0.02_87, 1.75_66, 2.65_43, 0.83_87, -0.53_51, -3.27_36, -4.33_75, 2.90_29, 1.63_90, 1.46_40, -2.17_01, -1.90_13, 2.93_41, 3.49_81, -0.62_55, -1.16_44, -0.15_91, 3.70_97, 3.20_66 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.31_39, -2.55_94, -0.01_97, -0.67_85, 1.70_01, 1.16_06, 0.30_75, -2.17_40, 1.80_71, -2.56_30, -0.09_26, -0.38_11, 1.21_16, 2.62_46, 1.27_31, -0.53_98, -2.81_53, -3.61_40, 2.38_93, 1.32_62, 1.62_58, -2.18_56, -1.32_67, 2.83_95, 2.37_79, -1.06_23, -1.24_68, 0.89_59, 3.33_67, 3.22_43 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.06_28, -2.76_67, -0.20_89, -0.82_63, 2.05_39, 0.59_92, 0.64_95, -3.83_36, 1.60_25, -3.28_17, 0.17_21, -0.06_33, 1.75_16, 2.70_39, 0.81_00, -0.59_08, -3.21_13, -4.43_43, 2.92_57, 1.36_32, 1.55_62, -2.14_89, -1.98_94, 3.05_60, 3.33_96, -0.73_28, -1.04_17, 0.03_83, 3.70_93, 3.23_43 ]) lowerCAmelCase__ : Any = torch.tensor([ -1.45_74, -2.05_69, -0.04_73, -0.61_17, 1.40_18, 0.57_69, 0.41_29, -2.73_44, 1.22_41, -2.13_97, 0.20_00, 0.39_37, 0.76_16, 2.04_53, 0.73_24, -0.33_91, -2.17_46, -2.77_44, 1.69_63, 0.69_21, 1.21_87, -1.61_72, -0.88_77, 2.24_39, 1.84_71, -0.58_39, -0.56_05, -0.04_64, 2.32_50, 2.12_19 ]) # fmt: on lowerCAmelCase__ : Any = api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowerCAmelCase__ : List[str] = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith('''CompVis'''): lowerCAmelCase__ : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: lowerCAmelCase__ : str = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowerCAmelCase__ : Any = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowerCAmelCase__ : List[str] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowerCAmelCase__ : int = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
699
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : str = logging.get_logger(__name__) lowerCAmelCase__ : List[str] = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = """cvt""" def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=[7, 3, 3] , __UpperCamelCase=[4, 2, 2] , __UpperCamelCase=[2, 1, 1] , __UpperCamelCase=[64, 192, 384] , __UpperCamelCase=[1, 3, 6] , __UpperCamelCase=[1, 2, 10] , __UpperCamelCase=[4.0, 4.0, 4.0] , __UpperCamelCase=[0.0, 0.0, 0.0] , __UpperCamelCase=[0.0, 0.0, 0.0] , __UpperCamelCase=[0.0, 0.0, 0.1] , __UpperCamelCase=[True, True, True] , __UpperCamelCase=[False, False, True] , __UpperCamelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCamelCase=[3, 3, 3] , __UpperCamelCase=[1, 1, 1] , __UpperCamelCase=[2, 2, 2] , __UpperCamelCase=[1, 1, 1] , __UpperCamelCase=[1, 1, 1] , __UpperCamelCase=0.0_2 , __UpperCamelCase=1E-12 , **__UpperCamelCase , ) -> int: '''simple docstring''' super().__init__(**__UpperCamelCase ) snake_case__ : List[str] = num_channels snake_case__ : int = patch_sizes snake_case__ : Optional[Any] = patch_stride snake_case__ : str = patch_padding snake_case__ : Dict = embed_dim snake_case__ : List[str] = num_heads snake_case__ : Any = depth snake_case__ : Optional[Any] = mlp_ratio snake_case__ : Union[str, Any] = attention_drop_rate snake_case__ : List[str] = drop_rate snake_case__ : Tuple = drop_path_rate snake_case__ : Optional[Any] = qkv_bias snake_case__ : Tuple = cls_token snake_case__ : Dict = qkv_projection_method snake_case__ : Dict = kernel_qkv snake_case__ : str = padding_kv snake_case__ : Dict = stride_kv snake_case__ : Union[str, Any] = padding_q snake_case__ : Tuple = stride_q snake_case__ : Optional[Any] = initializer_range snake_case__ : Union[str, Any] = layer_norm_eps
718
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCAmelCase__ : Dict = logging.get_logger(__name__) class __snake_case ( _lowerCamelCase ): def __init__( self , *__UpperCamelCase , **__UpperCamelCase ) -> None: '''simple docstring''' warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , __UpperCamelCase , ) super().__init__(*__UpperCamelCase , **__UpperCamelCase )
699
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ : Tuple = { '''configuration_distilbert''': [ '''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DistilBertConfig''', '''DistilBertOnnxConfig''', ], '''tokenization_distilbert''': ['''DistilBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = ['''DistilBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[Any] = [ '''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DistilBertForMaskedLM''', '''DistilBertForMultipleChoice''', '''DistilBertForQuestionAnswering''', '''DistilBertForSequenceClassification''', '''DistilBertForTokenClassification''', '''DistilBertModel''', '''DistilBertPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[Any] = [ '''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDistilBertForMaskedLM''', '''TFDistilBertForMultipleChoice''', '''TFDistilBertForQuestionAnswering''', '''TFDistilBertForSequenceClassification''', '''TFDistilBertForTokenClassification''', '''TFDistilBertMainLayer''', '''TFDistilBertModel''', '''TFDistilBertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = [ '''FlaxDistilBertForMaskedLM''', '''FlaxDistilBertForMultipleChoice''', '''FlaxDistilBertForQuestionAnswering''', '''FlaxDistilBertForSequenceClassification''', '''FlaxDistilBertForTokenClassification''', '''FlaxDistilBertModel''', '''FlaxDistilBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCAmelCase__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __snake_case ( datasets.BuilderConfig ): __lowerCamelCase = None __lowerCamelCase = "utf-8" __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = True # deprecated __lowerCamelCase = None # deprecated __lowerCamelCase = 10 << 20 # 10MB __lowerCamelCase = None class __snake_case ( datasets.ArrowBasedBuilder ): __lowerCamelCase = JsonConfig def __a ( self ) -> Optional[Any]: '''simple docstring''' if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead' ) snake_case__ : str = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.' ) if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported' ) return datasets.DatasetInfo(features=self.config.features ) def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) snake_case__ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__UpperCamelCase , (str, list, tuple) ): snake_case__ : Any = data_files if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : Optional[Any] = [files] snake_case__ : List[str] = [dl_manager.iter_files(__UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] snake_case__ : List[Any] = [] for split_name, files in data_files.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : List[Any] = [files] snake_case__ : Any = [dl_manager.iter_files(__UpperCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__UpperCamelCase , gen_kwargs={'files': files} ) ) return splits def __a ( self , __UpperCamelCase ) -> pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): snake_case__ : List[Any] = self.config.features.arrow_schema.field(__UpperCamelCase ).type snake_case__ : List[str] = pa_table.append_column(__UpperCamelCase , pa.array([None] * len(__UpperCamelCase ) , type=__UpperCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example snake_case__ : List[str] = table_cast(__UpperCamelCase , self.config.features.arrow_schema ) return pa_table def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(__UpperCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__UpperCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case__ : Union[str, Any] = json.load(__UpperCamelCase ) # We keep only the field we are interested in snake_case__ : Tuple = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__UpperCamelCase , (list, tuple) ): snake_case__ : List[Any] = set().union(*[row.keys() for row in dataset] ) snake_case__ : List[Any] = {col: [row.get(__UpperCamelCase ) for row in dataset] for col in keys} else: snake_case__ : List[Any] = dataset snake_case__ : Dict = pa.Table.from_pydict(__UpperCamelCase ) yield file_idx, self._cast_table(__UpperCamelCase ) # If the file has one json object per line else: with open(__UpperCamelCase , 'rb' ) as f: snake_case__ : Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small snake_case__ : Tuple = max(self.config.chunksize // 32 , 16 << 10 ) snake_case__ : Optional[Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: snake_case__ : Optional[int] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__UpperCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": snake_case__ : int = batch.decode(self.config.encoding , errors=__UpperCamelCase ).encode('utf-8' ) try: while True: try: snake_case__ : List[str] = paj.read_json( io.BytesIO(__UpperCamelCase ) , read_options=paj.ReadOptions(block_size=__UpperCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__UpperCamelCase , pa.ArrowInvalid ) and "straddling" not in str(__UpperCamelCase ) or block_size > len(__UpperCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(__UpperCamelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __UpperCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case__ : Tuple = json.load(__UpperCamelCase ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__UpperCamelCase , __UpperCamelCase ): # list is the only sequence type supported in JSON try: snake_case__ : str = set().union(*[row.keys() for row in dataset] ) snake_case__ : Union[str, Any] = {col: [row.get(__UpperCamelCase ) for row in dataset] for col in keys} snake_case__ : List[str] = pa.Table.from_pydict(__UpperCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(__UpperCamelCase ) break else: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__UpperCamelCase ) batch_idx += 1
699
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : Tuple = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCAmelCase__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
699
0
import os from distutils.util import strtobool def UpperCamelCase__ ( A__ , A__ ) -> Optional[int]: for e in env_keys: snake_case__ : Optional[int] = int(os.environ.get(A__ , -1 ) ) if val >= 0: return val return default def UpperCamelCase__ ( A__ , A__=False ) -> Union[str, Any]: snake_case__ : Union[str, Any] = os.environ.get(A__ , str(A__ ) ) return strtobool(A__ ) == 1 # As its name indicates `strtobool` actually returns an int... def UpperCamelCase__ ( A__ , A__="no" ) -> int: snake_case__ : List[Any] = os.environ.get(A__ , str(A__ ) ) return value
721
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCAmelCase__ : Dict = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCAmelCase__ : List[str] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCAmelCase__ : List[str] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def UpperCamelCase__ ( A__ , A__ ) -> tuple[str, float]: snake_case__ : Tuple = len([g for position, g in enumerate(A__ ) if g == main_target[position]] ) return (item, float(A__ )) def UpperCamelCase__ ( A__ , A__ ) -> tuple[str, str]: snake_case__ : str = random.randint(0 , len(A__ ) - 1 ) snake_case__ : int = parent_a[:random_slice] + parent_a[random_slice:] snake_case__ : Any = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def UpperCamelCase__ ( A__ , A__ ) -> str: snake_case__ : List[Any] = list(A__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: snake_case__ : Optional[Any] = random.choice(A__ ) return "".join(A__ ) def UpperCamelCase__ ( A__ , A__ , A__ , ) -> list[str]: snake_case__ : Tuple = [] # Generate more children proportionally to the fitness score. snake_case__ : Optional[Any] = int(parent_a[1] * 100 ) + 1 snake_case__ : str = 10 if child_n >= 10 else child_n for _ in range(A__ ): snake_case__ : Any = population_score[random.randint(0 , A__ )][0] snake_case__ , snake_case__ : int = crossover(parent_a[0] , A__ ) # Append new string to the population list. pop.append(mutate(A__ , A__ ) ) pop.append(mutate(A__ , A__ ) ) return pop def UpperCamelCase__ ( A__ , A__ , A__ = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: snake_case__ : Union[str, Any] = F"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(A__ ) # Verify that the target contains no genes besides the ones inside genes variable. snake_case__ : Tuple = sorted({c for c in target if c not in genes} ) if not_in_genes_list: snake_case__ : int = F"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(A__ ) # Generate random starting population. snake_case__ : Union[str, Any] = [] for _ in range(A__ ): population.append(''.join([random.choice(A__ ) for i in range(len(A__ ) )] ) ) # Just some logs to know what the algorithms is doing. snake_case__ , snake_case__ : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(A__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. snake_case__ : List[Any] = [evaluate(A__ , A__ ) for item in population] # Check if there is a matching evolution. snake_case__ : int = sorted(A__ , key=lambda A__ : x[1] , reverse=A__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"""\nGeneration: {generation}""" F"""\nTotal Population:{total_population}""" F"""\nBest score: {population_score[0][1]}""" F"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. snake_case__ : Optional[int] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(A__ ) # Normalize population score to be between 0 and 1. snake_case__ : str = [ (item, score / len(A__ )) for item, score in population_score ] # This is selection for i in range(A__ ): population.extend(select(population_score[int(A__ )] , A__ , A__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(A__ ) > N_POPULATION: break if __name__ == "__main__": lowerCAmelCase__ : str = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) lowerCAmelCase__ : Optional[Any] = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ : List[str] = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
699
0
import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowerCAmelCase__ : Any = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class __snake_case ( unittest.TestCase ): def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Optional[int] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) snake_case__ : Optional[int] = self.transformer_dir shutil.copy( os.path.join(__UpperCamelCase , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : List[Any] = 'src/transformers' shutil.rmtree(self.transformer_dir ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ) -> str: '''simple docstring''' snake_case__ : Dict = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: snake_case__ : Tuple = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result snake_case__ : Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) snake_case__ : Union[str, Any] = black.format_str(__UpperCamelCase , mode=__UpperCamelCase ) snake_case__ : Union[str, Any] = os.path.join(self.transformer_dir , 'new_code.py' ) with open(__UpperCamelCase , 'w' , newline='\n' ) as f: f.write(__UpperCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__UpperCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__UpperCamelCase ) with open(__UpperCamelCase , 'r' ) as f: self.assertTrue(f.read() , __UpperCamelCase ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[str] = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , __UpperCamelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , __UpperCamelCase ) , ) # Copy consistency with a really long name snake_case__ : str = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , F"""{long_class_name}LMPredictionHead""" , re.sub('Bert' , __UpperCamelCase , __UpperCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , __UpperCamelCase , overwrite_result=re.sub('Bert' , 'TestModel' , __UpperCamelCase ) , ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Union[str, Any] = check_copies.LOCALIZED_READMES['README_zh-hans.md'] snake_case__ : Optional[int] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) snake_case__ : Any = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) snake_case__ : List[Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) snake_case__ : Tuple = check_copies.convert_to_localized_md( __UpperCamelCase , __UpperCamelCase , localized_readme['format_model_list'] ) self.assertFalse(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : int = check_copies.convert_to_localized_md( __UpperCamelCase , __UpperCamelCase , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__UpperCamelCase ) snake_case__ : int = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) snake_case__ : List[str] = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) snake_case__ : Dict = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) snake_case__ : Optional[int] = check_copies.convert_to_localized_md( __UpperCamelCase , __UpperCamelCase , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(__UpperCamelCase , __UpperCamelCase )
700
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCAmelCase__ : Optional[int] = TypeVar('''T''') class __snake_case ( Generic[T] ): def __init__( self , __UpperCamelCase ) -> Any: '''simple docstring''' snake_case__ : Optional[int] = data snake_case__ : Node[T] | None = None def __str__( self ) -> str: '''simple docstring''' return F"""{self.data}""" class __snake_case ( Generic[T] ): def __init__( self ) -> None: '''simple docstring''' snake_case__ : Node[T] | None = None def __iter__( self ) -> Iterator[T]: '''simple docstring''' snake_case__ : str = self.top while node: yield node.data snake_case__ : Dict = node.next def __str__( self ) -> str: '''simple docstring''' return "->".join([str(__UpperCamelCase ) for item in self] ) def __len__( self ) -> int: '''simple docstring''' return len(tuple(iter(self ) ) ) def __a ( self ) -> bool: '''simple docstring''' return self.top is None def __a ( self , __UpperCamelCase ) -> None: '''simple docstring''' snake_case__ : str = Node(__UpperCamelCase ) if not self.is_empty(): snake_case__ : List[str] = self.top snake_case__ : Tuple = node def __a ( self ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , __UpperCamelCase ) snake_case__ : List[str] = self.top snake_case__ : Union[str, Any] = self.top.next return pop_node.data def __a ( self ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def __a ( self ) -> None: '''simple docstring''' snake_case__ : Any = None if __name__ == "__main__": from doctest import testmod testmod()
699
0
import numpy as np import qiskit def UpperCamelCase__ ( A__ = 8 , A__ = None ) -> str: snake_case__ : Optional[int] = np.random.default_rng(seed=A__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. snake_case__ : Tuple = 6 * key_len # Measurement basis for Alice's qubits. snake_case__ : Tuple = rng.integers(2 , size=A__ ) # The set of states Alice will prepare. snake_case__ : List[str] = rng.integers(2 , size=A__ ) # Measurement basis for Bob's qubits. snake_case__ : List[Any] = rng.integers(2 , size=A__ ) # Quantum Circuit to simulate BB84 snake_case__ : Any = qiskit.QuantumCircuit(A__ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(A__ ): if alice_state[index] == 1: bbaa_circ.x(A__ ) if alice_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(A__ ): if bob_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. snake_case__ : List[str] = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. snake_case__ : Optional[Any] = qiskit.execute(A__ , A__ , shots=1 , seed_simulator=A__ ) # Returns the result of measurement. snake_case__ : Union[str, Any] = job.result().get_counts(A__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. snake_case__ : Optional[Any] = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( A__ , A__ , A__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. snake_case__ : Tuple = gen_key[:key_len] if len(A__ ) >= key_len else gen_key.ljust(A__ , '0' ) return key if __name__ == "__main__": print(F'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
701
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : int = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = """poolformer""" def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=16 , __UpperCamelCase=16 , __UpperCamelCase=3 , __UpperCamelCase=4.0 , __UpperCamelCase=[2, 2, 6, 2] , __UpperCamelCase=[64, 128, 320, 512] , __UpperCamelCase=[7, 3, 3, 3] , __UpperCamelCase=[4, 2, 2, 2] , __UpperCamelCase=[2, 1, 1, 1] , __UpperCamelCase=4 , __UpperCamelCase=0.0 , __UpperCamelCase="gelu" , __UpperCamelCase=True , __UpperCamelCase=1E-5 , __UpperCamelCase=0.0_2 , **__UpperCamelCase , ) -> Any: '''simple docstring''' snake_case__ : List[str] = num_channels snake_case__ : Dict = patch_size snake_case__ : Optional[int] = stride snake_case__ : str = padding snake_case__ : List[str] = pool_size snake_case__ : List[Any] = hidden_sizes snake_case__ : List[Any] = mlp_ratio snake_case__ : Union[str, Any] = depths snake_case__ : Dict = patch_sizes snake_case__ : Dict = strides snake_case__ : Dict = num_encoder_blocks snake_case__ : Union[str, Any] = drop_path_rate snake_case__ : List[str] = hidden_act snake_case__ : Optional[Any] = use_layer_scale snake_case__ : int = layer_scale_init_value snake_case__ : Dict = initializer_range super().__init__(**__UpperCamelCase ) class __snake_case ( _lowerCamelCase ): __lowerCamelCase = version.parse("""1.11""" ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __a ( self ) -> float: '''simple docstring''' return 2E-3
699
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=30 , __UpperCamelCase=400 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=True , __UpperCamelCase=1 / 255 , __UpperCamelCase=True , ) -> Optional[int]: '''simple docstring''' snake_case__ : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} snake_case__ : str = parent snake_case__ : Optional[int] = batch_size snake_case__ : int = num_channels snake_case__ : Union[str, Any] = min_resolution snake_case__ : Optional[Any] = max_resolution snake_case__ : int = do_resize snake_case__ : Any = size snake_case__ : Dict = do_normalize snake_case__ : List[str] = image_mean snake_case__ : Optional[Any] = image_std snake_case__ : List[str] = do_rescale snake_case__ : Optional[Any] = rescale_factor snake_case__ : Dict = do_pad def __a ( self ) -> Union[str, Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __a ( self , __UpperCamelCase , __UpperCamelCase=False ) -> str: '''simple docstring''' if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): snake_case__ : str = image.size else: snake_case__ : Tuple = image.shape[1], image.shape[2] if w < h: snake_case__ : Dict = int(self.size['shortest_edge'] * h / w ) snake_case__ : int = self.size['shortest_edge'] elif w > h: snake_case__ : Union[str, Any] = self.size['shortest_edge'] snake_case__ : Tuple = int(self.size['shortest_edge'] * w / h ) else: snake_case__ : str = self.size['shortest_edge'] snake_case__ : Any = self.size['shortest_edge'] else: snake_case__ : str = [] for image in image_inputs: snake_case__ : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : int = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] snake_case__ : Union[str, Any] = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = ConditionalDetrImageProcessor if is_vision_available() else None def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Optional[Any] = ConditionalDetrImageProcessingTester(self ) @property def __a ( self ) -> List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'size' ) ) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) snake_case__ : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def __a ( self ) -> str: '''simple docstring''' pass def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ : Optional[Any] = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) snake_case__ : Union[str, Any] = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self ) -> str: '''simple docstring''' snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Any = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values snake_case__ : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self ) -> str: '''simple docstring''' snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ : Optional[Any] = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: snake_case__ : Dict = json.loads(f.read() ) snake_case__ : Union[str, Any] = {'image_id': 39769, 'annotations': target} # encode them snake_case__ : Any = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) snake_case__ : int = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors='pt' ) # verify pixel values snake_case__ : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __UpperCamelCase ) snake_case__ : List[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) ) # verify area snake_case__ : List[str] = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __UpperCamelCase ) ) # verify boxes snake_case__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __UpperCamelCase ) snake_case__ : Optional[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __UpperCamelCase , atol=1E-3 ) ) # verify image_id snake_case__ : Dict = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __UpperCamelCase ) ) # verify is_crowd snake_case__ : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __UpperCamelCase ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __UpperCamelCase ) ) # verify orig_size snake_case__ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __UpperCamelCase ) ) # verify size snake_case__ : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __UpperCamelCase ) ) @slow def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: snake_case__ : str = json.loads(f.read() ) snake_case__ : Any = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} snake_case__ : Tuple = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them snake_case__ : Optional[Any] = ConditionalDetrImageProcessor(format='coco_panoptic' ) snake_case__ : int = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors='pt' ) # verify pixel values snake_case__ : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __UpperCamelCase ) snake_case__ : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) ) # verify area snake_case__ : Optional[Any] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __UpperCamelCase ) ) # verify boxes snake_case__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __UpperCamelCase ) snake_case__ : Tuple = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __UpperCamelCase , atol=1E-3 ) ) # verify image_id snake_case__ : int = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __UpperCamelCase ) ) # verify is_crowd snake_case__ : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __UpperCamelCase ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __UpperCamelCase ) ) # verify masks snake_case__ : Optional[int] = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , __UpperCamelCase ) # verify orig_size snake_case__ : Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __UpperCamelCase ) ) # verify size snake_case__ : Tuple = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __UpperCamelCase ) )
702
import numpy as np import qiskit def UpperCamelCase__ ( A__ = 8 , A__ = None ) -> str: snake_case__ : Optional[int] = np.random.default_rng(seed=A__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. snake_case__ : Tuple = 6 * key_len # Measurement basis for Alice's qubits. snake_case__ : Tuple = rng.integers(2 , size=A__ ) # The set of states Alice will prepare. snake_case__ : List[str] = rng.integers(2 , size=A__ ) # Measurement basis for Bob's qubits. snake_case__ : List[Any] = rng.integers(2 , size=A__ ) # Quantum Circuit to simulate BB84 snake_case__ : Any = qiskit.QuantumCircuit(A__ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(A__ ): if alice_state[index] == 1: bbaa_circ.x(A__ ) if alice_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(A__ ): if bob_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. snake_case__ : List[str] = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. snake_case__ : Optional[Any] = qiskit.execute(A__ , A__ , shots=1 , seed_simulator=A__ ) # Returns the result of measurement. snake_case__ : Union[str, Any] = job.result().get_counts(A__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. snake_case__ : Optional[Any] = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( A__ , A__ , A__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. snake_case__ : Tuple = gen_key[:key_len] if len(A__ ) >= key_len else gen_key.ljust(A__ , '0' ) return key if __name__ == "__main__": print(F'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
699
0
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __snake_case : def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=30 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=10 , __UpperCamelCase=0.0_2 , __UpperCamelCase=3 , __UpperCamelCase=None , __UpperCamelCase=2 , ) -> Optional[int]: '''simple docstring''' snake_case__ : Any = parent snake_case__ : Tuple = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : Optional[int] = patch_size snake_case__ : int = num_channels snake_case__ : str = is_training snake_case__ : str = use_labels snake_case__ : Optional[Any] = hidden_size snake_case__ : Optional[int] = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : Any = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : Any = type_sequence_label_size snake_case__ : Any = initializer_range snake_case__ : Union[str, Any] = scope snake_case__ : str = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) snake_case__ : str = (image_size // patch_size) ** 2 snake_case__ : List[Any] = num_patches + 2 def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : List[Any] = None if self.use_labels: snake_case__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : str = self.get_config() return config, pixel_values, labels def __a ( self ) -> int: '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: '''simple docstring''' snake_case__ : Dict = DeiTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' snake_case__ : Any = DeiTForMaskedImageModeling(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : Dict = model(__UpperCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case__ : Dict = 1 snake_case__ : Any = DeiTForMaskedImageModeling(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: '''simple docstring''' snake_case__ : Union[str, Any] = self.type_sequence_label_size snake_case__ : List[Any] = DeiTForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : Optional[Any] = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ : Tuple = 1 snake_case__ : List[Any] = DeiTForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = self.prepare_config_and_inputs() ( snake_case__ ) : Any = config_and_inputs snake_case__ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __lowerCamelCase = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Optional[int] = DeiTModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __a ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def __a ( self ) -> List[Any]: '''simple docstring''' pass def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Tuple = model_class(__UpperCamelCase ) snake_case__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Dict = [*signature.parameters.keys()] snake_case__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __a ( self ) -> str: '''simple docstring''' snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCamelCase ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> Optional[Any]: '''simple docstring''' snake_case__ : Any = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __a ( self ) -> Tuple: '''simple docstring''' if not self.model_tester.is_training: return snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Tuple = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__UpperCamelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue snake_case__ : Dict = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() snake_case__ : Tuple = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) snake_case__ : Union[str, Any] = model(**__UpperCamelCase ).loss loss.backward() def __a ( self ) -> int: '''simple docstring''' snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return snake_case__ : List[Any] = False snake_case__ : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue snake_case__ : Any = model_class(__UpperCamelCase ) model.gradient_checkpointing_enable() model.to(__UpperCamelCase ) model.train() snake_case__ : Optional[Any] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) snake_case__ : List[str] = model(**__UpperCamelCase ).loss loss.backward() def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : str = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__UpperCamelCase ), *get_values(__UpperCamelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): snake_case__ : Dict = problem_type['title'] snake_case__ : Any = problem_type['num_labels'] snake_case__ : Tuple = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() snake_case__ : Dict = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if problem_type["num_labels"] > 1: snake_case__ : List[Any] = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) snake_case__ : Any = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__UpperCamelCase ) as warning_list: snake_case__ : List[Any] = model(**__UpperCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def __a ( self ) -> Optional[Any]: '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : int = DeiTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def UpperCamelCase__ ( ) -> str: snake_case__ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def __a ( self ) -> Dict: '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Dict = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to( __UpperCamelCase ) snake_case__ : int = self.default_image_processor snake_case__ : Tuple = prepare_img() snake_case__ : Dict = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case__ : Any = model(**__UpperCamelCase ) # verify the logits snake_case__ : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case__ : List[Any] = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[Any] = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224' , torch_dtype=torch.floataa , device_map='auto' ) snake_case__ : str = self.default_image_processor snake_case__ : Dict = prepare_img() snake_case__ : Tuple = image_processor(images=__UpperCamelCase , return_tensors='pt' ) snake_case__ : List[str] = inputs.pixel_values.to(__UpperCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): snake_case__ : List[Any] = model(__UpperCamelCase )
703
def UpperCamelCase__ ( A__ , A__ , A__ ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case__ : Dict = _modexpt(A__ , exponent // 2 , A__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(A__ , exponent - 1 , A__ )) % modulo_value def UpperCamelCase__ ( A__ = 1777 , A__ = 1855 , A__ = 8 ) -> int: snake_case__ : Tuple = base for _ in range(1 , A__ ): snake_case__ : Any = _modexpt(A__ , A__ , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
699
0
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
704
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ : Tuple = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase__ ( A__ ) -> Optional[Any]: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(A__ ) def UpperCamelCase__ ( A__ ) -> Optional[Any]: from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Union[str, Any] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(A__ , id=A__ )
699
0
import random def UpperCamelCase__ ( A__ , A__ ) -> tuple: snake_case__ : Tuple = [], [], [] for element in data: if element < pivot: less.append(A__ ) elif element > pivot: greater.append(A__ ) else: equal.append(A__ ) return less, equal, greater def UpperCamelCase__ ( A__ , A__ ) -> Optional[int]: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(A__ ) or index < 0: return None snake_case__ : Union[str, Any] = items[random.randint(0 , len(A__ ) - 1 )] snake_case__ : List[str] = 0 snake_case__ : List[str] = _partition(A__ , A__ ) snake_case__ : str = len(A__ ) snake_case__ : Union[str, Any] = len(A__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(A__ , A__ ) # must be in larger else: return quick_select(A__ , index - (m + count) )
705
def UpperCamelCase__ ( A__ ) -> list[int]: if length <= 0 or not isinstance(A__ , A__ ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(A__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
699
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase__ : List[str] = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } lowerCAmelCase__ : str = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def UpperCamelCase__ ( A__ , A__=False ) -> int: snake_case__ : Optional[Any] = create_model( 'HTSAT-tiny' , 'roberta' , A__ , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=A__ , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def UpperCamelCase__ ( A__ ) -> int: snake_case__ : Union[str, Any] = {} snake_case__ : Union[str, Any] = r'.*sequential.(\d+).*' snake_case__ : int = r'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case__ : List[str] = key.replace(A__ , A__ ) if re.match(A__ , A__ ): # replace sequential layers with list snake_case__ : str = re.match(A__ , A__ ).group(1 ) snake_case__ : List[Any] = key.replace(F"""sequential.{sequential_layer}.""" , F"""layers.{int(A__ )//3}.linear.""" ) elif re.match(A__ , A__ ): snake_case__ : Optional[int] = int(re.match(A__ , A__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... snake_case__ : List[str] = 1 if projecton_layer == 0 else 2 snake_case__ : Union[str, Any] = key.replace(F"""_projection.{projecton_layer}.""" , F"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value snake_case__ : str = value snake_case__ : Optional[int] = mixed_qkv.size(0 ) // 3 snake_case__ : Tuple = mixed_qkv[:qkv_dim] snake_case__ : int = mixed_qkv[qkv_dim : qkv_dim * 2] snake_case__ : str = mixed_qkv[qkv_dim * 2 :] snake_case__ : Dict = query_layer snake_case__ : Any = key_layer snake_case__ : str = value_layer else: snake_case__ : Tuple = value return model_state_dict def UpperCamelCase__ ( A__ , A__ , A__ , A__=False ) -> List[Any]: snake_case__ : int = init_clap(A__ , enable_fusion=A__ ) clap_model.eval() snake_case__ : Optional[int] = clap_model.state_dict() snake_case__ : Optional[Any] = rename_state_dict(A__ ) snake_case__ : List[str] = ClapConfig() snake_case__ : str = enable_fusion snake_case__ : Optional[Any] = ClapModel(A__ ) # ignore the spectrogram embedding layer model.load_state_dict(A__ , strict=A__ ) model.save_pretrained(A__ ) transformers_config.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : str = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') lowerCAmelCase__ : Optional[int] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
706
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Dict = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase__ : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> List[str]: snake_case__ : int = state_dict.pop(A__ ) snake_case__ : Union[str, Any] = val def UpperCamelCase__ ( A__ ) -> int: snake_case__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case__ : Any = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) snake_case__ : Optional[int] = value else: snake_case__ : Optional[int] = value return new_state_dict def UpperCamelCase__ ( A__ , A__=False ) -> Optional[int]: snake_case__ : Optional[int] = '' if is_panoptic: snake_case__ : Tuple = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case__ : int = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) snake_case__ : str = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Union[str, Any] = in_proj_weight[:256, :] snake_case__ : Union[str, Any] = in_proj_bias[:256] snake_case__ : Union[str, Any] = in_proj_weight[256:512, :] snake_case__ : Optional[Any] = in_proj_bias[256:512] snake_case__ : List[str] = in_proj_weight[-256:, :] snake_case__ : Tuple = in_proj_bias[-256:] def UpperCamelCase__ ( ) -> Tuple: snake_case__ : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : str = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( A__ , A__ ) -> str: snake_case__ : List[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case__ : Any = 'resnet101' if "dc5" in model_name: snake_case__ : Any = True snake_case__ : int = 'panoptic' in model_name if is_panoptic: snake_case__ : str = 250 else: snake_case__ : Union[str, Any] = 91 snake_case__ : Optional[int] = 'huggingface/label-files' snake_case__ : Optional[Any] = 'coco-detection-id2label.json' snake_case__ : str = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) snake_case__ : List[Any] = {int(A__ ): v for k, v in idalabel.items()} snake_case__ : Any = idalabel snake_case__ : int = {v: k for k, v in idalabel.items()} # load image processor snake_case__ : List[Any] = 'coco_panoptic' if is_panoptic else 'coco_detection' snake_case__ : List[Any] = ConditionalDetrImageProcessor(format=A__ ) # prepare image snake_case__ : List[str] = prepare_img() snake_case__ : Any = image_processor(images=A__ , return_tensors='pt' ) snake_case__ : Dict = encoding['pixel_values'] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub snake_case__ : Any = torch.hub.load('DeppMeng/ConditionalDETR' , A__ , pretrained=A__ ).eval() snake_case__ : Tuple = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case__ : List[Any] = 'conditional_detr.' + src rename_key(A__ , A__ , A__ ) snake_case__ : Dict = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ , is_panoptic=A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case__ : Optional[int] = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): snake_case__ : List[Any] = state_dict.pop(A__ ) snake_case__ : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case__ : str = state_dict.pop(A__ ) snake_case__ : List[Any] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: snake_case__ : Union[str, Any] = state_dict.pop(A__ ) snake_case__ : Dict = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): snake_case__ : List[Any] = state_dict.pop(A__ ) snake_case__ : Optional[int] = val # finally, create HuggingFace model and load state dict snake_case__ : Union[str, Any] = ConditionalDetrForSegmentation(A__ ) if is_panoptic else ConditionalDetrForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() model.push_to_hub(repo_id=A__ , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion snake_case__ : Tuple = conditional_detr(A__ ) snake_case__ : str = model(A__ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
699
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCAmelCase__ : Any = logging.get_logger(__name__) lowerCAmelCase__ : Optional[Any] = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = """codegen""" __lowerCamelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __UpperCamelCase=50400 , __UpperCamelCase=2048 , __UpperCamelCase=2048 , __UpperCamelCase=4096 , __UpperCamelCase=28 , __UpperCamelCase=16 , __UpperCamelCase=64 , __UpperCamelCase=None , __UpperCamelCase="gelu_new" , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=1E-5 , __UpperCamelCase=0.0_2 , __UpperCamelCase=True , __UpperCamelCase=50256 , __UpperCamelCase=50256 , __UpperCamelCase=False , **__UpperCamelCase , ) -> List[str]: '''simple docstring''' snake_case__ : Optional[Any] = vocab_size snake_case__ : List[str] = n_ctx snake_case__ : List[str] = n_positions snake_case__ : Union[str, Any] = n_embd snake_case__ : Union[str, Any] = n_layer snake_case__ : Optional[int] = n_head snake_case__ : Optional[int] = n_inner snake_case__ : List[str] = rotary_dim snake_case__ : List[Any] = activation_function snake_case__ : Union[str, Any] = resid_pdrop snake_case__ : List[str] = embd_pdrop snake_case__ : List[Any] = attn_pdrop snake_case__ : List[str] = layer_norm_epsilon snake_case__ : int = initializer_range snake_case__ : List[str] = use_cache snake_case__ : Tuple = bos_token_id snake_case__ : List[str] = eos_token_id super().__init__( bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , tie_word_embeddings=__UpperCamelCase , **__UpperCamelCase ) class __snake_case ( _lowerCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase = "default" , __UpperCamelCase = None , __UpperCamelCase = False , ) -> Optional[Any]: '''simple docstring''' super().__init__(__UpperCamelCase , task=__UpperCamelCase , patching_specs=__UpperCamelCase , use_past=__UpperCamelCase ) if not getattr(self._config , 'pad_token_id' , __UpperCamelCase ): # TODO: how to do that better? snake_case__ : str = 0 @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' snake_case__ : Tuple = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(__UpperCamelCase , direction='inputs' ) snake_case__ : List[str] = {0: 'batch', 1: 'past_sequence + sequence'} else: snake_case__ : List[Any] = {0: 'batch', 1: 'sequence'} return common_inputs @property def __a ( self ) -> int: '''simple docstring''' return self._config.n_layer @property def __a ( self ) -> int: '''simple docstring''' return self._config.n_head def __a ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case__ : int = super(__UpperCamelCase , self ).generate_dummy_inputs( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) # We need to order the input in the way they appears in the forward() snake_case__ : Optional[Any] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch snake_case__ : Optional[int] = common_inputs['input_ids'].shape # Not using the same length for past_key_values snake_case__ : Dict = seqlen + 2 snake_case__ : List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) snake_case__ : Dict = [ (torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) for _ in range(self.num_layers ) ] snake_case__ : Any = common_inputs['attention_mask'] if self.use_past: snake_case__ : Any = ordered_inputs['attention_mask'].dtype snake_case__ : List[str] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(__UpperCamelCase , __UpperCamelCase , dtype=__UpperCamelCase )] , dim=1 ) return ordered_inputs @property def __a ( self ) -> int: '''simple docstring''' return 13
707
from collections import namedtuple lowerCAmelCase__ : Union[str, Any] = namedtuple('''from_to''', '''from_ to''') lowerCAmelCase__ : Tuple = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.0_01, 10_00), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_04_54, 2_64.1_72), '''cubicyard''': from_to(0.7_64_55, 1.3_07_95), '''cubicfoot''': from_to(0.0_28, 35.31_47), '''cup''': from_to(0.0_00_23_65_88, 42_26.75), } def UpperCamelCase__ ( A__ , A__ , A__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ', '.join(A__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ', '.join(A__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
699
0
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase__ ( A__ , A__ , A__ = 10**-10 ) -> float: snake_case__ : List[Any] = a while True: snake_case__ : Optional[Any] = Decimal(A__ ) - ( Decimal(eval(A__ ) ) / Decimal(eval(str(diff(A__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(A__ ) ) < precision: # noqa: S307 return float(A__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
708
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : Tuple = logging.get_logger(__name__) lowerCAmelCase__ : Union[str, Any] = '''▁''' lowerCAmelCase__ : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ : Optional[Any] = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } lowerCAmelCase__ : str = { '''facebook/xglm-564M''': 20_48, } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCamelCase , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase = None , **__UpperCamelCase , ) -> None: '''simple docstring''' snake_case__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case__ : Tuple = 7 snake_case__ : Dict = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case__ : Union[str, Any] = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) snake_case__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) snake_case__ : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case__ : Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case__ : Tuple = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case__ : List[Any] = len(self.sp_model ) snake_case__ : Optional[Any] = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__UpperCamelCase ) snake_case__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = self.__dict__.copy() snake_case__ : Optional[Any] = None snake_case__ : Tuple = self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case__ : Any = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case__ : str = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __a ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' snake_case__ : int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __a ( self ) -> Tuple: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def __a ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case__ : Optional[Any] = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' snake_case__ : int = ''.join(__UpperCamelCase ).replace(__UpperCamelCase , ' ' ).strip() return out_string def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ : List[str] = os.path.join( __UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , 'wb' ) as fi: snake_case__ : Any = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
699
0
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( A__ , A__ , A__ ) -> List[str]: # Initialise PyTorch model snake_case__ : Optional[Any] = LxmertConfig.from_json_file(A__ ) print(F"""Building PyTorch model from configuration: {config}""" ) snake_case__ : Tuple = LxmertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(A__ , A__ , A__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": lowerCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
709
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCAmelCase__ : Any = logging.get_logger(__name__) lowerCAmelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : Any = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Any = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Tuple = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Dict = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_12, '''facebook/dpr-ctx_encoder-multiset-base''': 5_12, } lowerCAmelCase__ : Union[str, Any] = { '''facebook/dpr-question_encoder-single-nq-base''': 5_12, '''facebook/dpr-question_encoder-multiset-base''': 5_12, } lowerCAmelCase__ : Optional[Any] = { '''facebook/dpr-reader-single-nq-base''': 5_12, '''facebook/dpr-reader-multiset-base''': 5_12, } lowerCAmelCase__ : Tuple = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase__ : Any = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase__ : List[str] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = DPRContextEncoderTokenizer class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = DPRQuestionEncoderTokenizer lowerCAmelCase__ : Tuple = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCAmelCase__ : List[Any] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCAmelCase__ : int = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_lowerCamelCase ) class __snake_case : def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) elif titles is None or texts is None: snake_case__ : Optional[Any] = titles if texts is None else texts return super().__call__( __UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ : int = titles if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [titles] snake_case__ : Optional[int] = texts if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [texts] snake_case__ : List[Any] = len(__UpperCamelCase ) snake_case__ : str = questions if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [questions] * n_passages assert len(__UpperCamelCase ) == len( __UpperCamelCase ), F"""There should be as many titles than texts but got {len(__UpperCamelCase )} titles and {len(__UpperCamelCase )} texts.""" snake_case__ : Optional[int] = super().__call__(__UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )['input_ids'] snake_case__ : Optional[Any] = super().__call__(__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )['input_ids'] snake_case__ : Union[str, Any] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCamelCase , __UpperCamelCase ) ] } if return_attention_mask is not False: snake_case__ : List[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case__ : Union[str, Any] = attention_mask return self.pad(__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 16 , __UpperCamelCase = 64 , __UpperCamelCase = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' snake_case__ : Optional[Any] = reader_input['input_ids'] snake_case__ , snake_case__ , snake_case__ : Any = reader_output[:3] snake_case__ : List[str] = len(__UpperCamelCase ) snake_case__ : Tuple = sorted(range(__UpperCamelCase ) , reverse=__UpperCamelCase , key=relevance_logits.__getitem__ ) snake_case__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: snake_case__ : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case__ : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case__ : Union[str, Any] = sequence_ids.index(self.pad_token_id ) else: snake_case__ : str = len(__UpperCamelCase ) snake_case__ : Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCamelCase , top_spans=__UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCamelCase , start_index=__UpperCamelCase , end_index=__UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> List[DPRSpanPrediction]: '''simple docstring''' snake_case__ : Any = [] for start_index, start_score in enumerate(__UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case__ : str = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] , reverse=__UpperCamelCase ) snake_case__ : Any = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" snake_case__ : str = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_lowerCamelCase ) class __snake_case ( _lowerCamelCase ,_lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = READER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = ["""input_ids""", """attention_mask"""] __lowerCamelCase = DPRReaderTokenizer
699
0
'''simple docstring''' def UpperCamelCase__ ( A__ , A__ ) -> str: if not (isinstance(A__ , A__ ) and isinstance(A__ , A__ )): raise ValueError('longest_common_substring() takes two strings for inputs' ) snake_case__ : Optional[int] = len(A__ ) snake_case__ : List[str] = len(A__ ) snake_case__ : Any = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] snake_case__ : int = 0 snake_case__ : List[str] = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: snake_case__ : str = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: snake_case__ : int = i snake_case__ : List[str] = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
710
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = StableDiffusionInstructPixaPixPipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def __a ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) snake_case__ : Any = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) torch.manual_seed(0 ) snake_case__ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case__ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) snake_case__ : Tuple = CLIPTextModel(__UpperCamelCase ) snake_case__ : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __a ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : Union[str, Any] = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('RGB' ) if str(__UpperCamelCase ).startswith('mps' ): snake_case__ : str = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : Dict = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ : str = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[int] = self.get_dummy_components() snake_case__ : str = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : Optional[int] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Tuple = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : List[str] = sd_pipe(**__UpperCamelCase ).images snake_case__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ : str = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : Union[str, Any] = self.get_dummy_components() snake_case__ : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : List[Any] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Union[str, Any] = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : List[str] = 'french fries' snake_case__ : Optional[Any] = sd_pipe(**__UpperCamelCase , negative_prompt=__UpperCamelCase ) snake_case__ : Union[str, Any] = output.images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ : Any = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> int: '''simple docstring''' snake_case__ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : List[str] = self.get_dummy_components() snake_case__ : str = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : str = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Dict = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : Any = [inputs['prompt']] * 2 snake_case__ : Optional[int] = np.array(inputs['image'] ).astype(np.floataa ) / 2_5_5.0 snake_case__ : Optional[int] = torch.from_numpy(__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) snake_case__ : Any = image / 2 + 0.5 snake_case__ : Optional[Any] = image.permute(0 , 3 , 1 , 2 ) snake_case__ : List[Any] = image.repeat(2 , 1 , 1 , 1 ) snake_case__ : Optional[int] = sd_pipe(**__UpperCamelCase ).images snake_case__ : Union[str, Any] = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) snake_case__ : List[Any] = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[int] = self.get_dummy_components() snake_case__ : Tuple = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' ) snake_case__ : int = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : List[str] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : str = self.get_dummy_inputs(__UpperCamelCase ) snake_case__ : Any = sd_pipe(**__UpperCamelCase ).images snake_case__ : int = image[0, -3:, -3:, -1] snake_case__ : Tuple = [round(__UpperCamelCase , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(__UpperCamelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) snake_case__ : List[Any] = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Optional[int] = self.get_dummy_components() snake_case__ : int = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) snake_case__ : Union[str, Any] = VaeImageProcessor(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase ) snake_case__ : Optional[int] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Optional[Any] = pipe(**self.get_dummy_inputs_by_type(__UpperCamelCase , input_image_type='pt' ) )[0] snake_case__ : Union[str, Any] = components['vae'] snake_case__ : str = self.get_dummy_inputs_by_type(__UpperCamelCase , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): snake_case__ : List[str] = vae.encode(inputs[image_param] ).latent_dist.mode() snake_case__ : Dict = pipe(**__UpperCamelCase )[0] snake_case__ : str = np.abs(out - out_latents_inputs ).max() self.assertLess(__UpperCamelCase , 1E-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self , __UpperCamelCase=0 ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = torch.manual_seed(__UpperCamelCase ) snake_case__ : List[str] = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) snake_case__ : int = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : Tuple = self.get_inputs() snake_case__ : List[Any] = pipe(**__UpperCamelCase ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ : Dict = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ) -> str: '''simple docstring''' snake_case__ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase ) snake_case__ : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : Dict = self.get_inputs() snake_case__ : Dict = pipe(**__UpperCamelCase ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ : List[Any] = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase ) snake_case__ : Tuple = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : Optional[int] = self.get_inputs() snake_case__ : Optional[int] = pipe(**__UpperCamelCase ).images snake_case__ : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ : int = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = 0 def callback_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> None: snake_case__ : List[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case__ : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) snake_case__ : int = latents[0, -3:, -3:, -1] snake_case__ : List[str] = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: snake_case__ : Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) snake_case__ : Dict = latents[0, -3:, -3:, -1] snake_case__ : Optional[Any] = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 snake_case__ : str = False snake_case__ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) snake_case__ : int = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : int = self.get_inputs() pipe(**__UpperCamelCase , callback=__UpperCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __a ( self ) -> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) snake_case__ : Dict = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ : str = self.get_inputs() snake_case__ : Tuple = pipe(**__UpperCamelCase ) snake_case__ : List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __a ( self ) -> int: '''simple docstring''' snake_case__ : int = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 snake_case__ : Tuple = inputs['image'].resize((504, 504) ) snake_case__ : str = 'timbrooks/instruct-pix2pix' snake_case__ : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ : str = pipe(**__UpperCamelCase ) snake_case__ : List[Any] = output.images[0] snake_case__ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) snake_case__ : List[str] = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
699
0
from __future__ import annotations lowerCAmelCase__ : str = 1.6_021E-19 # units = C def UpperCamelCase__ ( A__ , A__ , A__ , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
711
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
699
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ : Tuple = 16 lowerCAmelCase__ : Optional[Any] = 32 def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ = 16 ) -> List[str]: snake_case__ : Tuple = AutoTokenizer.from_pretrained('bert-base-cased' ) snake_case__ : int = DatasetDict( { 'train': dataset['train'].select(A__ ), 'validation': dataset['train'].select(A__ ), 'test': dataset['validation'], } ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Any = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : Optional[Any] = datasets.map( A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : str = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : str = 16 elif accelerator.mixed_precision != "no": snake_case__ : int = 8 else: snake_case__ : str = None return tokenizer.pad( A__ , padding='longest' , max_length=A__ , pad_to_multiple_of=A__ , return_tensors='pt' , ) # Instantiate dataloaders. snake_case__ : Optional[int] = DataLoader( tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) snake_case__ : str = DataLoader( tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) snake_case__ : List[str] = DataLoader( tokenized_datasets['test'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader, test_dataloader def UpperCamelCase__ ( A__ , A__ ) -> int: # New Code # snake_case__ : Tuple = [] # Download the dataset snake_case__ : Optional[int] = load_dataset('glue' , 'mrpc' ) # Create our splits snake_case__ : Any = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator snake_case__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : List[str] = config['lr'] snake_case__ : Union[str, Any] = int(config['num_epochs'] ) snake_case__ : Tuple = int(config['seed'] ) snake_case__ : str = int(config['batch_size'] ) snake_case__ : Any = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation snake_case__ : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case__ : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE snake_case__ : Tuple = MAX_GPU_BATCH_SIZE set_seed(A__ ) # New Code # # Create our folds: snake_case__ : Any = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) snake_case__ : Union[str, Any] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(A__ ): snake_case__ : int = get_fold_dataloaders( A__ , A__ , A__ , A__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=A__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : str = model.to(accelerator.device ) # Instantiate optimizer snake_case__ : Optional[int] = AdamW(params=model.parameters() , lr=A__ ) # Instantiate scheduler snake_case__ : List[Any] = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=100 , num_training_steps=(len(A__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ : int = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # Now we train the model for epoch in range(A__ ): model.train() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case__ : List[Any] = model(**A__ ) snake_case__ : Any = outputs.loss snake_case__ : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : Any = model(**A__ ) snake_case__ : str = outputs.logits.argmax(dim=-1 ) snake_case__ : List[Any] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=A__ , references=A__ , ) snake_case__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , A__ ) # New Code # # We also run predictions on the test set at the very end snake_case__ : List[str] = [] for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : int = model(**A__ ) snake_case__ : Dict = outputs.logits snake_case__ : List[Any] = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(A__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: snake_case__ : str = torch.cat(A__ , dim=0 ) snake_case__ : Tuple = torch.stack(A__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) snake_case__ : Union[str, Any] = metric.compute(predictions=A__ , references=A__ ) accelerator.print('Average test metrics from all folds:' , A__ ) def UpperCamelCase__ ( ) -> Optional[int]: snake_case__ : Tuple = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=A__ , default=A__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=A__ , default=3 , help='The number of splits to perform across the dataset' ) snake_case__ : Any = parser.parse_args() snake_case__ : Optional[Any] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
712
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class __snake_case : __lowerCamelCase = field( metadata={"""help""": """The output directory where the model will be written."""} ,) __lowerCamelCase = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } ,) __lowerCamelCase = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } ,) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def UpperCamelCase__ ( ) -> Union[str, Any]: snake_case__ : str = HfArgumentParser((ModelArguments,) ) ((snake_case__) , ) : Dict = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: snake_case__ : List[str] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: snake_case__ : Optional[int] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: snake_case__ : Optional[Any] = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: snake_case__ : List[str] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed snake_case__ : Any = True snake_case__ : Dict = True snake_case__ : Tuple = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=A__ , decoder_config=A__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens snake_case__ : Optional[Any] = decoder_config.decoder_start_token_id snake_case__ : Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: snake_case__ : Optional[Any] = decoder_config.bos_token_id if pad_token_id is None: snake_case__ : int = decoder_config.eos_token_id # This is necessary to make Flax's generate() work snake_case__ : Union[str, Any] = decoder_config.eos_token_id snake_case__ : Optional[int] = decoder_start_token_id snake_case__ : int = pad_token_id snake_case__ : Tuple = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) snake_case__ : int = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
699
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = KandinskyVaaInpaintPipeline __lowerCamelCase = ["""image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] __lowerCamelCase = [ """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] __lowerCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowerCamelCase = False @property def __a ( self ) -> Dict: '''simple docstring''' return 32 @property def __a ( self ) -> Optional[Any]: '''simple docstring''' return 32 @property def __a ( self ) -> Union[str, Any]: '''simple docstring''' return self.time_input_dim @property def __a ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def __a ( self ) -> List[Any]: '''simple docstring''' return 100 @property def __a ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Dict = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } snake_case__ : Dict = UNetaDConditionModel(**__UpperCamelCase ) return model @property def __a ( self ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Dict = self.dummy_unet snake_case__ : Dict = self.dummy_movq snake_case__ : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=__UpperCamelCase , ) snake_case__ : List[str] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __a ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> Optional[Any]: '''simple docstring''' snake_case__ : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __UpperCamelCase ) # create init_image snake_case__ : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : List[str] = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('RGB' ).resize((256, 256) ) # create mask snake_case__ : str = np.ones((64, 64) , dtype=np.floataa ) snake_case__ : str = 0 if str(__UpperCamelCase ).startswith('mps' ): snake_case__ : Any = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : List[Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ : Any = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Optional[int] = 'cpu' snake_case__ : Optional[int] = self.get_dummy_components() snake_case__ : int = self.pipeline_class(**__UpperCamelCase ) snake_case__ : Optional[int] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : List[str] = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) snake_case__ : int = output.images snake_case__ : List[Any] = pipe( **self.get_dummy_inputs(__UpperCamelCase ) , return_dict=__UpperCamelCase , )[0] snake_case__ : Dict = image[0, -3:, -3:, -1] snake_case__ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) snake_case__ : Tuple = np.array( [0.5_0_7_7_5_9_0_3, 0.4_9_5_2_7_1_9_5, 0.4_8_8_2_4_5_4_3, 0.5_0_1_9_2_2_3_7, 0.4_8_6_4_4_9_0_6, 0.4_9_3_7_3_8_1_4, 0.4_7_8_0_5_9_8, 0.4_7_2_3_4_8_2_7, 0.4_8_3_2_7_8_4_8] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __a ( self ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) snake_case__ : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) snake_case__ : Dict = np.ones((768, 768) , dtype=np.floataa ) snake_case__ : List[Any] = 0 snake_case__ : Optional[int] = 'a hat' snake_case__ : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCamelCase ) snake_case__ : Tuple = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) snake_case__ : List[str] = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case__ : Any = pipe_prior( __UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() snake_case__ : List[str] = pipeline( image=__UpperCamelCase , mask_image=__UpperCamelCase , image_embeds=__UpperCamelCase , negative_image_embeds=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) snake_case__ : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
713
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ , A__ = None , ) -> Optional[int]: snake_case__ : List[str] = {} if train_file is not None: snake_case__ : Tuple = [train_file] if eval_file is not None: snake_case__ : Dict = [eval_file] if test_file is not None: snake_case__ : str = [test_file] snake_case__ : Optional[Any] = datasets.load_dataset('csv' , data_files=A__ ) snake_case__ : Any = list(ds[list(files.keys() )[0]].features.keys() ) snake_case__ : Optional[Any] = features_name.pop(A__ ) snake_case__ : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) snake_case__ : str = {label: i for i, label in enumerate(A__ )} snake_case__ : int = tokenizer.model_input_names snake_case__ : int = {} if len(A__ ) == 1: for k in files.keys(): snake_case__ : str = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=A__ , max_length=A__ , padding='max_length' ) , batched=A__ , ) elif len(A__ ) == 2: for k in files.keys(): snake_case__ : Optional[int] = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=A__ , max_length=A__ , padding='max_length' , ) , batched=A__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: snake_case__ : int = {k: v for k, v in ex.items() if k in input_names} snake_case__ : Any = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: snake_case__ : int = {k: v for k, v in ex.items() if k in input_names} snake_case__ : Union[str, Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: snake_case__ : Dict = {k: v for k, v in ex.items() if k in input_names} snake_case__ : List[str] = labelaid[ex[label_name]] yield (d, label) snake_case__ : Any = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: snake_case__ : str = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) snake_case__ : Optional[int] = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: snake_case__ : Optional[int] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) snake_case__ : List[str] = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: snake_case__ : str = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase__ : List[str] = logging.getLogger(__name__) @dataclass class __snake_case : __lowerCamelCase = field(metadata={"""help""": """Which column contains the label"""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """The path of the training file"""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """The path of the development file"""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """The path of the test file"""} ) __lowerCamelCase = field( default=128 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class __snake_case : __lowerCamelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowerCamelCase = field(default=_lowerCamelCase ,metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __lowerCamelCase = field( default=_lowerCamelCase ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) def UpperCamelCase__ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) snake_case__ , snake_case__ , snake_case__ : Dict = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case__ : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=A__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) snake_case__ : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(A__ ) , labelaid=A__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): snake_case__ : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) def compute_metrics(A__ ) -> Dict: snake_case__ : Optional[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer snake_case__ : Any = TFTrainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case__ : Dict = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case__ : Tuple = trainer.evaluate() snake_case__ : Any = os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(A__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(A__ ) return results if __name__ == "__main__": main()
699
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ : List[Any] = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = DebertaVaTokenizer __lowerCamelCase = DebertaVaTokenizerFast __lowerCamelCase = True __lowerCamelCase = True def __a ( self ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Union[str, Any] = DebertaVaTokenizer(__UpperCamelCase , unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' snake_case__ : Tuple = 'this is a test' snake_case__ : Optional[int] = 'this is a test' return input_text, output_text def __a ( self ) -> str: '''simple docstring''' snake_case__ : Tuple = '<pad>' snake_case__ : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '[PAD]' ) self.assertEqual(len(__UpperCamelCase ) , 30001 ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : str = ' \tHeLLo!how \n Are yoU? ' snake_case__ : List[str] = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on snake_case__ : Dict = DebertaVaTokenizer(__UpperCamelCase , do_lower_case=__UpperCamelCase ) snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Optional[Any] = DebertaVaTokenizerFast(__UpperCamelCase , do_lower_case=__UpperCamelCase ) snake_case__ : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def __a ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def __a ( self ) -> Tuple: '''simple docstring''' pass def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Optional[int] = 'I was born in 92000, and this is falsé.' snake_case__ : List[Any] = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case__ : Optional[int] = DebertaVaTokenizer(__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Tuple = DebertaVaTokenizerFast(__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Optional[Any] = 'I was born in 92000, and this is falsé.' snake_case__ : str = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case__ : List[Any] = DebertaVaTokenizer(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Dict = DebertaVaTokenizerFast(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Dict = 'I was born in 92000, and this is falsé.' snake_case__ : str = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case__ : Any = DebertaVaTokenizer(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : List[Any] = DebertaVaTokenizerFast(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Dict = 'I was born in 92000, and this is falsé.' snake_case__ : int = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case__ : int = DebertaVaTokenizer(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : List[str] = DebertaVaTokenizerFast(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Optional[int] = ' \tHeLLo!how \n Are yoU? ' snake_case__ : str = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on snake_case__ : int = DebertaVaTokenizer(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Union[str, Any] = DebertaVaTokenizerFast(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : Any = self.get_rust_tokenizer() snake_case__ : Union[str, Any] = 'I was born in 92000, and this is falsé.' snake_case__ : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) snake_case__ : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Dict = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) snake_case__ : Optional[Any] = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : List[Any] = self.get_rust_tokenizer() snake_case__ : Optional[Any] = tokenizer.encode(__UpperCamelCase ) snake_case__ : Optional[Any] = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __a ( self ) -> int: '''simple docstring''' snake_case__ : List[Any] = 'This is a test' snake_case__ : Any = [13, 1, 4398, 25, 21, 1289] snake_case__ : int = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] snake_case__ : List[Any] = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] snake_case__ : Optional[int] = DebertaVaTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) snake_case__ : List[Any] = DebertaVaTokenizerFast(__UpperCamelCase , keep_accents=__UpperCamelCase ) snake_case__ : str = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Optional[Any] = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Dict = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : List[Any] = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Optional[Any] = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Any = rust_tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) # fmt: off snake_case__ : Dict = 'I was born in 92000, and this is falsé.' snake_case__ : Dict = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] snake_case__ : Dict = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] snake_case__ : List[str] = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case__ : List[Any] = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : str = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Any = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Optional[Any] = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Tuple = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Dict = rust_tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __a ( self ) -> int: '''simple docstring''' snake_case__ : Any = DebertaVaTokenizer(__UpperCamelCase ) snake_case__ : List[Any] = tokenizer.encode('sequence builders' ) snake_case__ : Union[str, Any] = tokenizer.encode('multi-sequence build' ) snake_case__ : int = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ) snake_case__ : int = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase , __UpperCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __UpperCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __UpperCamelCase , ) @slow def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Union[str, Any] = {'input_ids': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
714
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) class __snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCamelCase = None __lowerCamelCase = None class __snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCamelCase = datasets.Audio() __lowerCamelCase = """audio""" __lowerCamelCase = AudioFolderConfig __lowerCamelCase = 42 # definition at the bottom of the script __lowerCamelCase = AudioClassification(audio_column="""audio""" ,label_column="""label""" ) lowerCAmelCase__ : Tuple = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] lowerCAmelCase__ : List[Any] = AUDIO_EXTENSIONS
699
0
class __snake_case : def __init__( self , __UpperCamelCase ) -> List[Any]: '''simple docstring''' snake_case__ : Optional[int] = val snake_case__ : Dict = None snake_case__ : Tuple = None def __a ( self , __UpperCamelCase ) -> Optional[Any]: '''simple docstring''' if self.val: if val < self.val: if self.left is None: snake_case__ : int = Node(__UpperCamelCase ) else: self.left.insert(__UpperCamelCase ) elif val > self.val: if self.right is None: snake_case__ : List[str] = Node(__UpperCamelCase ) else: self.right.insert(__UpperCamelCase ) else: snake_case__ : Union[str, Any] = val def UpperCamelCase__ ( A__ , A__ ) -> Any: # Recursive traversal if root: inorder(root.left , A__ ) res.append(root.val ) inorder(root.right , A__ ) def UpperCamelCase__ ( A__ ) -> Optional[Any]: # Build BST if len(A__ ) == 0: return arr snake_case__ : Optional[Any] = Node(arr[0] ) for i in range(1 , len(A__ ) ): root.insert(arr[i] ) # Traverse BST in order. snake_case__ : Dict = [] inorder(A__ , A__ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
715
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = IFInpaintingPipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCamelCase = PipelineTesterMixin.required_optional_params - {"""latents"""} def __a ( self ) -> Optional[Any]: '''simple docstring''' return self._get_dummy_components() def __a ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> str: '''simple docstring''' if str(__UpperCamelCase ).startswith('mps' ): snake_case__ : int = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : Union[str, Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __a ( self ) -> List[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __a ( self ) -> Optional[int]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __a ( self ) -> List[str]: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def __a ( self ) -> List[str]: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __a ( self ) -> int: '''simple docstring''' self._test_save_load_local() def __a ( self ) -> List[str]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
699
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowerCAmelCase__ : int = logging.get_logger(__name__) lowerCAmelCase__ : Any = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } lowerCAmelCase__ : int = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]: for attribute in key.split('.' ): snake_case__ : Tuple = getattr(A__ , A__ ) if weight_type is not None: snake_case__ : Any = getattr(A__ , A__ ).shape else: snake_case__ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case__ : int = value elif weight_type == "weight_g": snake_case__ : Optional[Any] = value elif weight_type == "weight_v": snake_case__ : Any = value elif weight_type == "bias": snake_case__ : List[str] = value else: snake_case__ : Optional[int] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase__ ( A__ , A__ ) -> Dict: snake_case__ : str = [] snake_case__ : str = fairseq_model.state_dict() snake_case__ : Dict = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == 'group' , ) snake_case__ : Optional[int] = True else: for key, mapped_key in MAPPING.items(): snake_case__ : int = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue snake_case__ : Tuple = True if "*" in mapped_key: snake_case__ : Any = name.split(A__ )[0].split('.' )[-2] snake_case__ : List[Any] = mapped_key.replace('*' , A__ ) if "weight_g" in name: snake_case__ : Optional[int] = 'weight_g' elif "weight_v" in name: snake_case__ : Optional[int] = 'weight_v' elif "bias" in name: snake_case__ : int = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Union[str, Any] = 'weight' else: snake_case__ : List[Any] = None set_recursively(A__ , A__ , A__ , A__ , A__ ) continue if not is_used: unused_weights.append(A__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ ) -> int: snake_case__ : List[str] = full_name.split('conv_layers.' )[-1] snake_case__ : Any = name.split('.' ) snake_case__ : List[str] = int(items[0] ) snake_case__ : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case__ : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case__ : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case__ : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(A__ ) @torch.no_grad() def UpperCamelCase__ ( A__ , A__ , A__=None , A__=None , A__=True ) -> Any: if config_path is not None: snake_case__ : int = UniSpeechSatConfig.from_pretrained(A__ ) else: snake_case__ : Any = UniSpeechSatConfig() snake_case__ : Tuple = '' if is_finetuned: snake_case__ : Tuple = UniSpeechSatForCTC(A__ ) else: snake_case__ : Optional[int] = UniSpeechSatForPreTraining(A__ ) snake_case__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) snake_case__ : List[str] = model[0].eval() recursively_load_weights(A__ , A__ ) hf_wavavec.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCAmelCase__ : Dict = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
716
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ : List[Any] = '''▁''' lowerCAmelCase__ : int = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = BertGenerationTokenizer __lowerCamelCase = False __lowerCamelCase = True def __a ( self ) -> Optional[int]: '''simple docstring''' super().setUp() snake_case__ : str = BertGenerationTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[str] = '<s>' snake_case__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(__UpperCamelCase ) , 1002 ) def __a ( self ) -> int: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Optional[Any] = BertGenerationTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) snake_case__ : int = tokenizer.tokenize('This is a test' ) self.assertListEqual(__UpperCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [285, 46, 10, 170, 382] , ) snake_case__ : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) snake_case__ : Optional[Any] = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) snake_case__ : int = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def __a ( self ) -> Dict: '''simple docstring''' return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def __a ( self ) -> Any: '''simple docstring''' snake_case__ : int = 'Hello World!' snake_case__ : Union[str, Any] = [18536, 2260, 101] self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @slow def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : str = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) snake_case__ : List[Any] = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @require_torch @slow def __a ( self ) -> List[str]: '''simple docstring''' import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence snake_case__ : Optional[int] = list(self.big_tokenizer.get_vocab().keys() )[:10] snake_case__ : Optional[int] = ' '.join(__UpperCamelCase ) snake_case__ : int = self.big_tokenizer.encode_plus(__UpperCamelCase , return_tensors='pt' , return_token_type_ids=__UpperCamelCase ) snake_case__ : Tuple = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=__UpperCamelCase ) snake_case__ : Dict = BertGenerationConfig() snake_case__ : List[str] = BertGenerationEncoder(__UpperCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCamelCase ) model(**__UpperCamelCase ) @slow def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
699
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : Tuple = logging.get_logger(__name__) lowerCAmelCase__ : Union[str, Any] = '''▁''' lowerCAmelCase__ : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ : Optional[Any] = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } lowerCAmelCase__ : str = { '''facebook/xglm-564M''': 20_48, } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCamelCase , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase = None , **__UpperCamelCase , ) -> None: '''simple docstring''' snake_case__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case__ : Tuple = 7 snake_case__ : Dict = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case__ : Union[str, Any] = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) snake_case__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) snake_case__ : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case__ : Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case__ : Tuple = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case__ : List[Any] = len(self.sp_model ) snake_case__ : Optional[Any] = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__UpperCamelCase ) snake_case__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = self.__dict__.copy() snake_case__ : Optional[Any] = None snake_case__ : Tuple = self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case__ : Any = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case__ : str = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __a ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' snake_case__ : int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __a ( self ) -> Tuple: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def __a ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case__ : Optional[Any] = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' snake_case__ : int = ''.join(__UpperCamelCase ).replace(__UpperCamelCase , ' ' ).strip() return out_string def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ : List[str] = os.path.join( __UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , 'wb' ) as fi: snake_case__ : Any = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
717
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowerCAmelCase__ : List[str] = HfApi() lowerCAmelCase__ : str = {} # fmt: off lowerCAmelCase__ : int = torch.tensor([ -0.75_15, -1.68_83, 0.24_20, 0.03_00, 0.63_47, 1.34_33, -1.17_43, -3.74_67, 1.23_42, -2.24_85, 0.46_36, 0.80_76, -0.79_91, 0.39_69, 0.84_98, 0.91_89, -1.88_87, -3.35_22, 0.76_39, 0.20_40, 0.62_71, -2.71_48, -1.63_16, 3.08_39, 0.31_86, 0.27_21, -0.97_59, -1.24_61, 2.62_57, 1.35_57 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.36_39, -2.53_44, 0.00_54, -0.66_74, 1.59_90, 1.01_58, 0.31_24, -2.14_36, 1.87_95, -2.54_29, -0.15_66, -0.39_73, 1.24_90, 2.64_47, 1.22_83, -0.52_08, -2.81_54, -3.51_19, 2.38_38, 1.20_33, 1.72_01, -2.12_56, -1.45_76, 2.79_48, 2.42_04, -0.97_52, -1.25_46, 0.80_27, 3.27_58, 3.13_65 ]) lowerCAmelCase__ : Dict = torch.tensor([ -0.65_31, -0.68_91, -0.31_72, -0.53_75, -0.91_40, -0.53_67, -0.11_75, -0.78_69, -0.38_08, -0.45_13, -0.20_98, -0.00_83, 0.31_83, 0.51_40, 0.22_47, -0.13_04, -0.13_02, -0.28_02, -0.20_84, -0.20_25, -0.49_67, -0.48_73, -0.08_61, 0.69_25, 0.02_50, 0.12_90, -0.15_43, 0.63_16, 1.04_60, 1.49_43 ]) lowerCAmelCase__ : List[str] = torch.tensor([ 0.09_11, 0.11_07, 0.01_82, 0.04_35, -0.08_05, -0.06_08, 0.03_81, 0.21_72, -0.02_80, 0.13_27, -0.02_99, -0.02_55, -0.00_50, -0.11_70, -0.10_46, 0.03_09, 0.13_67, 0.17_28, -0.05_33, -0.07_48, -0.05_34, 0.16_24, 0.03_84, -0.18_05, -0.07_07, 0.06_42, 0.02_20, -0.01_34, -0.13_33, -0.15_05 ]) lowerCAmelCase__ : Union[str, Any] = torch.tensor([ 0.13_21, 0.13_37, 0.04_40, 0.06_22, -0.05_91, -0.03_70, 0.05_03, 0.21_33, -0.01_77, 0.14_15, -0.01_16, -0.01_12, 0.00_44, -0.09_80, -0.07_89, 0.03_95, 0.15_02, 0.17_85, -0.04_88, -0.05_14, -0.04_04, 0.15_39, 0.04_54, -0.15_59, -0.06_65, 0.06_59, 0.03_83, -0.00_05, -0.12_66, -0.13_86 ]) lowerCAmelCase__ : List[Any] = torch.tensor([ 0.11_54, 0.12_18, 0.03_07, 0.05_26, -0.07_11, -0.05_41, 0.03_66, 0.20_78, -0.02_67, 0.13_17, -0.02_26, -0.01_93, -0.00_14, -0.10_55, -0.09_02, 0.03_30, 0.13_91, 0.17_09, -0.05_62, -0.06_93, -0.05_60, 0.14_82, 0.03_81, -0.16_83, -0.06_81, 0.06_61, 0.03_31, -0.00_46, -0.12_68, -0.14_31 ]) lowerCAmelCase__ : Optional[Any] = torch.tensor([ 0.11_92, 0.12_40, 0.04_14, 0.06_06, -0.05_57, -0.04_12, 0.04_30, 0.20_42, -0.02_00, 0.13_85, -0.01_15, -0.01_32, 0.00_17, -0.09_65, -0.08_02, 0.03_98, 0.14_33, 0.17_47, -0.04_58, -0.05_33, -0.04_07, 0.15_45, 0.04_19, -0.15_74, -0.06_45, 0.06_26, 0.03_41, -0.00_10, -0.11_99, -0.13_90 ]) lowerCAmelCase__ : List[str] = torch.tensor([ 0.10_75, 0.10_74, 0.02_05, 0.04_31, -0.07_74, -0.06_07, 0.02_98, 0.20_42, -0.03_20, 0.12_67, -0.02_81, -0.02_50, -0.00_64, -0.10_91, -0.09_46, 0.02_90, 0.13_28, 0.16_50, -0.05_80, -0.07_38, -0.05_86, 0.14_40, 0.03_37, -0.17_46, -0.07_12, 0.06_05, 0.02_50, -0.00_99, -0.13_16, -0.14_73 ]) lowerCAmelCase__ : List[str] = torch.tensor([ -1.45_72, -2.04_81, -0.04_14, -0.60_05, 1.41_36, 0.58_48, 0.40_28, -2.73_30, 1.22_12, -2.12_28, 0.21_55, 0.40_39, 0.76_62, 2.05_35, 0.74_77, -0.32_43, -2.17_58, -2.76_48, 1.69_47, 0.70_26, 1.23_38, -1.60_78, -0.86_82, 2.28_10, 1.85_74, -0.57_18, -0.55_86, -0.01_86, 2.34_15, 2.12_51]) lowerCAmelCase__ : List[Any] = torch.tensor([ -1.36_90, -1.97_20, -0.40_90, -0.69_66, 1.46_60, 0.99_38, -0.13_85, -2.73_24, 0.77_36, -1.89_17, 0.29_23, 0.42_93, 0.16_93, 1.41_12, 1.18_87, -0.31_81, -2.21_60, -2.63_81, 1.31_70, 0.81_63, 0.92_40, -1.65_44, -0.60_99, 2.52_59, 1.64_30, -0.90_90, -0.93_92, -0.01_26, 2.42_68, 2.32_66 ]) lowerCAmelCase__ : Tuple = torch.tensor([ -1.35_25, -1.96_28, -0.39_56, -0.68_60, 1.46_64, 1.00_14, -0.12_59, -2.72_12, 0.77_72, -1.88_11, 0.29_96, 0.43_88, 0.17_04, 1.40_29, 1.17_01, -0.30_27, -2.20_53, -2.62_87, 1.33_50, 0.81_31, 0.92_74, -1.62_92, -0.60_98, 2.51_31, 1.65_05, -0.89_58, -0.92_98, -0.01_51, 2.42_57, 2.33_55 ]) lowerCAmelCase__ : List[str] = torch.tensor([ -2.05_85, -2.78_97, -0.28_50, -0.89_40, 1.90_52, 0.57_02, 0.63_45, -3.89_59, 1.59_32, -3.23_19, 0.19_74, 0.02_87, 1.75_66, 2.65_43, 0.83_87, -0.53_51, -3.27_36, -4.33_75, 2.90_29, 1.63_90, 1.46_40, -2.17_01, -1.90_13, 2.93_41, 3.49_81, -0.62_55, -1.16_44, -0.15_91, 3.70_97, 3.20_66 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.31_39, -2.55_94, -0.01_97, -0.67_85, 1.70_01, 1.16_06, 0.30_75, -2.17_40, 1.80_71, -2.56_30, -0.09_26, -0.38_11, 1.21_16, 2.62_46, 1.27_31, -0.53_98, -2.81_53, -3.61_40, 2.38_93, 1.32_62, 1.62_58, -2.18_56, -1.32_67, 2.83_95, 2.37_79, -1.06_23, -1.24_68, 0.89_59, 3.33_67, 3.22_43 ]) lowerCAmelCase__ : Dict = torch.tensor([ -2.06_28, -2.76_67, -0.20_89, -0.82_63, 2.05_39, 0.59_92, 0.64_95, -3.83_36, 1.60_25, -3.28_17, 0.17_21, -0.06_33, 1.75_16, 2.70_39, 0.81_00, -0.59_08, -3.21_13, -4.43_43, 2.92_57, 1.36_32, 1.55_62, -2.14_89, -1.98_94, 3.05_60, 3.33_96, -0.73_28, -1.04_17, 0.03_83, 3.70_93, 3.23_43 ]) lowerCAmelCase__ : Any = torch.tensor([ -1.45_74, -2.05_69, -0.04_73, -0.61_17, 1.40_18, 0.57_69, 0.41_29, -2.73_44, 1.22_41, -2.13_97, 0.20_00, 0.39_37, 0.76_16, 2.04_53, 0.73_24, -0.33_91, -2.17_46, -2.77_44, 1.69_63, 0.69_21, 1.21_87, -1.61_72, -0.88_77, 2.24_39, 1.84_71, -0.58_39, -0.56_05, -0.04_64, 2.32_50, 2.12_19 ]) # fmt: on lowerCAmelCase__ : Any = api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowerCAmelCase__ : List[str] = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith('''CompVis'''): lowerCAmelCase__ : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: lowerCAmelCase__ : str = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowerCAmelCase__ : Any = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowerCAmelCase__ : List[str] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowerCAmelCase__ : int = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
699
0
import numpy as np lowerCAmelCase__ : Any = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class __snake_case : def __init__( self ) -> None: '''simple docstring''' snake_case__ : List[str] = np.array(__UpperCamelCase ) def __a ( self , __UpperCamelCase ) -> np.ndarray: '''simple docstring''' snake_case__ : Union[str, Any] = np.where(letter == self.SQUARE ) snake_case__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __a ( self , __UpperCamelCase , __UpperCamelCase ) -> str: '''simple docstring''' snake_case__ : int = self.SQUARE[indexa - 1, indexa - 1] return letter def __a ( self , __UpperCamelCase ) -> str: '''simple docstring''' snake_case__ : Any = message.lower() snake_case__ : Optional[Any] = message.replace(' ' , '' ) snake_case__ : int = message.replace('j' , 'i' ) snake_case__ : Optional[int] = np.empty((2, len(__UpperCamelCase )) ) for letter_index in range(len(__UpperCamelCase ) ): snake_case__ : Optional[int] = self.letter_to_numbers(message[letter_index] ) snake_case__ : List[str] = numbers[0] snake_case__ : Union[str, Any] = numbers[1] snake_case__ : Optional[Any] = first_step.reshape(2 * len(__UpperCamelCase ) ) snake_case__ : Dict = '' for numbers_index in range(len(__UpperCamelCase ) ): snake_case__ : Dict = int(second_step[numbers_index * 2] ) snake_case__ : str = int(second_step[(numbers_index * 2) + 1] ) snake_case__ : Dict = self.numbers_to_letter(__UpperCamelCase , __UpperCamelCase ) snake_case__ : List[str] = encoded_message + letter return encoded_message def __a ( self , __UpperCamelCase ) -> str: '''simple docstring''' snake_case__ : Dict = message.lower() message.replace(' ' , '' ) snake_case__ : str = np.empty(2 * len(__UpperCamelCase ) ) for letter_index in range(len(__UpperCamelCase ) ): snake_case__ : Tuple = self.letter_to_numbers(message[letter_index] ) snake_case__ : Any = numbers[0] snake_case__ : List[Any] = numbers[1] snake_case__ : Any = first_step.reshape((2, len(__UpperCamelCase )) ) snake_case__ : Tuple = '' for numbers_index in range(len(__UpperCamelCase ) ): snake_case__ : Union[str, Any] = int(second_step[0, numbers_index] ) snake_case__ : Any = int(second_step[1, numbers_index] ) snake_case__ : Optional[int] = self.numbers_to_letter(__UpperCamelCase , __UpperCamelCase ) snake_case__ : Tuple = decoded_message + letter return decoded_message
718
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCAmelCase__ : Dict = logging.get_logger(__name__) class __snake_case ( _lowerCamelCase ): def __init__( self , *__UpperCamelCase , **__UpperCamelCase ) -> None: '''simple docstring''' warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , __UpperCamelCase , ) super().__init__(*__UpperCamelCase , **__UpperCamelCase )
699
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[Any] = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) snake_case__ : Union[str, Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" snake_case__ : Optional[Any] = model(__UpperCamelCase )['last_hidden_state'] snake_case__ : Union[str, Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __UpperCamelCase ) # compare the actual values for a slice. snake_case__ : Optional[int] = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
719
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __snake_case ( datasets.BuilderConfig ): __lowerCamelCase = None __lowerCamelCase = "utf-8" __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = True # deprecated __lowerCamelCase = None # deprecated __lowerCamelCase = 10 << 20 # 10MB __lowerCamelCase = None class __snake_case ( datasets.ArrowBasedBuilder ): __lowerCamelCase = JsonConfig def __a ( self ) -> Optional[Any]: '''simple docstring''' if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead' ) snake_case__ : str = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.' ) if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported' ) return datasets.DatasetInfo(features=self.config.features ) def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) snake_case__ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__UpperCamelCase , (str, list, tuple) ): snake_case__ : Any = data_files if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : Optional[Any] = [files] snake_case__ : List[str] = [dl_manager.iter_files(__UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] snake_case__ : List[Any] = [] for split_name, files in data_files.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : List[Any] = [files] snake_case__ : Any = [dl_manager.iter_files(__UpperCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__UpperCamelCase , gen_kwargs={'files': files} ) ) return splits def __a ( self , __UpperCamelCase ) -> pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): snake_case__ : List[Any] = self.config.features.arrow_schema.field(__UpperCamelCase ).type snake_case__ : List[str] = pa_table.append_column(__UpperCamelCase , pa.array([None] * len(__UpperCamelCase ) , type=__UpperCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example snake_case__ : List[str] = table_cast(__UpperCamelCase , self.config.features.arrow_schema ) return pa_table def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(__UpperCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__UpperCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case__ : Union[str, Any] = json.load(__UpperCamelCase ) # We keep only the field we are interested in snake_case__ : Tuple = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__UpperCamelCase , (list, tuple) ): snake_case__ : List[Any] = set().union(*[row.keys() for row in dataset] ) snake_case__ : List[Any] = {col: [row.get(__UpperCamelCase ) for row in dataset] for col in keys} else: snake_case__ : List[Any] = dataset snake_case__ : Dict = pa.Table.from_pydict(__UpperCamelCase ) yield file_idx, self._cast_table(__UpperCamelCase ) # If the file has one json object per line else: with open(__UpperCamelCase , 'rb' ) as f: snake_case__ : Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small snake_case__ : Tuple = max(self.config.chunksize // 32 , 16 << 10 ) snake_case__ : Optional[Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: snake_case__ : Optional[int] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__UpperCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": snake_case__ : int = batch.decode(self.config.encoding , errors=__UpperCamelCase ).encode('utf-8' ) try: while True: try: snake_case__ : List[str] = paj.read_json( io.BytesIO(__UpperCamelCase ) , read_options=paj.ReadOptions(block_size=__UpperCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__UpperCamelCase , pa.ArrowInvalid ) and "straddling" not in str(__UpperCamelCase ) or block_size > len(__UpperCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(__UpperCamelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __UpperCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case__ : Tuple = json.load(__UpperCamelCase ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__UpperCamelCase , __UpperCamelCase ): # list is the only sequence type supported in JSON try: snake_case__ : str = set().union(*[row.keys() for row in dataset] ) snake_case__ : Union[str, Any] = {col: [row.get(__UpperCamelCase ) for row in dataset] for col in keys} snake_case__ : List[str] = pa.Table.from_pydict(__UpperCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(__UpperCamelCase ) break else: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__UpperCamelCase ) batch_idx += 1
699
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ : List[Any] = 16 lowerCAmelCase__ : int = 32 def UpperCamelCase__ ( A__ , A__ = 16 ) -> Optional[Any]: snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) snake_case__ : str = load_dataset('glue' , 'mrpc' ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Optional[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : Optional[Any] = datasets.map( A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : int = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": snake_case__ : Union[str, Any] = 8 else: snake_case__ : Any = None return tokenizer.pad( A__ , padding='longest' , max_length=A__ , pad_to_multiple_of=A__ , return_tensors='pt' , ) # Instantiate dataloaders. snake_case__ : Any = DataLoader( tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) snake_case__ : Tuple = DataLoader( tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase__ : List[Any] = mocked_dataloaders # noqa: F811 def UpperCamelCase__ ( A__ , A__ ) -> Union[str, Any]: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , A__ ) == "1": snake_case__ : List[str] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: snake_case__ : int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: snake_case__ : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : Tuple = config['lr'] snake_case__ : Any = int(config['num_epochs'] ) snake_case__ : int = int(config['seed'] ) snake_case__ : int = int(config['batch_size'] ) set_seed(A__ ) snake_case__ : str = get_dataloaders(A__ , A__ ) snake_case__ : List[str] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation snake_case__ : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case__ : Optional[int] = batch_size // MAX_GPU_BATCH_SIZE snake_case__ : Dict = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=A__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : str = model.to(accelerator.device ) # Instantiate optimizer snake_case__ : Optional[int] = AdamW(params=model.parameters() , lr=A__ ) # Instantiate scheduler snake_case__ : List[str] = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=100 , num_training_steps=(len(A__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ : Tuple = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: snake_case__ : Optional[Any] = os.path.split(A__ )[-1].split('.' )[0] accelerator.init_trackers(A__ , A__ ) # Now we train the model for epoch in range(A__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: snake_case__ : Any = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case__ : Optional[int] = model(**A__ ) snake_case__ : str = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() snake_case__ : Any = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : Tuple = model(**A__ ) snake_case__ : str = outputs.logits.argmax(dim=-1 ) snake_case__ : Any = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=A__ , references=A__ , ) snake_case__ : List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , A__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(A__ ), 'epoch': epoch, } , step=A__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def UpperCamelCase__ ( ) -> List[str]: snake_case__ : str = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=A__ , default=A__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=A__ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) snake_case__ : List[Any] = parser.parse_args() snake_case__ : List[str] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
699
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ : List[str] = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Union[str, Any] = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[Any] = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys lowerCAmelCase__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
721
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCAmelCase__ : Dict = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCAmelCase__ : List[str] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCAmelCase__ : List[str] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def UpperCamelCase__ ( A__ , A__ ) -> tuple[str, float]: snake_case__ : Tuple = len([g for position, g in enumerate(A__ ) if g == main_target[position]] ) return (item, float(A__ )) def UpperCamelCase__ ( A__ , A__ ) -> tuple[str, str]: snake_case__ : str = random.randint(0 , len(A__ ) - 1 ) snake_case__ : int = parent_a[:random_slice] + parent_a[random_slice:] snake_case__ : Any = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def UpperCamelCase__ ( A__ , A__ ) -> str: snake_case__ : List[Any] = list(A__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: snake_case__ : Optional[Any] = random.choice(A__ ) return "".join(A__ ) def UpperCamelCase__ ( A__ , A__ , A__ , ) -> list[str]: snake_case__ : Tuple = [] # Generate more children proportionally to the fitness score. snake_case__ : Optional[Any] = int(parent_a[1] * 100 ) + 1 snake_case__ : str = 10 if child_n >= 10 else child_n for _ in range(A__ ): snake_case__ : Any = population_score[random.randint(0 , A__ )][0] snake_case__ , snake_case__ : int = crossover(parent_a[0] , A__ ) # Append new string to the population list. pop.append(mutate(A__ , A__ ) ) pop.append(mutate(A__ , A__ ) ) return pop def UpperCamelCase__ ( A__ , A__ , A__ = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: snake_case__ : Union[str, Any] = F"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(A__ ) # Verify that the target contains no genes besides the ones inside genes variable. snake_case__ : Tuple = sorted({c for c in target if c not in genes} ) if not_in_genes_list: snake_case__ : int = F"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(A__ ) # Generate random starting population. snake_case__ : Union[str, Any] = [] for _ in range(A__ ): population.append(''.join([random.choice(A__ ) for i in range(len(A__ ) )] ) ) # Just some logs to know what the algorithms is doing. snake_case__ , snake_case__ : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(A__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. snake_case__ : List[Any] = [evaluate(A__ , A__ ) for item in population] # Check if there is a matching evolution. snake_case__ : int = sorted(A__ , key=lambda A__ : x[1] , reverse=A__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"""\nGeneration: {generation}""" F"""\nTotal Population:{total_population}""" F"""\nBest score: {population_score[0][1]}""" F"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. snake_case__ : Optional[int] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(A__ ) # Normalize population score to be between 0 and 1. snake_case__ : str = [ (item, score / len(A__ )) for item, score in population_score ] # This is selection for i in range(A__ ): population.extend(select(population_score[int(A__ )] , A__ , A__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(A__ ) > N_POPULATION: break if __name__ == "__main__": lowerCAmelCase__ : str = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) lowerCAmelCase__ : Optional[Any] = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ : List[str] = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
699
0