code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
def _lowerCAmelCase( __A : Optional[Any] = 1000 ):
UpperCAmelCase = 3
UpperCAmelCase = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f"{solution() = }")
| 708 |
lowerCAmelCase__ = {
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
lowerCAmelCase__ = {value: key for key, value in encode_dict.items()}
def _lowerCAmelCase( __A ):
UpperCAmelCase = ""
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception("encode() accepts only letters of the alphabet and spaces" )
return encoded
def _lowerCAmelCase( __A ):
if set(__A ) - {"A", "B", " "} != set():
raise Exception("decode() accepts only 'A', 'B' and spaces" )
UpperCAmelCase = ""
for word in coded.split():
while len(__A ) != 0:
decoded += decode_dict[word[:5]]
UpperCAmelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ = {
"configuration_time_series_transformer": [
"TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TimeSeriesTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
"TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TimeSeriesTransformerForPrediction",
"TimeSeriesTransformerModel",
"TimeSeriesTransformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 709 |
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
lowerCAmelCase__ = {"UserAgent": UserAgent().random}
def _lowerCAmelCase( __A ):
UpperCAmelCase = script.contents[0]
UpperCAmelCase = json.loads(data[data.find("{\"config\"" ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class __magic_name__ :
def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Any:
UpperCAmelCase = f"https://www.instagram.com/{username}/"
UpperCAmelCase = self.get_json()
def _UpperCamelCase ( self : List[str] ) -> dict:
UpperCAmelCase = requests.get(self.url , headers=lowerCAmelCase__ ).text
UpperCAmelCase = BeautifulSoup(lowerCAmelCase__ , "html.parser" ).find_all("script" )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self : Tuple ) -> str:
return f"{self.__class__.__name__}('{self.username}')"
def __str__( self : Optional[int] ) -> str:
return f"{self.fullname} ({self.username}) is {self.biography}"
@property
def _UpperCamelCase ( self : Any ) -> str:
return self.user_data["username"]
@property
def _UpperCamelCase ( self : List[Any] ) -> str:
return self.user_data["full_name"]
@property
def _UpperCamelCase ( self : List[str] ) -> str:
return self.user_data["biography"]
@property
def _UpperCamelCase ( self : Optional[int] ) -> str:
return self.user_data["business_email"]
@property
def _UpperCamelCase ( self : str ) -> str:
return self.user_data["external_url"]
@property
def _UpperCamelCase ( self : int ) -> int:
return self.user_data["edge_followed_by"]["count"]
@property
def _UpperCamelCase ( self : List[Any] ) -> int:
return self.user_data["edge_follow"]["count"]
@property
def _UpperCamelCase ( self : List[str] ) -> int:
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def _UpperCamelCase ( self : Tuple ) -> str:
return self.user_data["profile_pic_url_hd"]
@property
def _UpperCamelCase ( self : Optional[int] ) -> bool:
return self.user_data["is_verified"]
@property
def _UpperCamelCase ( self : Optional[Any] ) -> bool:
return self.user_data["is_private"]
def _lowerCAmelCase( __A = "github" ):
import os
if os.environ.get("CI" ):
return # test failing on GitHub Actions
UpperCAmelCase = InstagramUser(__A )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , __A )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 120000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "support@github.com"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith("https://instagram." )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ = InstagramUser("github")
print(instagram_user)
print(f"{instagram_user.number_of_posts = }")
print(f"{instagram_user.number_of_followers = }")
print(f"{instagram_user.number_of_followings = }")
print(f"{instagram_user.email = }")
print(f"{instagram_user.website = }")
print(f"{instagram_user.profile_picture_url = }")
print(f"{instagram_user.is_verified = }")
print(f"{instagram_user.is_private = }")
| 1 | 0 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
lowerCAmelCase__ = logging.getLogger(__name__)
lowerCAmelCase__ = 50 # max width of layer names
lowerCAmelCase__ = 70 # max width of quantizer names
def _lowerCAmelCase( __A ):
UpperCAmelCase = parser.add_argument_group("quant_trainer arguments" )
group.add_argument("--wprec" , type=__A , default=8 , help="weight precision" )
group.add_argument("--aprec" , type=__A , default=8 , help="activation precision" )
group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" )
group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" )
group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" )
group.add_argument("--quant-disable-keyword" , type=__A , nargs="+" , help="disable quantizers by keyword" )
group.add_argument("--quant-disable-layer-module" , type=__A , help="disable quantizers by keyword under layer." )
group.add_argument("--quant-enable-layer-module" , type=__A , help="enable quantizers by keyword under layer" )
group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" )
group.add_argument("--percentile" , default=__A , type=__A , help="percentile for PercentileCalibrator" )
group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" )
group.add_argument("--clip-gelu" , metavar="N" , type=__A , help="clip gelu output maximum value to N" )
group.add_argument(
"--recalibrate-weights" , action="store_true" , help=(
"recalibrate weight amaxes by taking the max of the weights."
" amaxes will be computed with the current quantization granularity (axis)."
) , )
def _lowerCAmelCase( __A ):
if args.calibrator == "max":
UpperCAmelCase = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("Specify --percentile when using percentile calibrator" )
UpperCAmelCase = "histogram"
elif args.calibrator == "mse":
UpperCAmelCase = "histogram"
else:
raise ValueError(F"Invalid calibrator {args.calibrator}" )
UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=__A )
UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(__A )
quant_nn.QuantLinear.set_default_quant_desc_weight(__A )
def _lowerCAmelCase( __A , __A , __A=False , __A=False ):
logger.info("Configuring Model for Quantization" )
logger.info(F"using quantization package {pytorch_quantization.__file__}" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(__A , ["embeddings"] , which="weight" , _disabled=__A )
if args.quant_disable:
set_quantizer_by_name(__A , [""] , _disabled=__A )
if args.quant_disable_keyword:
set_quantizer_by_name(__A , args.quant_disable_keyword , _disabled=__A )
if args.quant_disable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=__A )
if args.quant_enable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=__A )
if args.recalibrate_weights:
recalibrate_weights(__A )
if args.fuse_qkv:
fuse_qkv(__A , __A )
if args.clip_gelu:
clip_gelu(__A , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(__A )
def _lowerCAmelCase( __A ):
logger.info("Enabling Calibration" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F"{name:80}: {module}" )
def _lowerCAmelCase( __A , __A ):
logger.info("Loading calibrated amax" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax("percentile" , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(__A )
def _lowerCAmelCase( __A , __A ):
def fusea(__A , __A , __A ):
for mod in [qq, qk, qv]:
if not hasattr(__A , "_amax" ):
print(" WARNING: NO AMAX BUFFER" )
return
UpperCAmelCase = qq._amax.detach().item()
UpperCAmelCase = qk._amax.detach().item()
UpperCAmelCase = qv._amax.detach().item()
UpperCAmelCase = max(__A , __A , __A )
qq._amax.fill_(__A )
qk._amax.fill_(__A )
qv._amax.fill_(__A )
logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" )
for name, mod in model.named_modules():
if name.endswith(".attention.self" ):
logger.info(F"FUSE_QKV: {name:{name_width}}" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _lowerCAmelCase( __A , __A ):
for name, mod in model.named_modules():
if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ):
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=__A )
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None:
UpperCAmelCase = mod.weight.shape[0]
UpperCAmelCase = mod._weight_quantizer._amax.detach()
UpperCAmelCase = torch.ones(__A , dtype=amax.dtype , device=amax.device ) * amax
print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ):
if not hasattr(mod.weight_quantizer , "_amax" ):
print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set
UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__A , keepdims=__A ).detach()
logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" )
UpperCAmelCase = amax
def _lowerCAmelCase( __A , __A=25 , __A=180 , __A=None ):
if ignore is None:
UpperCAmelCase = []
elif not isinstance(__A , __A ):
UpperCAmelCase = [ignore]
UpperCAmelCase = 0
for name, mod in model.named_modules():
if not hasattr(__A , "weight" ):
continue
UpperCAmelCase = max(__A , len(__A ) )
for name, mod in model.named_modules():
UpperCAmelCase = getattr(__A , "_input_quantizer" , __A )
UpperCAmelCase = getattr(__A , "_weight_quantizer" , __A )
if not hasattr(__A , "weight" ):
continue
if type(__A ) in ignore:
continue
if [True for s in ignore if type(__A ) is str and s in name]:
continue
UpperCAmelCase = F"Act:{input_q.extra_repr()}"
UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}"
UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}"
if len(__A ) <= line_width:
logger.info(__A )
else:
logger.info(F"{name:{name_width}} {act_str}" )
logger.info(F"{' ':{name_width}} {wgt_str}" )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for name, mod in model.named_modules():
if isinstance(__A , pytorch_quantization.nn.TensorQuantizer ):
print(F"{name:80} {mod}" )
count += 1
print(F"{count} TensorQuantizers found in model" )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
UpperCAmelCase = getattr(__A , __A , __A )
if quantizer_mod is not None:
assert hasattr(__A , __A )
setattr(__A , __A , __A )
else:
logger.warning(F"{name} has no {quantizer}" )
def _lowerCAmelCase( __A , __A , __A="both" , **__A ):
UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
if which in ["input", "both"]:
set_quantizer(__A , __A , "_input_quantizer" , __A , __A )
if which in ["weight", "both"]:
set_quantizer(__A , __A , "_weight_quantizer" , __A , __A )
logger.info(__A )
def _lowerCAmelCase( __A , __A , **__A ):
for name, mod in model.named_modules():
if hasattr(__A , "_input_quantizer" ) or hasattr(__A , "_weight_quantizer" ):
for n in names:
if re.search(__A , __A ):
set_quantizers(__A , __A , **__A )
elif name.endswith("_quantizer" ):
for n in names:
if re.search(__A , __A ):
UpperCAmelCase = F"Warning: changing {name:{name_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
setattr(__A , __A , __A )
logger.info(__A )
| 710 |
import unittest
import numpy as np
def _lowerCAmelCase( __A , __A , __A , __A = None , ):
UpperCAmelCase = np.shape(__A )
UpperCAmelCase = np.shape(__A )
UpperCAmelCase = np.shape(__A )
if shape_a[0] != shape_b[0]:
UpperCAmelCase = (
"Expected the same number of rows for A and B. "
F"Instead found A of size {shape_a} and B of size {shape_b}"
)
raise ValueError(__A )
if shape_b[1] != shape_c[1]:
UpperCAmelCase = (
"Expected the same number of columns for B and C. "
F"Instead found B of size {shape_b} and C of size {shape_c}"
)
raise ValueError(__A )
UpperCAmelCase = pseudo_inv
if a_inv is None:
try:
UpperCAmelCase = np.linalg.inv(__A )
except np.linalg.LinAlgError:
raise ValueError(
"Input matrix A is not invertible. Cannot compute Schur complement." )
return mat_c - mat_b.T @ a_inv @ mat_b
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : List[str] ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1], [6, 3]] )
UpperCAmelCase = schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = np.block([[a, b], [b.T, c]] )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
self.assertAlmostEqual(lowerCAmelCase__ , det_a * det_s )
def _UpperCamelCase ( self : str ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1], [6, 3]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 1 | 0 |
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def _lowerCAmelCase( __A , __A , __A ):
def get_masked_lm_array(__A ):
UpperCAmelCase = F"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE"
UpperCAmelCase = tf.train.load_variable(__A , __A )
if "kernel" in name:
UpperCAmelCase = array.transpose()
return torch.from_numpy(__A )
def get_encoder_array(__A ):
UpperCAmelCase = F"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE"
UpperCAmelCase = tf.train.load_variable(__A , __A )
if "kernel" in name:
UpperCAmelCase = array.transpose()
return torch.from_numpy(__A )
def get_encoder_layer_array(__A , __A ):
UpperCAmelCase = F"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE"
UpperCAmelCase = tf.train.load_variable(__A , __A )
if "kernel" in name:
UpperCAmelCase = array.transpose()
return torch.from_numpy(__A )
def get_encoder_attention_layer_array(__A , __A , __A ):
UpperCAmelCase = F"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE"
UpperCAmelCase = tf.train.load_variable(__A , __A )
UpperCAmelCase = array.reshape(__A )
if "kernel" in name:
UpperCAmelCase = array.transpose()
return torch.from_numpy(__A )
print(F"Loading model based on config from {config_path}..." )
UpperCAmelCase = BertConfig.from_json_file(__A )
UpperCAmelCase = BertForMaskedLM(__A )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
UpperCAmelCase = model.bert.encoder.layer[layer_index]
# Self-attention
UpperCAmelCase = layer.attention.self
UpperCAmelCase = get_encoder_attention_layer_array(
__A , "_query_dense/kernel" , self_attn.query.weight.data.shape )
UpperCAmelCase = get_encoder_attention_layer_array(
__A , "_query_dense/bias" , self_attn.query.bias.data.shape )
UpperCAmelCase = get_encoder_attention_layer_array(
__A , "_key_dense/kernel" , self_attn.key.weight.data.shape )
UpperCAmelCase = get_encoder_attention_layer_array(
__A , "_key_dense/bias" , self_attn.key.bias.data.shape )
UpperCAmelCase = get_encoder_attention_layer_array(
__A , "_value_dense/kernel" , self_attn.value.weight.data.shape )
UpperCAmelCase = get_encoder_attention_layer_array(
__A , "_value_dense/bias" , self_attn.value.bias.data.shape )
# Self-attention Output
UpperCAmelCase = layer.attention.output
UpperCAmelCase = get_encoder_attention_layer_array(
__A , "_output_dense/kernel" , self_output.dense.weight.data.shape )
UpperCAmelCase = get_encoder_attention_layer_array(
__A , "_output_dense/bias" , self_output.dense.bias.data.shape )
UpperCAmelCase = get_encoder_layer_array(__A , "_attention_layer_norm/gamma" )
UpperCAmelCase = get_encoder_layer_array(__A , "_attention_layer_norm/beta" )
# Intermediate
UpperCAmelCase = layer.intermediate
UpperCAmelCase = get_encoder_layer_array(__A , "_intermediate_dense/kernel" )
UpperCAmelCase = get_encoder_layer_array(__A , "_intermediate_dense/bias" )
# Output
UpperCAmelCase = layer.output
UpperCAmelCase = get_encoder_layer_array(__A , "_output_dense/kernel" )
UpperCAmelCase = get_encoder_layer_array(__A , "_output_dense/bias" )
UpperCAmelCase = get_encoder_layer_array(__A , "_output_layer_norm/gamma" )
UpperCAmelCase = get_encoder_layer_array(__A , "_output_layer_norm/beta" )
# Embeddings
UpperCAmelCase = get_encoder_array("_position_embedding_layer/embeddings" )
UpperCAmelCase = get_encoder_array("_type_embedding_layer/embeddings" )
UpperCAmelCase = get_encoder_array("_embedding_norm_layer/gamma" )
UpperCAmelCase = get_encoder_array("_embedding_norm_layer/beta" )
# LM Head
UpperCAmelCase = model.cls.predictions.transform
UpperCAmelCase = get_masked_lm_array("dense/kernel" )
UpperCAmelCase = get_masked_lm_array("dense/bias" )
UpperCAmelCase = get_masked_lm_array("layer_norm/gamma" )
UpperCAmelCase = get_masked_lm_array("layer_norm/beta" )
UpperCAmelCase = get_masked_lm_array("embedding_table" )
# Pooling
UpperCAmelCase = BertPooler(config=__A )
UpperCAmelCase = get_encoder_array("_pooler_layer/kernel" )
UpperCAmelCase = get_encoder_array("_pooler_layer/bias" )
# Export final model
model.save_pretrained(__A )
# Integration test - should load without any errors ;)
UpperCAmelCase = BertForMaskedLM.from_pretrained(__A )
print(new_model.eval() )
print("Model conversion was done sucessfully!" )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model.",
)
lowerCAmelCase__ = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 711 |
import argparse
import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
from accelerate import Accelerator
def _lowerCAmelCase( __A ):
UpperCAmelCase = fname.split(os.path.sep )[-1]
return re.search(r"^(.*)_\d+\.jpg$" , __A ).groups()[0]
class __magic_name__ ( _snake_case ):
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=None ) -> Optional[Any]:
UpperCAmelCase = file_names
UpperCAmelCase = image_transform
UpperCAmelCase = label_to_id
def __len__( self : Tuple ) -> List[str]:
return len(self.file_names )
def __getitem__( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> Dict:
UpperCAmelCase = self.file_names[idx]
UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ )
UpperCAmelCase = raw_image.convert("RGB" )
if self.image_transform is not None:
UpperCAmelCase = self.image_transform(lowerCAmelCase__ )
UpperCAmelCase = extract_label(lowerCAmelCase__ )
if self.label_to_id is not None:
UpperCAmelCase = self.label_to_id[label]
return {"image": image, "label": label}
def _lowerCAmelCase( __A , __A ):
# Initialize accelerator
if args.with_tracking:
UpperCAmelCase = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir )
else:
UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase = config["lr"]
UpperCAmelCase = int(config["num_epochs"] )
UpperCAmelCase = int(config["seed"] )
UpperCAmelCase = int(config["batch_size"] )
UpperCAmelCase = config["image_size"]
if not isinstance(__A , (list, tuple) ):
UpperCAmelCase = (image_size, image_size)
# Parse out whether we are saving every epoch or after a certain number of batches
if hasattr(args.checkpointing_steps , "isdigit" ):
if args.checkpointing_steps == "epoch":
UpperCAmelCase = args.checkpointing_steps
elif args.checkpointing_steps.isdigit():
UpperCAmelCase = int(args.checkpointing_steps )
else:
raise ValueError(
F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." )
else:
UpperCAmelCase = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
UpperCAmelCase = os.path.split(__A )[-1].split("." )[0]
accelerator.init_trackers(__A , __A )
# Grab all the image filenames
UpperCAmelCase = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )]
# Build the label correspondences
UpperCAmelCase = [extract_label(__A ) for fname in file_names]
UpperCAmelCase = list(set(__A ) )
id_to_label.sort()
UpperCAmelCase = {lbl: i for i, lbl in enumerate(__A )}
# Set the seed before splitting the data.
np.random.seed(__A )
torch.manual_seed(__A )
torch.cuda.manual_seed_all(__A )
# Split our filenames between train and validation
UpperCAmelCase = np.random.permutation(len(__A ) )
UpperCAmelCase = int(0.8 * len(__A ) )
UpperCAmelCase = random_perm[:cut]
UpperCAmelCase = random_perm[cut:]
# For training we use a simple RandomResizedCrop
UpperCAmelCase = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] )
UpperCAmelCase = PetsDataset(
[file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A )
# For evaluation, we use a deterministic Resize
UpperCAmelCase = Compose([Resize(__A ), ToTensor()] )
UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A )
# Instantiate dataloaders.
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase = create_model("resnet50d" , pretrained=__A , num_classes=len(__A ) )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCAmelCase = model.to(accelerator.device )
# Freezing the base model
for param in model.parameters():
UpperCAmelCase = False
for param in model.get_classifier().parameters():
UpperCAmelCase = True
# We normalize the batches of images to be a bit faster.
UpperCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device )
UpperCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device )
# Instantiate optimizer
UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 )
# Instantiate learning rate scheduler
UpperCAmelCase = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(
__A , __A , __A , __A , __A )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase = 0
# We also need to keep track of the starting epoch so files are named properly
UpperCAmelCase = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" )
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase = os.path.basename(args.resume_from_checkpoint )
else:
# Get the most recent checkpoint
UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()]
dirs.sort(key=os.path.getctime )
UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
UpperCAmelCase = os.path.splitext(__A )[0]
if "epoch" in training_difference:
UpperCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1
UpperCAmelCase = None
else:
UpperCAmelCase = int(training_difference.replace("step_" , "" ) )
UpperCAmelCase = resume_step // len(__A )
resume_step -= starting_epoch * len(__A )
# Now we train the model
for epoch in range(__A , __A ):
model.train()
if args.with_tracking:
UpperCAmelCase = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
UpperCAmelCase = accelerator.skip_first_batches(__A , __A )
overall_step += resume_step
else:
# After the first iteration though, we need to go back to the original dataloader
UpperCAmelCase = train_dataloader
for batch in active_dataloader:
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch["image"] - mean) / std
UpperCAmelCase = model(__A )
UpperCAmelCase = torch.nn.functional.cross_entropy(__A , batch["label"] )
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(__A )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
if isinstance(__A , __A ):
UpperCAmelCase = F"step_{overall_step}"
if overall_step % checkpointing_steps == 0:
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , __A )
accelerator.save_state(__A )
model.eval()
UpperCAmelCase = 0
UpperCAmelCase = 0
for step, batch in enumerate(__A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch["image"] - mean) / std
with torch.no_grad():
UpperCAmelCase = model(__A )
UpperCAmelCase = outputs.argmax(dim=-1 )
UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) )
UpperCAmelCase = predictions == references
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
UpperCAmelCase = accurate.item() / num_elems
# Use accelerator.print to print only on the main process.
accelerator.print(F"epoch {epoch}: {100 * eval_metric:.2f}" )
if args.with_tracking:
accelerator.log(
{
"accuracy": 100 * eval_metric,
"train_loss": total_loss.item() / len(__A ),
"epoch": epoch,
} , step=__A , )
if checkpointing_steps == "epoch":
UpperCAmelCase = F"epoch_{epoch}"
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , __A )
accelerator.save_state(__A )
if args.with_tracking:
accelerator.end_training()
def _lowerCAmelCase( ):
UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument("--data_dir" , required=__A , help="The data folder on disk." )
parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." )
parser.add_argument(
"--mixed_precision" , type=__A , default=__A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
parser.add_argument(
"--checkpointing_steps" , type=__A , default=__A , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , )
parser.add_argument(
"--output_dir" , type=__A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--resume_from_checkpoint" , type=__A , default=__A , help="If the training should continue from a checkpoint folder." , )
parser.add_argument(
"--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , )
parser.add_argument(
"--project_dir" , type=__A , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224}
training_function(__A , __A )
if __name__ == "__main__":
main()
| 1 | 0 |
import inspect
import logging
import os
import random
import shutil
import tempfile
import unittest
import pytest
import torch
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_cuda
from accelerate.utils import ProjectConfiguration, set_seed
lowerCAmelCase__ = logging.getLogger(__name__)
def _lowerCAmelCase( __A=2 , __A=3 , __A=16 , __A = 10 , __A = 2 ):
def get_dataset(__A ):
UpperCAmelCase = torch.randn(batch_size * n_batches , 1 )
return TensorDataset(__A , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) )
UpperCAmelCase = get_dataset(__A )
UpperCAmelCase = get_dataset(__A )
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
return (train_dataloader, valid_dataloader)
def _lowerCAmelCase( __A , __A , __A , __A , __A , __A=None ):
UpperCAmelCase = []
for epoch in range(__A ):
# Train quickly
model.train()
for batch in dataloader:
UpperCAmelCase , UpperCAmelCase = batch
UpperCAmelCase = model(__A )
UpperCAmelCase = torch.nn.functional.mse_loss(__A , __A )
accelerator.backward(__A )
optimizer.step()
optimizer.zero_grad()
rands.append(random.random() ) # Introduce some randomness
if scheduler is not None:
scheduler.step()
return rands
class __magic_name__ ( nn.Module ):
def __init__( self : Union[str, Any] ) -> List[Any]:
super().__init__()
UpperCAmelCase = nn.Parameter(torch.randn(1 ) )
UpperCAmelCase = nn.Parameter(torch.randn(1 ) )
def _UpperCamelCase ( self : int , lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]:
return x * self.a + self.b
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : Any ) -> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2 )
UpperCAmelCase = DummyModel()
UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
UpperCAmelCase , UpperCAmelCase = dummy_dataloaders()
UpperCAmelCase = ProjectConfiguration(total_limit=1 , project_dir=lowerCAmelCase__ , automatic_checkpoint_naming=lowerCAmelCase__ )
# Train baseline
UpperCAmelCase = Accelerator(project_config=lowerCAmelCase__ )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save initial
accelerator.save_state()
# Save second state
accelerator.save_state()
self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 )
def _UpperCamelCase ( self : Optional[Any] ) -> Tuple:
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2 )
UpperCAmelCase = DummyModel()
UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
UpperCAmelCase , UpperCAmelCase = dummy_dataloaders()
# Train baseline
UpperCAmelCase = Accelerator()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save initial
UpperCAmelCase = os.path.join(lowerCAmelCase__ , "initial" )
accelerator.save_state(lowerCAmelCase__ )
((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item()
UpperCAmelCase = optimizer.state_dict()
UpperCAmelCase = train(3 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item()
UpperCAmelCase = optimizer.state_dict()
# Train partially
set_seed(4_2 )
UpperCAmelCase = DummyModel()
UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
UpperCAmelCase , UpperCAmelCase = dummy_dataloaders()
UpperCAmelCase = Accelerator()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
accelerator.load_state(lowerCAmelCase__ )
((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item()
UpperCAmelCase = optimizer.state_dict()
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = train(2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save everything
UpperCAmelCase = os.path.join(lowerCAmelCase__ , "checkpoint" )
accelerator.save_state(lowerCAmelCase__ )
# Load everything back in and make sure all states work
accelerator.load_state(lowerCAmelCase__ )
test_rands += train(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item()
UpperCAmelCase = optimizer.state_dict()
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : List[Any] ) -> List[Any]:
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2 )
UpperCAmelCase = DummyModel()
UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
UpperCAmelCase , UpperCAmelCase = dummy_dataloaders()
UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase__ )
# Train baseline
UpperCAmelCase = Accelerator(project_dir=lowerCAmelCase__ , project_config=lowerCAmelCase__ )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save initial
accelerator.save_state()
((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item()
UpperCAmelCase = optimizer.state_dict()
UpperCAmelCase = train(3 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item()
UpperCAmelCase = optimizer.state_dict()
# Train partially
set_seed(4_2 )
UpperCAmelCase = DummyModel()
UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
UpperCAmelCase , UpperCAmelCase = dummy_dataloaders()
UpperCAmelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowerCAmelCase__ )
UpperCAmelCase = Accelerator(project_dir=lowerCAmelCase__ , project_config=lowerCAmelCase__ )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
accelerator.load_state(os.path.join(lowerCAmelCase__ , "checkpoints" , "checkpoint_0" ) )
((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item()
UpperCAmelCase = optimizer.state_dict()
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = train(2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save everything
accelerator.save_state()
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(lowerCAmelCase__ , "checkpoints" , "checkpoint_1" ) )
test_rands += train(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item()
UpperCAmelCase = optimizer.state_dict()
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : Tuple ) -> List[Any]:
UpperCAmelCase = torch.tensor([1, 2, 3] )
UpperCAmelCase = torch.tensor([2, 3, 4] )
UpperCAmelCase = DummyModel()
UpperCAmelCase = torch.optim.Adam(net.parameters() )
UpperCAmelCase = Accelerator()
with self.assertRaises(lowerCAmelCase__ ) as ve:
accelerator.register_for_checkpointing(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = str(ve.exception )
self.assertTrue("Item at index 0" in message )
self.assertTrue("Item at index 1" in message )
self.assertFalse("Item at index 2" in message )
self.assertFalse("Item at index 3" in message )
def _UpperCamelCase ( self : Tuple ) -> int:
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2 )
UpperCAmelCase = DummyModel()
UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
UpperCAmelCase = torch.optim.lr_scheduler.StepLR(lowerCAmelCase__ , step_size=1 , gamma=0.99 )
UpperCAmelCase , UpperCAmelCase = dummy_dataloaders()
UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase__ )
# Train baseline
UpperCAmelCase = Accelerator(project_dir=lowerCAmelCase__ , project_config=lowerCAmelCase__ )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save initial
accelerator.save_state()
UpperCAmelCase = scheduler.state_dict()
train(3 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.assertNotEqual(lowerCAmelCase__ , scheduler.state_dict() )
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(lowerCAmelCase__ , "checkpoints" , "checkpoint_0" ) )
self.assertEqual(lowerCAmelCase__ , scheduler.state_dict() )
def _UpperCamelCase ( self : List[str] ) -> List[Any]:
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2 )
UpperCAmelCase = DummyModel()
UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase__ , total_limit=2 )
# Train baseline
UpperCAmelCase = Accelerator(project_dir=lowerCAmelCase__ , project_config=lowerCAmelCase__ )
UpperCAmelCase = accelerator.prepare(lowerCAmelCase__ )
# Save 3 states:
for _ in range(1_1 ):
accelerator.save_state()
self.assertTrue(not os.path.exists(os.path.join(lowerCAmelCase__ , "checkpoints" , "checkpoint_0" ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "checkpoints" , "checkpoint_9" ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "checkpoints" , "checkpoint_10" ) ) )
@require_cuda
def _UpperCamelCase ( self : List[Any] ) -> Optional[int]:
UpperCAmelCase = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )]
execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() )
if __name__ == "__main__":
lowerCAmelCase__ = "/tmp/accelerate/state_checkpointing"
lowerCAmelCase__ = DummyModel()
lowerCAmelCase__ = torch.optim.Adam(params=model.parameters(), lr=1e-3)
lowerCAmelCase__ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9)
lowerCAmelCase__, lowerCAmelCase__ = dummy_dataloaders()
lowerCAmelCase__ = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
lowerCAmelCase__ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no")
if accelerator.process_index == 0:
if os.path.exists(savedir):
shutil.rmtree(savedir)
os.makedirs(savedir)
lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
lowerCAmelCase__, lowerCAmelCase__ = accelerator.prepare(model, optimizer)
train(3, model, train_dataloader, optimizer, accelerator, scheduler)
# Check that the intial optimizer is loaded on the GPU
for group in optimizer.param_groups:
lowerCAmelCase__ = group["params"][0].device
break
assert param_device.type == accelerator.device.type
lowerCAmelCase__ = model.cpu()
accelerator.wait_for_everyone()
accelerator.save_state()
accelerator.wait_for_everyone()
# Check CPU state
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu")
for group in optimizer.param_groups:
lowerCAmelCase__ = group["params"][0].device
break
assert (
param_device.type == torch.device("cpu").type
), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}"
# Check device state
model.to(accelerator.device)
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device")
for group in optimizer.param_groups:
lowerCAmelCase__ = group["params"][0].device
break
assert (
param_device.type == accelerator.device.type
), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}"
# Check error
with pytest.raises(TypeError, match="Unsupported optimizer map location passed"):
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid")
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
shutil.rmtree(savedir)
accelerator.wait_for_everyone()
| 712 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = 1 # (0 is vertical, 1 is horizontal)
def _lowerCAmelCase( ):
UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A )
print("Processing..." )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno(__A , __A , __A )
for index, image in enumerate(__A ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
UpperCAmelCase = random_chars(32 )
UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0]
UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(F"/{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"Success {index+1}/{len(__A )} with {file_name}" )
UpperCAmelCase = []
for anno in new_annos[index]:
UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(__A )
with open(F"/{file_root}.txt" , "w" ) as outfile:
outfile.write("\n".join(line for line in annos_list ) )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = []
UpperCAmelCase = []
for label_file in glob.glob(os.path.join(__A , "*.txt" ) ):
UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0]
with open(__A ) as in_file:
UpperCAmelCase = in_file.readlines()
UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" )
UpperCAmelCase = []
for obj_list in obj_lists:
UpperCAmelCase = obj_list.rstrip("\n" ).split(" " )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__A )
labels.append(__A )
return img_paths, labels
def _lowerCAmelCase( __A , __A , __A = 1 ):
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = []
for idx in range(len(__A ) ):
UpperCAmelCase = []
UpperCAmelCase = img_list[idx]
path_list.append(__A )
UpperCAmelCase = anno_list[idx]
UpperCAmelCase = cva.imread(__A )
if flip_type == 1:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__A )
new_imgs_list.append(__A )
return new_imgs_list, new_annos_lists, path_list
def _lowerCAmelCase( __A = 32 ):
assert number_char > 1, "The number of character should greater than 1"
UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(__A ) for _ in range(__A ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 1 | 0 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = 1 # (0 is vertical, 1 is horizontal)
def _lowerCAmelCase( ):
UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A )
print("Processing..." )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno(__A , __A , __A )
for index, image in enumerate(__A ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
UpperCAmelCase = random_chars(32 )
UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0]
UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(F"/{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"Success {index+1}/{len(__A )} with {file_name}" )
UpperCAmelCase = []
for anno in new_annos[index]:
UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(__A )
with open(F"/{file_root}.txt" , "w" ) as outfile:
outfile.write("\n".join(line for line in annos_list ) )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = []
UpperCAmelCase = []
for label_file in glob.glob(os.path.join(__A , "*.txt" ) ):
UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0]
with open(__A ) as in_file:
UpperCAmelCase = in_file.readlines()
UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" )
UpperCAmelCase = []
for obj_list in obj_lists:
UpperCAmelCase = obj_list.rstrip("\n" ).split(" " )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__A )
labels.append(__A )
return img_paths, labels
def _lowerCAmelCase( __A , __A , __A = 1 ):
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = []
for idx in range(len(__A ) ):
UpperCAmelCase = []
UpperCAmelCase = img_list[idx]
path_list.append(__A )
UpperCAmelCase = anno_list[idx]
UpperCAmelCase = cva.imread(__A )
if flip_type == 1:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__A )
new_imgs_list.append(__A )
return new_imgs_list, new_annos_lists, path_list
def _lowerCAmelCase( __A = 32 ):
assert number_char > 1, "The number of character should greater than 1"
UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(__A ) for _ in range(__A ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 713 |
def _lowerCAmelCase( __A ):
if not isinstance(__A , __A ):
raise TypeError("only integers accepted as input" )
else:
UpperCAmelCase = str(abs(__A ) )
UpperCAmelCase = [list(__A ) for char in range(len(__A ) )]
for index in range(len(__A ) ):
num_transpositions[index].pop(__A )
return max(
int("".join(list(__A ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__("doctest").testmod()
| 1 | 0 |
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def _lowerCAmelCase( __A , __A , __A=0 ):
# Format the message.
if name is None:
UpperCAmelCase = None
else:
UpperCAmelCase = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}"
UpperCAmelCase = fmt.format(__A )
# Print and recurse (if needed).
if isinstance(__A , __A ):
if msg is not None:
print(__A )
for k in val.keys():
recursive_print(__A , val[k] , spaces + 2 )
elif isinstance(__A , torch.Tensor ):
print(__A , ":" , val.size() )
else:
print(__A , ":" , __A )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
UpperCAmelCase = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
UpperCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:]
UpperCAmelCase = param.view(*__A )
UpperCAmelCase = param.transpose(0 , 2 )
UpperCAmelCase = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
UpperCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:]
UpperCAmelCase = param.view(*__A )
UpperCAmelCase = param.transpose(0 , 1 ).contiguous()
UpperCAmelCase = param.view(*__A )
return param
def _lowerCAmelCase( __A , __A , __A ):
# The converted output model.
UpperCAmelCase = {}
# old versions did not store training args
UpperCAmelCase = input_state_dict.get("args" , __A )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
UpperCAmelCase = ds_args.padded_vocab_size
UpperCAmelCase = ds_args.max_position_embeddings
UpperCAmelCase = ds_args.hidden_size
UpperCAmelCase = ds_args.num_layers
UpperCAmelCase = ds_args.num_attention_heads
UpperCAmelCase = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
UpperCAmelCase = config.n_head
# The hidden_size per head.
UpperCAmelCase = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
UpperCAmelCase = input_state_dict["checkpoint_version"]
else:
UpperCAmelCase = 0.0
# The model.
UpperCAmelCase = input_state_dict["model"]
# The language model.
UpperCAmelCase = model["language_model"]
# The embeddings.
UpperCAmelCase = lm["embedding"]
# The word embeddings.
UpperCAmelCase = embeddings["word_embeddings"]["weight"]
# Truncate the embedding table to vocab_size rows.
UpperCAmelCase = word_embeddings[: config.vocab_size, :]
UpperCAmelCase = word_embeddings
# The position embeddings.
UpperCAmelCase = embeddings["position_embeddings"]["weight"]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
UpperCAmelCase = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
F"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" )
# Store the position embeddings.
UpperCAmelCase = pos_embeddings
# The transformer.
UpperCAmelCase = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"]
# The regex to extract layer names.
UpperCAmelCase = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" )
# The simple map of names for "automated" rules.
UpperCAmelCase = {
"attention.dense": ".attn.c_proj.",
"self_attention.dense": ".attn.c_proj.",
"mlp.dense_h_to_4h": ".mlp.c_fc.",
"mlp.dense_4h_to_h": ".mlp.c_proj.",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
UpperCAmelCase = layer_re.match(__A )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
UpperCAmelCase = int(m.group(1 ) )
# The name of the operation.
UpperCAmelCase = m.group(2 )
# Is it a weight or a bias?
UpperCAmelCase = m.group(3 )
# The name of the layer.
UpperCAmelCase = F"transformer.h.{layer_idx}"
# For layernorm(s), simply store the layer norm.
if op_name.endswith("layernorm" ):
UpperCAmelCase = "ln_1" if op_name.startswith("input" ) else "ln_2"
UpperCAmelCase = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
UpperCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , __A , __A )
UpperCAmelCase = causal_mask
# Insert a "dummy" tensor for masked_bias.
UpperCAmelCase = torch.tensor(-1E4 , dtype=torch.floataa )
UpperCAmelCase = masked_bias
UpperCAmelCase = fix_query_key_value_ordering(__A , __A , 3 , __A , __A )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
UpperCAmelCase = out_val.transpose(0 , 1 ).contiguous()
# Store.
UpperCAmelCase = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
UpperCAmelCase = fix_query_key_value_ordering(__A , __A , 3 , __A , __A )
# Store. No change of shape.
UpperCAmelCase = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
UpperCAmelCase = megatron_to_transformers[op_name]
UpperCAmelCase = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
UpperCAmelCase = megatron_to_transformers[op_name]
UpperCAmelCase = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
UpperCAmelCase = transformer["final_layernorm.weight"]
UpperCAmelCase = transformer["final_layernorm.bias"]
# For LM head, transformers' wants the matrix to weight embeddings.
UpperCAmelCase = word_embeddings
# It should be done!
return output_state_dict
def _lowerCAmelCase( ):
# Create the argument parser.
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument("--print-checkpoint-structure" , action="store_true" )
parser.add_argument(
"path_to_checkpoint" , type=__A , help="Path to the checkpoint file (.zip archive or direct .pt file)" , )
parser.add_argument(
"--config_file" , default="" , type=__A , help="An optional config json file describing the pre-trained model." , )
UpperCAmelCase = parser.parse_args()
# Extract the basename.
UpperCAmelCase = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(F"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" )
if args.path_to_checkpoint.endswith(".zip" ):
with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint:
with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict:
UpperCAmelCase = torch.load(__A , map_location="cpu" )
else:
UpperCAmelCase = torch.load(args.path_to_checkpoint , map_location="cpu" )
UpperCAmelCase = input_state_dict.get("args" , __A )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
UpperCAmelCase = "gelu_fast"
elif ds_args.openai_gelu:
UpperCAmelCase = "gelu_new"
else:
UpperCAmelCase = "gelu"
else:
# in the very early days this used to be "gelu_new"
UpperCAmelCase = "gelu_new"
# Spell out all parameters in case the defaults change.
UpperCAmelCase = GPTaConfig(
vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=__A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="cls_index" , summary_use_proj=__A , summary_activation=__A , summary_proj_to_labels=__A , summary_first_dropout=0.1 , scale_attn_weights=__A , use_cache=__A , bos_token_id=50256 , eos_token_id=50256 , )
else:
UpperCAmelCase = GPTaConfig.from_json_file(args.config_file )
UpperCAmelCase = ["GPT2LMHeadModel"]
# Convert.
print("Converting" )
UpperCAmelCase = convert_megatron_checkpoint(__A , __A , __A )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(__A , __A )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
UpperCAmelCase = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
UpperCAmelCase = "gpt2"
elif tokenizer_type == "PretrainedFromHF":
UpperCAmelCase = ds_args.tokenizer_name_or_path
else:
raise ValueError(F"Unrecognized tokenizer_type {tokenizer_type}" )
else:
UpperCAmelCase = "gpt2"
UpperCAmelCase = AutoTokenizer.from_pretrained(__A )
UpperCAmelCase = type(__A ).__name__
UpperCAmelCase = tokenizer_class
# Store the config to file.
print("Saving config" )
config.save_pretrained(__A )
# Save tokenizer based on args
print(F"Adding {tokenizer_class} tokenizer files" )
tokenizer.save_pretrained(__A )
# Store the state_dict to file.
UpperCAmelCase = os.path.join(__A , "pytorch_model.bin" )
print(F"Saving checkpoint to \"{output_checkpoint_file}\"" )
torch.save(__A , __A )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 714 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
lowerCAmelCase__ = logging.getLogger(__name__)
lowerCAmelCase__ = 50 # max width of layer names
lowerCAmelCase__ = 70 # max width of quantizer names
def _lowerCAmelCase( __A ):
UpperCAmelCase = parser.add_argument_group("quant_trainer arguments" )
group.add_argument("--wprec" , type=__A , default=8 , help="weight precision" )
group.add_argument("--aprec" , type=__A , default=8 , help="activation precision" )
group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" )
group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" )
group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" )
group.add_argument("--quant-disable-keyword" , type=__A , nargs="+" , help="disable quantizers by keyword" )
group.add_argument("--quant-disable-layer-module" , type=__A , help="disable quantizers by keyword under layer." )
group.add_argument("--quant-enable-layer-module" , type=__A , help="enable quantizers by keyword under layer" )
group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" )
group.add_argument("--percentile" , default=__A , type=__A , help="percentile for PercentileCalibrator" )
group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" )
group.add_argument("--clip-gelu" , metavar="N" , type=__A , help="clip gelu output maximum value to N" )
group.add_argument(
"--recalibrate-weights" , action="store_true" , help=(
"recalibrate weight amaxes by taking the max of the weights."
" amaxes will be computed with the current quantization granularity (axis)."
) , )
def _lowerCAmelCase( __A ):
if args.calibrator == "max":
UpperCAmelCase = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("Specify --percentile when using percentile calibrator" )
UpperCAmelCase = "histogram"
elif args.calibrator == "mse":
UpperCAmelCase = "histogram"
else:
raise ValueError(F"Invalid calibrator {args.calibrator}" )
UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=__A )
UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(__A )
quant_nn.QuantLinear.set_default_quant_desc_weight(__A )
def _lowerCAmelCase( __A , __A , __A=False , __A=False ):
logger.info("Configuring Model for Quantization" )
logger.info(F"using quantization package {pytorch_quantization.__file__}" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(__A , ["embeddings"] , which="weight" , _disabled=__A )
if args.quant_disable:
set_quantizer_by_name(__A , [""] , _disabled=__A )
if args.quant_disable_keyword:
set_quantizer_by_name(__A , args.quant_disable_keyword , _disabled=__A )
if args.quant_disable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=__A )
if args.quant_enable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=__A )
if args.recalibrate_weights:
recalibrate_weights(__A )
if args.fuse_qkv:
fuse_qkv(__A , __A )
if args.clip_gelu:
clip_gelu(__A , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(__A )
def _lowerCAmelCase( __A ):
logger.info("Enabling Calibration" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F"{name:80}: {module}" )
def _lowerCAmelCase( __A , __A ):
logger.info("Loading calibrated amax" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax("percentile" , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(__A )
def _lowerCAmelCase( __A , __A ):
def fusea(__A , __A , __A ):
for mod in [qq, qk, qv]:
if not hasattr(__A , "_amax" ):
print(" WARNING: NO AMAX BUFFER" )
return
UpperCAmelCase = qq._amax.detach().item()
UpperCAmelCase = qk._amax.detach().item()
UpperCAmelCase = qv._amax.detach().item()
UpperCAmelCase = max(__A , __A , __A )
qq._amax.fill_(__A )
qk._amax.fill_(__A )
qv._amax.fill_(__A )
logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" )
for name, mod in model.named_modules():
if name.endswith(".attention.self" ):
logger.info(F"FUSE_QKV: {name:{name_width}}" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _lowerCAmelCase( __A , __A ):
for name, mod in model.named_modules():
if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ):
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=__A )
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None:
UpperCAmelCase = mod.weight.shape[0]
UpperCAmelCase = mod._weight_quantizer._amax.detach()
UpperCAmelCase = torch.ones(__A , dtype=amax.dtype , device=amax.device ) * amax
print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ):
if not hasattr(mod.weight_quantizer , "_amax" ):
print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set
UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__A , keepdims=__A ).detach()
logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" )
UpperCAmelCase = amax
def _lowerCAmelCase( __A , __A=25 , __A=180 , __A=None ):
if ignore is None:
UpperCAmelCase = []
elif not isinstance(__A , __A ):
UpperCAmelCase = [ignore]
UpperCAmelCase = 0
for name, mod in model.named_modules():
if not hasattr(__A , "weight" ):
continue
UpperCAmelCase = max(__A , len(__A ) )
for name, mod in model.named_modules():
UpperCAmelCase = getattr(__A , "_input_quantizer" , __A )
UpperCAmelCase = getattr(__A , "_weight_quantizer" , __A )
if not hasattr(__A , "weight" ):
continue
if type(__A ) in ignore:
continue
if [True for s in ignore if type(__A ) is str and s in name]:
continue
UpperCAmelCase = F"Act:{input_q.extra_repr()}"
UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}"
UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}"
if len(__A ) <= line_width:
logger.info(__A )
else:
logger.info(F"{name:{name_width}} {act_str}" )
logger.info(F"{' ':{name_width}} {wgt_str}" )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for name, mod in model.named_modules():
if isinstance(__A , pytorch_quantization.nn.TensorQuantizer ):
print(F"{name:80} {mod}" )
count += 1
print(F"{count} TensorQuantizers found in model" )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
UpperCAmelCase = getattr(__A , __A , __A )
if quantizer_mod is not None:
assert hasattr(__A , __A )
setattr(__A , __A , __A )
else:
logger.warning(F"{name} has no {quantizer}" )
def _lowerCAmelCase( __A , __A , __A="both" , **__A ):
UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
if which in ["input", "both"]:
set_quantizer(__A , __A , "_input_quantizer" , __A , __A )
if which in ["weight", "both"]:
set_quantizer(__A , __A , "_weight_quantizer" , __A , __A )
logger.info(__A )
def _lowerCAmelCase( __A , __A , **__A ):
for name, mod in model.named_modules():
if hasattr(__A , "_input_quantizer" ) or hasattr(__A , "_weight_quantizer" ):
for n in names:
if re.search(__A , __A ):
set_quantizers(__A , __A , **__A )
elif name.endswith("_quantizer" ):
for n in names:
if re.search(__A , __A ):
UpperCAmelCase = F"Warning: changing {name:{name_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
setattr(__A , __A , __A )
logger.info(__A )
| 1 | 0 |
from __future__ import annotations
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = 0
UpperCAmelCase = sum(__A )
create_state_space_tree(__A , __A , __A , __A , __A , __A )
return result
def _lowerCAmelCase( __A , __A , __A , __A , __A , __A , ):
if sum(__A ) > max_sum or (remaining_nums_sum + sum(__A )) < max_sum:
return
if sum(__A ) == max_sum:
result.append(__A )
return
for index in range(__A , len(__A ) ):
create_state_space_tree(
__A , __A , index + 1 , [*path, nums[index]] , __A , remaining_nums_sum - nums[index] , )
lowerCAmelCase__ = [3, 34, 4, 12, 5, 2]
lowerCAmelCase__ = 9
lowerCAmelCase__ = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 715 |
def _lowerCAmelCase( __A ):
assert column_title.isupper()
UpperCAmelCase = 0
UpperCAmelCase = len(__A ) - 1
UpperCAmelCase = 0
while index >= 0:
UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , __A )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 0 |
import math
def _lowerCAmelCase( __A , __A ):
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.logaa(__A )
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
raise AssertionError("This should never happen" )
if __name__ == "__main__": # Main function
# Read two numbers from input and typecast them to int using map function.
# Here x is the base and y is the power.
lowerCAmelCase__ = "Enter the base and the power separated by a comma: "
lowerCAmelCase__, lowerCAmelCase__ = map(int, input(prompt).split(","))
lowerCAmelCase__, lowerCAmelCase__ = map(int, input(prompt).split(","))
# We find the log of each number, using the function res(), which takes two
# arguments.
lowerCAmelCase__ = res(xa, ya)
lowerCAmelCase__ = res(xa, ya)
# We check for the largest number
if resa > resa:
print("Largest number is", xa, "^", ya)
elif resa > resa:
print("Largest number is", xa, "^", ya)
else:
print("Both are equal")
| 716 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
lowerCAmelCase__ = get_tests_dir("fixtures")
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
# A mock response for an HTTP head request to emulate server down
UpperCAmelCase = mock.Mock()
UpperCAmelCase = 5_0_0
UpperCAmelCase = {}
UpperCAmelCase = HTTPError
UpperCAmelCase = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request" , return_value=lowerCAmelCase__ ) as mock_head:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# This check we did call the fake head request
mock_head.assert_called()
def _UpperCamelCase ( self : List[Any] ) -> Dict:
# This test is for deprecated behavior and can be removed in v5
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" )
@is_staging_test
class __magic_name__ ( unittest.TestCase ):
@classmethod
def _UpperCamelCase ( cls : List[str] ) -> List[Any]:
UpperCAmelCase = TOKEN
HfFolder.save_token(lowerCAmelCase__ )
@classmethod
def _UpperCamelCase ( cls : Optional[int] ) -> Union[str, Any]:
try:
delete_repo(token=cls._token , repo_id="test-feature-extractor" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" )
except HTTPError:
pass
def _UpperCamelCase ( self : Any ) -> Any:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="test-feature-extractor" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : List[Any] ) -> Tuple:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Dict ) -> List[str]:
CustomFeatureExtractor.register_for_auto_class()
UpperCAmelCase = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , )
UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowerCAmelCase__ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
| 1 | 0 |
import re
from filelock import FileLock
try:
import nltk
lowerCAmelCase__ = True
except (ImportError, ModuleNotFoundError):
lowerCAmelCase__ = False
if NLTK_AVAILABLE:
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
def _lowerCAmelCase( __A ):
re.sub("<n>" , "" , __A ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(__A ) )
| 717 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
lowerCAmelCase__ = "src/diffusers"
# Matches is_xxx_available()
lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
lowerCAmelCase__ = "\n{0} = None\n"
lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n"
lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
def _lowerCAmelCase( __A ):
UpperCAmelCase = _re_backend.findall(__A )
if len(__A ) == 0:
return None
return "_and_".join(__A )
def _lowerCAmelCase( ):
with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCAmelCase = 0
UpperCAmelCase = {}
# Go through the end of the file
while line_index < len(__A ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCAmelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("else:" ):
line_index += 1
line_index += 1
UpperCAmelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(__A ) and len(lines[line_index] ) > 1:
UpperCAmelCase = lines[line_index]
UpperCAmelCase = _re_single_line_import.search(__A )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__A ) > 0:
UpperCAmelCase = objects
else:
line_index += 1
return backend_specific_objects
def _lowerCAmelCase( __A , __A ):
if name.isupper():
return DUMMY_CONSTANT.format(__A )
elif name.islower():
return DUMMY_FUNCTION.format(__A , __A )
else:
return DUMMY_CLASS.format(__A , __A )
def _lowerCAmelCase( __A=None ):
if backend_specific_objects is None:
UpperCAmelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCAmelCase = {}
for backend, objects in backend_specific_objects.items():
UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]"
UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] )
UpperCAmelCase = dummy_file
return dummy_files
def _lowerCAmelCase( __A=False ):
UpperCAmelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCAmelCase = {"torch": "pt"}
# Locate actual dummy modules and read their content.
UpperCAmelCase = os.path.join(__A , "utils" )
UpperCAmelCase = {
backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" )
for backend in dummy_files.keys()
}
UpperCAmelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__A ):
with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.read()
else:
UpperCAmelCase = ""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main "
"__init__ has new objects." )
with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"The main __init__ has objects that are not present in "
F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` "
"to fix this." )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCAmelCase__ = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 | 0 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
lowerCAmelCase__ = logging.get_logger(__name__)
@add_end_docstrings(_snake_case )
class __magic_name__ ( _snake_case ):
def __init__( self : str , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : int ) -> Any:
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
requires_backends(self , "vision" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : Union[str, Any]=None ) -> int:
UpperCAmelCase = {}
if top_k is not None:
UpperCAmelCase = top_k
return {}, {}, postprocess_params
def __call__( self : Tuple , lowerCAmelCase__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCAmelCase__ : str ) -> Union[str, Any]:
return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ )
def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : Any ) -> Optional[Any]:
UpperCAmelCase = load_image(lowerCAmelCase__ )
UpperCAmelCase = self.image_processor(images=lowerCAmelCase__ , return_tensors=self.framework )
return model_inputs
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Any ) -> Union[str, Any]:
UpperCAmelCase = self.model(**lowerCAmelCase__ )
return model_outputs
def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=5 ) -> Union[str, Any]:
if top_k > self.model.config.num_labels:
UpperCAmelCase = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase = model_outputs.logits.softmax(-1 )[0]
UpperCAmelCase , UpperCAmelCase = probs.topk(lowerCAmelCase__ )
elif self.framework == "tf":
UpperCAmelCase = stable_softmax(model_outputs.logits , axis=-1 )[0]
UpperCAmelCase = tf.math.top_k(lowerCAmelCase__ , k=lowerCAmelCase__ )
UpperCAmelCase , UpperCAmelCase = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f"Unsupported framework: {self.framework}" )
UpperCAmelCase = scores.tolist()
UpperCAmelCase = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase__ , lowerCAmelCase__ )]
| 718 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class __magic_name__ ( _snake_case , _snake_case ):
UpperCAmelCase = """convnextv2"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]:
super().__init__(**lowerCAmelCase__ )
UpperCAmelCase = num_channels
UpperCAmelCase = patch_size
UpperCAmelCase = num_stages
UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes
UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths
UpperCAmelCase = hidden_act
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = drop_path_rate
UpperCAmelCase = image_size
UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )]
UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
| 1 | 0 |
'''simple docstring'''
lowerCAmelCase__ = "Input must be a string of 8 numbers plus letter"
lowerCAmelCase__ = "TRWAGMYFPDXBNJZSQVHLCKE"
def _lowerCAmelCase( __A ):
if not isinstance(__A , __A ):
UpperCAmelCase = F"Expected string as input, found {type(__A ).__name__}"
raise TypeError(__A )
UpperCAmelCase = spanish_id.replace("-" , "" ).upper()
if len(__A ) != 9:
raise ValueError(__A )
try:
UpperCAmelCase = int(spanish_id_clean[0:8] )
UpperCAmelCase = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(__A ) from ex
if letter.isdigit():
raise ValueError(__A )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 719 |
lowerCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCAmelCase__ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 1 | 0 |
def _lowerCAmelCase( __A ):
UpperCAmelCase = hex_num.strip()
if not hex_num:
raise ValueError("No value was passed to the function" )
UpperCAmelCase = hex_num[0] == "-"
if is_negative:
UpperCAmelCase = hex_num[1:]
try:
UpperCAmelCase = int(__A , 16 )
except ValueError:
raise ValueError("Invalid value was passed to the function" )
UpperCAmelCase = ""
while int_num > 0:
UpperCAmelCase = str(int_num % 2 ) + bin_str
int_num >>= 1
return int(("-" + bin_str) if is_negative else bin_str )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 720 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = KandinskyInpaintPipeline
UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
UpperCAmelCase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
UpperCAmelCase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCAmelCase = False
@property
def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
return 3_2
@property
def _UpperCamelCase ( self : int ) -> List[Any]:
return 3_2
@property
def _UpperCamelCase ( self : List[Any] ) -> List[Any]:
return self.time_input_dim
@property
def _UpperCamelCase ( self : Tuple ) -> Tuple:
return self.time_input_dim * 4
@property
def _UpperCamelCase ( self : Any ) -> Optional[int]:
return 1_0_0
@property
def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]:
UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" )
return tokenizer
@property
def _UpperCamelCase ( self : int ) -> Dict:
torch.manual_seed(0 )
UpperCAmelCase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , )
UpperCAmelCase = MultilingualCLIP(lowerCAmelCase__ )
UpperCAmelCase = text_encoder.eval()
return text_encoder
@property
def _UpperCamelCase ( self : Dict ) -> Optional[int]:
torch.manual_seed(0 )
UpperCAmelCase = {
"in_channels": 9,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase = UNetaDConditionModel(**lowerCAmelCase__ )
return model
@property
def _UpperCamelCase ( self : str ) -> Optional[Any]:
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _UpperCamelCase ( self : Dict ) -> List[Any]:
torch.manual_seed(0 )
UpperCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def _UpperCamelCase ( self : Tuple ) -> Any:
UpperCAmelCase = self.dummy_text_encoder
UpperCAmelCase = self.dummy_tokenizer
UpperCAmelCase = self.dummy_unet
UpperCAmelCase = self.dummy_movq
UpperCAmelCase = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , )
UpperCAmelCase = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0 ) -> str:
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ )
# create init_image
UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) )
# create mask
UpperCAmelCase = np.ones((6_4, 6_4) , dtype=np.floataa )
UpperCAmelCase = 0
if str(lowerCAmelCase__ ).startswith("mps" ):
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
else:
UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
UpperCAmelCase = {
"prompt": "horse",
"image": init_image,
"mask_image": mask,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 6_4,
"width": 6_4,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"output_type": "np",
}
return inputs
def _UpperCamelCase ( self : Dict ) -> List[str]:
UpperCAmelCase = "cpu"
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ )
UpperCAmelCase = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) )
UpperCAmelCase = output.images
UpperCAmelCase = pipe(
**self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0]
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
print(f"image.shape {image.shape}" )
assert image.shape == (1, 6_4, 6_4, 3)
UpperCAmelCase = np.array(
[0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def _UpperCamelCase ( self : str ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : str ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase ( self : Tuple ) -> int:
UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" )
UpperCAmelCase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa )
UpperCAmelCase = 0
UpperCAmelCase = "a hat"
UpperCAmelCase = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa )
pipe_prior.to(lowerCAmelCase__ )
UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa )
UpperCAmelCase = pipeline.to(lowerCAmelCase__ )
pipeline.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase , UpperCAmelCase = pipe_prior(
lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase = pipeline(
lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , )
UpperCAmelCase = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
| 1 | 0 |
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
lowerCAmelCase__ = [
"python",
"tqdm",
"regex",
"requests",
"packaging",
"filelock",
"numpy",
"tokenizers",
"huggingface-hub",
"safetensors",
"accelerate",
"pyyaml",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def _lowerCAmelCase( __A , __A=None ):
require_version(deps[pkg] , __A )
| 721 |
def _lowerCAmelCase( __A , __A ):
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _lowerCAmelCase( __A , __A=0 ):
return sorted(__A , key=lambda __A : x[column] )
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(points_counts - 1 ):
for j in range(i + 1 , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(min(6 , points_counts - 1 ) , __A ):
for j in range(max(0 , i - 6 ) , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A ):
# base case
if points_counts <= 3:
return dis_between_closest_pair(__A , __A )
# recursion
UpperCAmelCase = points_counts // 2
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[:mid] , __A )
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[mid:] , points_counts - mid )
UpperCAmelCase = min(__A , __A )
UpperCAmelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(__A )
UpperCAmelCase = dis_between_closest_in_strip(
__A , len(__A ) , __A )
return min(__A , __A )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = column_based_sort(__A , column=0 )
UpperCAmelCase = column_based_sort(__A , column=1 )
return (
closest_pair_of_points_sqr(
__A , __A , __A )
) ** 0.5
if __name__ == "__main__":
lowerCAmelCase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
print("Distance:", closest_pair_of_points(points, len(points)))
| 1 | 0 |
import os
import unittest
from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer
from transformers.testing_utils import require_jieba, tooslow
from ...test_tokenization_common import TokenizerTesterMixin
@require_jieba
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = CpmAntTokenizer
UpperCAmelCase = False
def _UpperCamelCase ( self : Optional[int] ) -> Dict:
super().setUp()
UpperCAmelCase = [
"<d>",
"</d>",
"<s>",
"</s>",
"</_>",
"<unk>",
"<pad>",
"</n>",
"我",
"是",
"C",
"P",
"M",
"A",
"n",
"t",
]
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
@tooslow
def _UpperCamelCase ( self : List[Any] ) -> Optional[Any]:
UpperCAmelCase = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" )
UpperCAmelCase = "今天天气真好!"
UpperCAmelCase = ["今天", "天气", "真", "好", "!"]
UpperCAmelCase = tokenizer.tokenize(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = "今天天气真好!"
UpperCAmelCase = [tokenizer.bos_token] + tokens
UpperCAmelCase = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ )
UpperCAmelCase = tokenizer.decode(lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
| 700 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class __magic_name__ :
def __init__( self : Optional[int] ) -> Optional[Any]:
UpperCAmelCase = ""
UpperCAmelCase = ""
UpperCAmelCase = []
UpperCAmelCase = 0
UpperCAmelCase = 2_5_6
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> List[str]:
UpperCAmelCase = cva.imread(lowerCAmelCase__ , 0 )
UpperCAmelCase = copy.deepcopy(self.img )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="x" )
UpperCAmelCase = np.sum(lowerCAmelCase__ )
for i in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase = x[i] / self.k
self.sk += prk
UpperCAmelCase = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase = int(last % last )
UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(lowerCAmelCase__ )
UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase = self.last_list[num]
cva.imwrite("output_data/output.jpg" , self.img )
def _UpperCamelCase ( self : str ) -> int:
plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] )
def _UpperCamelCase ( self : Dict ) -> Optional[Any]:
cva.imshow("Output-Image" , self.img )
cva.imshow("Input-Image" , self.original_image )
cva.waitKey(5_0_0_0 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowerCAmelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg")
lowerCAmelCase__ = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 1 | 0 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
lowerCAmelCase__ = 0
lowerCAmelCase__ = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
lowerCAmelCase__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
lowerCAmelCase__ = tuple[int, int]
class __magic_name__ :
def __init__( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Node | None , ) -> None:
UpperCAmelCase = pos_x
UpperCAmelCase = pos_y
UpperCAmelCase = (pos_y, pos_x)
UpperCAmelCase = goal_x
UpperCAmelCase = goal_y
UpperCAmelCase = g_cost
UpperCAmelCase = parent
UpperCAmelCase = self.calculate_heuristic()
UpperCAmelCase = self.g_cost + self.h_cost
def _UpperCamelCase ( self : Union[str, Any] ) -> float:
UpperCAmelCase = self.pos_x - self.goal_x
UpperCAmelCase = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(lowerCAmelCase__ ) + abs(lowerCAmelCase__ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self : int , lowerCAmelCase__ : Node ) -> bool:
return self.f_cost < other.f_cost
class __magic_name__ :
def __init__( self : List[Any] , lowerCAmelCase__ : TPosition , lowerCAmelCase__ : TPosition ) -> Dict:
UpperCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCAmelCase__ )
UpperCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , lowerCAmelCase__ )
UpperCAmelCase = [self.start]
UpperCAmelCase = []
UpperCAmelCase = False
def _UpperCamelCase ( self : Any ) -> list[TPosition]:
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
UpperCAmelCase = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(lowerCAmelCase__ )
self.closed_nodes.append(lowerCAmelCase__ )
UpperCAmelCase = self.get_successors(lowerCAmelCase__ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(lowerCAmelCase__ )
else:
# retrieve the best current path
UpperCAmelCase = self.open_nodes.pop(self.open_nodes.index(lowerCAmelCase__ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(lowerCAmelCase__ )
else:
self.open_nodes.append(lowerCAmelCase__ )
return [self.start.pos]
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Node ) -> list[Node]:
UpperCAmelCase = []
for action in delta:
UpperCAmelCase = parent.pos_x + action[1]
UpperCAmelCase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCAmelCase__ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
lowerCAmelCase__ , lowerCAmelCase__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCAmelCase__ , ) )
return successors
def _UpperCamelCase ( self : int , lowerCAmelCase__ : Node | None ) -> list[TPosition]:
UpperCAmelCase = node
UpperCAmelCase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
UpperCAmelCase = current_node.parent
path.reverse()
return path
class __magic_name__ :
def __init__( self : List[Any] , lowerCAmelCase__ : TPosition , lowerCAmelCase__ : TPosition ) -> None:
UpperCAmelCase = AStar(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = AStar(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = False
def _UpperCamelCase ( self : Union[str, Any] ) -> list[TPosition]:
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
UpperCAmelCase = self.fwd_astar.open_nodes.pop(0 )
UpperCAmelCase = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
lowerCAmelCase__ , lowerCAmelCase__ )
self.fwd_astar.closed_nodes.append(lowerCAmelCase__ )
self.bwd_astar.closed_nodes.append(lowerCAmelCase__ )
UpperCAmelCase = current_bwd_node
UpperCAmelCase = current_fwd_node
UpperCAmelCase = {
self.fwd_astar: self.fwd_astar.get_successors(lowerCAmelCase__ ),
self.bwd_astar: self.bwd_astar.get_successors(lowerCAmelCase__ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(lowerCAmelCase__ )
else:
# retrieve the best current path
UpperCAmelCase = astar.open_nodes.pop(
astar.open_nodes.index(lowerCAmelCase__ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(lowerCAmelCase__ )
else:
astar.open_nodes.append(lowerCAmelCase__ )
return [self.fwd_astar.start.pos]
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Node , lowerCAmelCase__ : Node ) -> list[TPosition]:
UpperCAmelCase = self.fwd_astar.retrace_path(lowerCAmelCase__ )
UpperCAmelCase = self.bwd_astar.retrace_path(lowerCAmelCase__ )
bwd_path.pop()
bwd_path.reverse()
UpperCAmelCase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
lowerCAmelCase__ = (0, 0)
lowerCAmelCase__ = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
lowerCAmelCase__ = time.time()
lowerCAmelCase__ = AStar(init, goal)
lowerCAmelCase__ = a_star.search()
lowerCAmelCase__ = time.time() - start_time
print(f"AStar execution time = {end_time:f} seconds")
lowerCAmelCase__ = time.time()
lowerCAmelCase__ = BidirectionalAStar(init, goal)
lowerCAmelCase__ = time.time() - bd_start_time
print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds")
| 701 |
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = LEDTokenizer
UpperCAmelCase = LEDTokenizerFast
UpperCAmelCase = True
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
super().setUp()
UpperCAmelCase = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
UpperCAmelCase = {"unk_token": "<unk>"}
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : str , **lowerCAmelCase__ : str ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
return "lower newer", "lower newer"
@cached_property
def _UpperCamelCase ( self : Dict ) -> str:
return LEDTokenizer.from_pretrained("allenai/led-base-16384" )
@cached_property
def _UpperCamelCase ( self : int ) -> Tuple:
return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" )
@require_torch
def _UpperCamelCase ( self : Tuple ) -> List[str]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
UpperCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIn("input_ids" , lowerCAmelCase__ )
self.assertIn("attention_mask" , lowerCAmelCase__ )
self.assertNotIn("labels" , lowerCAmelCase__ )
self.assertNotIn("decoder_attention_mask" , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : int ) -> int:
UpperCAmelCase = [
"Summary of the text.",
"Another summary.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , max_length=3_2 , padding="max_length" , return_tensors="pt" )
self.assertEqual(3_2 , targets["input_ids"].shape[1] )
@require_torch
def _UpperCamelCase ( self : Any ) -> int:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(
["I am a small frog" * 1_0_2_4, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) )
@require_torch
def _UpperCamelCase ( self : Dict ) -> Tuple:
UpperCAmelCase = ["A long paragraph for summarization."]
UpperCAmelCase = [
"Summary of the text.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = inputs["input_ids"]
UpperCAmelCase = targets["input_ids"]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = ["Summary of the text.", "Another summary."]
UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ )
UpperCAmelCase = [[0] * len(lowerCAmelCase__ ) for x in encoded_output["input_ids"]]
UpperCAmelCase = tokenizer.pad(lowerCAmelCase__ )
self.assertSequenceEqual(outputs["global_attention_mask"] , lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] ) -> int:
pass
def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = "A, <mask> AllenNLP sentence."
UpperCAmelCase = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
UpperCAmelCase = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
| 1 | 0 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"adapter_layer": "encoder.layers.*.adapter_layer",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
"pooling_layer.linear": "projector",
"pooling_layer.projection": "classifier",
}
lowerCAmelCase__ = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"projector",
"classifier",
]
def _lowerCAmelCase( __A ):
UpperCAmelCase = {}
with open(__A , "r" ) as file:
for line_number, line in enumerate(__A ):
UpperCAmelCase = line.strip()
if line:
UpperCAmelCase = line.split()
UpperCAmelCase = line_number
UpperCAmelCase = words[0]
UpperCAmelCase = value
return result
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
for attribute in key.split("." ):
UpperCAmelCase = getattr(__A , __A )
UpperCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__A ):
UpperCAmelCase = PARAM_MAPPING[full_name.split("." )[-1]]
UpperCAmelCase = "param"
if weight_type is not None and weight_type != "param":
UpperCAmelCase = getattr(__A , __A ).shape
elif weight_type is not None and weight_type == "param":
UpperCAmelCase = hf_pointer
for attribute in hf_param_name.split("." ):
UpperCAmelCase = getattr(__A , __A )
UpperCAmelCase = shape_pointer.shape
# let's reduce dimension
UpperCAmelCase = value[0]
else:
UpperCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
F" {value.shape} for {full_name}" )
if weight_type == "weight":
UpperCAmelCase = value
elif weight_type == "weight_g":
UpperCAmelCase = value
elif weight_type == "weight_v":
UpperCAmelCase = value
elif weight_type == "bias":
UpperCAmelCase = value
elif weight_type == "param":
for attribute in hf_param_name.split("." ):
UpperCAmelCase = getattr(__A , __A )
UpperCAmelCase = value
else:
UpperCAmelCase = value
logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
UpperCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__A ):
UpperCAmelCase = PARAM_MAPPING[full_name.split("." )[-1]]
UpperCAmelCase = "param"
if weight_type is not None and weight_type != "param":
UpperCAmelCase = ".".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCAmelCase = ".".join([key, hf_param_name] )
else:
UpperCAmelCase = key
UpperCAmelCase = value if "lm_head" in full_key else value[0]
lowerCAmelCase__ = {
"W_a": "linear_1.weight",
"W_b": "linear_2.weight",
"b_a": "linear_1.bias",
"b_b": "linear_2.bias",
"ln_W": "norm.weight",
"ln_b": "norm.bias",
}
def _lowerCAmelCase( __A , __A , __A=None , __A=None ):
UpperCAmelCase = False
for key, mapped_key in MAPPING.items():
UpperCAmelCase = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
UpperCAmelCase = True
if "*" in mapped_key:
UpperCAmelCase = name.split(__A )[0].split("." )[-2]
UpperCAmelCase = mapped_key.replace("*" , __A )
if "weight_g" in name:
UpperCAmelCase = "weight_g"
elif "weight_v" in name:
UpperCAmelCase = "weight_v"
elif "bias" in name:
UpperCAmelCase = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase = "weight"
else:
UpperCAmelCase = None
if hf_dict is not None:
rename_dict(__A , __A , __A , __A , __A )
else:
set_recursively(__A , __A , __A , __A , __A )
return is_used
return is_used
def _lowerCAmelCase( __A , __A , __A ):
UpperCAmelCase = []
UpperCAmelCase = fairseq_model.state_dict()
UpperCAmelCase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
__A , __A , __A , __A , hf_model.config.feat_extract_norm == "group" , )
UpperCAmelCase = True
else:
UpperCAmelCase = load_wavaveca_layer(__A , __A , __A )
if not is_used:
unused_weights.append(__A )
logger.warning(F"Unused weights: {unused_weights}" )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
UpperCAmelCase = full_name.split("conv_layers." )[-1]
UpperCAmelCase = name.split("." )
UpperCAmelCase = int(items[0] )
UpperCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." )
UpperCAmelCase = value
logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." )
UpperCAmelCase = value
logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." )
UpperCAmelCase = value
logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." )
UpperCAmelCase = value
logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(__A )
@torch.no_grad()
def _lowerCAmelCase( __A , __A , __A=None , __A=None , __A=True , __A=False ):
if config_path is not None:
UpperCAmelCase = WavaVecaConfig.from_pretrained(__A )
else:
UpperCAmelCase = WavaVecaConfig()
if is_seq_class:
UpperCAmelCase = read_txt_into_dict(__A )
UpperCAmelCase = idalabel
UpperCAmelCase = WavaVecaForSequenceClassification(__A )
UpperCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , )
feature_extractor.save_pretrained(__A )
elif is_finetuned:
if dict_path:
UpperCAmelCase = Dictionary.load(__A )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase = target_dict.pad_index
UpperCAmelCase = target_dict.bos_index
UpperCAmelCase = target_dict.eos_index
UpperCAmelCase = len(target_dict.symbols )
UpperCAmelCase = os.path.join(__A , "vocab.json" )
if not os.path.isdir(__A ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__A ) )
return
os.makedirs(__A , exist_ok=__A )
UpperCAmelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase = 0
UpperCAmelCase = 1
with open(__A , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(__A , __A )
UpperCAmelCase = WavaVecaCTCTokenizer(
__A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__A , )
UpperCAmelCase = True if config.feat_extract_norm == "layer" else False
UpperCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , )
UpperCAmelCase = WavaVecaProcessor(feature_extractor=__A , tokenizer=__A )
processor.save_pretrained(__A )
UpperCAmelCase = WavaVecaForCTC(__A )
else:
UpperCAmelCase = WavaVecaForPreTraining(__A )
if is_finetuned or is_seq_class:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
UpperCAmelCase = argparse.Namespace(task="audio_pretraining" )
UpperCAmelCase = fairseq.tasks.setup_task(__A )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__A )
UpperCAmelCase = model[0].eval()
recursively_load_weights(__A , __A , not is_finetuned )
hf_wavavec.save_pretrained(__A )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
parser.add_argument(
"--is_seq_class",
action="store_true",
help="Whether the model to convert is a fine-tuned sequence classification model or not",
)
lowerCAmelCase__ = parser.parse_args()
lowerCAmelCase__ = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 702 |
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
lowerCAmelCase__ = version.parse(importlib_metadata.version("nltk"))
if NLTK_VERSION >= version.Version("3.6.4"):
from nltk import word_tokenize
lowerCAmelCase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n"
lowerCAmelCase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n"
lowerCAmelCase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
def _UpperCamelCase ( self : int ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[
"https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score",
"https://en.wikipedia.org/wiki/METEOR",
] , )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : List[Any] ) -> Dict:
import nltk
nltk.download("wordnet" )
if NLTK_VERSION >= version.Version("3.6.5" ):
nltk.download("punkt" )
if NLTK_VERSION >= version.Version("3.6.6" ):
nltk.download("omw-1.4" )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=0.9 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Optional[int]=0.5 ) -> Any:
if NLTK_VERSION >= version.Version("3.6.5" ):
UpperCAmelCase = [
meteor_score.single_meteor_score(
word_tokenize(lowerCAmelCase__ ) , word_tokenize(lowerCAmelCase__ ) , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ )
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
else:
UpperCAmelCase = [
meteor_score.single_meteor_score(lowerCAmelCase__ , lowerCAmelCase__ , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ )
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
return {"meteor": np.mean(lowerCAmelCase__ )}
| 1 | 0 |
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def _lowerCAmelCase( __A = 100 ):
UpperCAmelCase = 1
UpperCAmelCase = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase = pre_numerator
UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase = cur_numerator
UpperCAmelCase = e_cont * pre_numerator + temp
return sum_digits(__A )
if __name__ == "__main__":
print(f"{solution() = }")
| 703 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json",
}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = """lxmert"""
UpperCAmelCase = {}
def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[str]=7_6_8 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : List[Any]=9_5_0_0 , lowerCAmelCase__ : Any=1_6_0_0 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : str=1e-1_2 , lowerCAmelCase__ : str=9 , lowerCAmelCase__ : int=5 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Dict=6.67 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : List[Any] , ) -> Dict:
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = num_qa_labels
UpperCAmelCase = num_object_labels
UpperCAmelCase = num_attr_labels
UpperCAmelCase = l_layers
UpperCAmelCase = x_layers
UpperCAmelCase = r_layers
UpperCAmelCase = visual_feat_dim
UpperCAmelCase = visual_pos_dim
UpperCAmelCase = visual_loss_normalizer
UpperCAmelCase = task_matched
UpperCAmelCase = task_mask_lm
UpperCAmelCase = task_obj_predict
UpperCAmelCase = task_qa
UpperCAmelCase = visual_obj_loss
UpperCAmelCase = visual_attr_loss
UpperCAmelCase = visual_feat_loss
UpperCAmelCase = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers}
super().__init__(**lowerCAmelCase__ )
| 1 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
lowerCAmelCase__ = {
"configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
"ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
"ErnieForCausalLM",
"ErnieForMaskedLM",
"ErnieForMultipleChoice",
"ErnieForNextSentencePrediction",
"ErnieForPreTraining",
"ErnieForQuestionAnswering",
"ErnieForSequenceClassification",
"ErnieForTokenClassification",
"ErnieModel",
"ErniePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ernie import (
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
ErnieForCausalLM,
ErnieForMaskedLM,
ErnieForMultipleChoice,
ErnieForNextSentencePrediction,
ErnieForPreTraining,
ErnieForQuestionAnswering,
ErnieForSequenceClassification,
ErnieForTokenClassification,
ErnieModel,
ErniePreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 704 |
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def _lowerCAmelCase( __A = 100 ):
UpperCAmelCase = 1
UpperCAmelCase = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase = pre_numerator
UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase = cur_numerator
UpperCAmelCase = e_cont * pre_numerator + temp
return sum_digits(__A )
if __name__ == "__main__":
print(f"{solution() = }")
| 1 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class __magic_name__ ( _snake_case , _snake_case ):
UpperCAmelCase = """convnextv2"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]:
super().__init__(**lowerCAmelCase__ )
UpperCAmelCase = num_channels
UpperCAmelCase = patch_size
UpperCAmelCase = num_stages
UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes
UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths
UpperCAmelCase = hidden_act
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = drop_path_rate
UpperCAmelCase = image_size
UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )]
UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
| 705 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 1 | 0 |
import datasets
from .evaluate import evaluate
lowerCAmelCase__ = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n"
lowerCAmelCase__ = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n"
lowerCAmelCase__ = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )},
"references": {
"id": datasets.Value("string" ),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
},
} ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , )
def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] ) -> Dict:
UpperCAmelCase = {prediction["id"]: prediction["prediction_text"] for prediction in predictions}
UpperCAmelCase = [
{
"paragraphs": [
{
"qas": [
{
"answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]],
"id": ref["id"],
}
for ref in references
]
}
]
}
]
UpperCAmelCase = evaluate(dataset=lowerCAmelCase__ , predictions=lowerCAmelCase__ )
return score
| 706 |
import numpy
# List of input, output pairs
lowerCAmelCase__ = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
lowerCAmelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150))
lowerCAmelCase__ = [2, 4, 1, 5]
lowerCAmelCase__ = len(train_data)
lowerCAmelCase__ = 0.0_0_9
def _lowerCAmelCase( __A , __A="train" ):
return calculate_hypothesis_value(__A , __A ) - output(
__A , __A )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for i in range(len(__A ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def _lowerCAmelCase( __A , __A ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def _lowerCAmelCase( __A , __A ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def _lowerCAmelCase( __A , __A=m ):
UpperCAmelCase = 0
for i in range(__A ):
if index == -1:
summation_value += _error(__A )
else:
summation_value += _error(__A ) * train_data[i][0][index]
return summation_value
def _lowerCAmelCase( __A ):
UpperCAmelCase = summation_of_cost_derivative(__A , __A ) / m
return cost_derivative_value
def _lowerCAmelCase( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCAmelCase = 0.000002
UpperCAmelCase = 0
UpperCAmelCase = 0
while True:
j += 1
UpperCAmelCase = [0, 0, 0, 0]
for i in range(0 , len(__A ) ):
UpperCAmelCase = get_cost_derivative(i - 1 )
UpperCAmelCase = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
__A , __A , atol=__A , rtol=__A , ):
break
UpperCAmelCase = temp_parameter_vector
print(("Number of iterations:", j) )
def _lowerCAmelCase( ):
for i in range(len(__A ) ):
print(("Actual output value:", output(__A , "test" )) )
print(("Hypothesis output:", calculate_hypothesis_value(__A , "test" )) )
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| 1 | 0 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
lowerCAmelCase__ = logging.get_logger(__name__)
class __magic_name__ ( _snake_case ):
def __init__( self : Any , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Union[str, Any] ) -> None:
warnings.warn(
"The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use GLPNImageProcessor instead." , lowerCAmelCase__ , )
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
| 707 |
def _lowerCAmelCase( __A , __A , __A ):
if n == 0:
return 1
elif n % 2 == 1:
return (binary_exponentiation(__A , n - 1 , __A ) * a) % mod
else:
UpperCAmelCase = binary_exponentiation(__A , n / 2 , __A )
return (b * b) % mod
# a prime number
lowerCAmelCase__ = 701
lowerCAmelCase__ = 1000000000
lowerCAmelCase__ = 10
# using binary exponentiation function, O(log(p)):
print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p)
print((a / b) % p == (a * b ** (p - 2)) % p)
| 1 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json",
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json",
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json",
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json",
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json",
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json",
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json",
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json",
"bert-large-uncased-whole-word-masking": (
"https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json"
),
"bert-large-cased-whole-word-masking": (
"https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json"
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
"https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json"
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
"https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json"
),
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json",
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json",
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json",
"cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json",
"cl-tohoku/bert-base-japanese-whole-word-masking": (
"https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json"
),
"cl-tohoku/bert-base-japanese-char": (
"https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json"
),
"cl-tohoku/bert-base-japanese-char-whole-word-masking": (
"https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json"
),
"TurkuNLP/bert-base-finnish-cased-v1": (
"https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json"
),
"TurkuNLP/bert-base-finnish-uncased-v1": (
"https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json"
),
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json",
# See all BERT models at https://huggingface.co/models?filter=bert
}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = """bert"""
def __init__( self : Optional[int] , lowerCAmelCase__ : int=3_0_5_2_2 , lowerCAmelCase__ : Union[str, Any]=7_6_8 , lowerCAmelCase__ : Dict=1_2 , lowerCAmelCase__ : Optional[Any]=1_2 , lowerCAmelCase__ : List[Any]=3_0_7_2 , lowerCAmelCase__ : Union[str, Any]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : str=5_1_2 , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Optional[Any]=1e-1_2 , lowerCAmelCase__ : str=0 , lowerCAmelCase__ : List[str]="absolute" , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Any=None , **lowerCAmelCase__ : str , ) -> Dict:
super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = position_embedding_type
UpperCAmelCase = use_cache
UpperCAmelCase = classifier_dropout
class __magic_name__ ( _snake_case ):
@property
def _UpperCamelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] )
| 708 |
lowerCAmelCase__ = {
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
lowerCAmelCase__ = {value: key for key, value in encode_dict.items()}
def _lowerCAmelCase( __A ):
UpperCAmelCase = ""
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception("encode() accepts only letters of the alphabet and spaces" )
return encoded
def _lowerCAmelCase( __A ):
if set(__A ) - {"A", "B", " "} != set():
raise Exception("decode() accepts only 'A', 'B' and spaces" )
UpperCAmelCase = ""
for word in coded.split():
while len(__A ) != 0:
decoded += decode_dict[word[:5]]
UpperCAmelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 0 |
from __future__ import annotations
def _lowerCAmelCase( __A , __A , __A ):
if len(__A ) == 0:
raise ValueError("find_max() arg is an empty sequence" )
if (
left >= len(__A )
or left < -len(__A )
or right >= len(__A )
or right < -len(__A )
):
raise IndexError("list index out of range" )
if left == right:
return nums[left]
UpperCAmelCase = (left + right) >> 1 # the middle
UpperCAmelCase = find_max(__A , __A , __A ) # find max in range[left, mid]
UpperCAmelCase = find_max(__A , mid + 1 , __A ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 709 |
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
lowerCAmelCase__ = {"UserAgent": UserAgent().random}
def _lowerCAmelCase( __A ):
UpperCAmelCase = script.contents[0]
UpperCAmelCase = json.loads(data[data.find("{\"config\"" ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class __magic_name__ :
def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Any:
UpperCAmelCase = f"https://www.instagram.com/{username}/"
UpperCAmelCase = self.get_json()
def _UpperCamelCase ( self : List[str] ) -> dict:
UpperCAmelCase = requests.get(self.url , headers=lowerCAmelCase__ ).text
UpperCAmelCase = BeautifulSoup(lowerCAmelCase__ , "html.parser" ).find_all("script" )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self : Tuple ) -> str:
return f"{self.__class__.__name__}('{self.username}')"
def __str__( self : Optional[int] ) -> str:
return f"{self.fullname} ({self.username}) is {self.biography}"
@property
def _UpperCamelCase ( self : Any ) -> str:
return self.user_data["username"]
@property
def _UpperCamelCase ( self : List[Any] ) -> str:
return self.user_data["full_name"]
@property
def _UpperCamelCase ( self : List[str] ) -> str:
return self.user_data["biography"]
@property
def _UpperCamelCase ( self : Optional[int] ) -> str:
return self.user_data["business_email"]
@property
def _UpperCamelCase ( self : str ) -> str:
return self.user_data["external_url"]
@property
def _UpperCamelCase ( self : int ) -> int:
return self.user_data["edge_followed_by"]["count"]
@property
def _UpperCamelCase ( self : List[Any] ) -> int:
return self.user_data["edge_follow"]["count"]
@property
def _UpperCamelCase ( self : List[str] ) -> int:
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def _UpperCamelCase ( self : Tuple ) -> str:
return self.user_data["profile_pic_url_hd"]
@property
def _UpperCamelCase ( self : Optional[int] ) -> bool:
return self.user_data["is_verified"]
@property
def _UpperCamelCase ( self : Optional[Any] ) -> bool:
return self.user_data["is_private"]
def _lowerCAmelCase( __A = "github" ):
import os
if os.environ.get("CI" ):
return # test failing on GitHub Actions
UpperCAmelCase = InstagramUser(__A )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , __A )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 120000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "support@github.com"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith("https://instagram." )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ = InstagramUser("github")
print(instagram_user)
print(f"{instagram_user.number_of_posts = }")
print(f"{instagram_user.number_of_followers = }")
print(f"{instagram_user.number_of_followings = }")
print(f"{instagram_user.email = }")
print(f"{instagram_user.website = }")
print(f"{instagram_user.profile_picture_url = }")
print(f"{instagram_user.is_verified = }")
print(f"{instagram_user.is_private = }")
| 1 | 0 |
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
lowerCAmelCase__ = logging.getLogger(__name__)
require_version("pytorch_lightning>=1.0.4")
lowerCAmelCase__ = {
"base": AutoModel,
"sequence-classification": AutoModelForSequenceClassification,
"question-answering": AutoModelForQuestionAnswering,
"pretraining": AutoModelForPreTraining,
"token-classification": AutoModelForTokenClassification,
"language-modeling": AutoModelWithLMHead,
"summarization": AutoModelForSeqaSeqLM,
"translation": AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
lowerCAmelCase__ = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
lowerCAmelCase__ = sorted(arg_to_scheduler.keys())
lowerCAmelCase__ = "{" + ", ".join(arg_to_scheduler_choices) + "}"
class __magic_name__ ( pl.LightningModule ):
def __init__( self : int , lowerCAmelCase__ : argparse.Namespace , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : int="base" , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Dict=None , **lowerCAmelCase__ : List[str] , ) -> str:
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(lowerCAmelCase__ )
UpperCAmelCase = 0
UpperCAmelCase = Path(self.hparams.output_dir )
UpperCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
UpperCAmelCase = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=lowerCAmelCase__ , **lowerCAmelCase__ , )
else:
UpperCAmelCase = config
UpperCAmelCase = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
for p in extra_model_params:
if getattr(self.hparams , lowerCAmelCase__ , lowerCAmelCase__ ):
assert hasattr(self.config , lowerCAmelCase__ ), f"model config doesn't have a `{p}` attribute"
setattr(self.config , lowerCAmelCase__ , getattr(self.hparams , lowerCAmelCase__ ) )
if tokenizer is None:
UpperCAmelCase = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowerCAmelCase__ , )
else:
UpperCAmelCase = tokenizer
UpperCAmelCase = MODEL_MODES[mode]
if model is None:
UpperCAmelCase = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowerCAmelCase__ , )
else:
UpperCAmelCase = model
def _UpperCamelCase ( self : int , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Optional[int] ) -> Tuple:
UpperCAmelCase = self.model_type.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> List[str]:
UpperCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler]
UpperCAmelCase = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
UpperCAmelCase = {"scheduler": scheduler, "interval": "step", "frequency": 1}
return scheduler
def _UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase = self.model
UpperCAmelCase = ["bias", "LayerNorm.weight"]
UpperCAmelCase = [
{
"params": [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
"weight_decay": self.hparams.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
"weight_decay": 0.0,
},
]
if self.hparams.adafactor:
UpperCAmelCase = Adafactor(
lowerCAmelCase__ , lr=self.hparams.learning_rate , scale_parameter=lowerCAmelCase__ , relative_step=lowerCAmelCase__ )
else:
UpperCAmelCase = AdamW(
lowerCAmelCase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
UpperCAmelCase = optimizer
UpperCAmelCase = self.get_lr_scheduler()
return [optimizer], [scheduler]
def _UpperCamelCase ( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]:
return self.validation_step(lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : Tuple ) -> List[str]:
return self.validation_end(lowerCAmelCase__ )
def _UpperCamelCase ( self : Optional[Any] ) -> int:
UpperCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
UpperCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
if stage == "test":
UpperCAmelCase = len(self.test_dataloader().dataset )
else:
UpperCAmelCase = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=lowerCAmelCase__ )
UpperCAmelCase = len(self.train_dataloader().dataset )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False ) -> str:
raise NotImplementedError("You must implement this for your task" )
def _UpperCamelCase ( self : str ) -> Optional[int]:
return self.train_loader
def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]:
return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=lowerCAmelCase__ )
def _UpperCamelCase ( self : Tuple ) -> List[str]:
return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=lowerCAmelCase__ )
def _UpperCamelCase ( self : int , lowerCAmelCase__ : Tuple ) -> str:
return os.path.join(
self.hparams.data_dir , "cached_{}_{}_{}".format(
lowerCAmelCase__ , list(filter(lowerCAmelCase__ , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Dict[str, Any] ) -> None:
UpperCAmelCase = self.output_dir.joinpath("best_tfmr" )
UpperCAmelCase = self.step_count
self.model.save_pretrained(lowerCAmelCase__ )
self.tokenizer.save_pretrained(lowerCAmelCase__ )
@staticmethod
def _UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]:
parser.add_argument(
"--model_name_or_path" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="Path to pretrained model or model identifier from huggingface.co/models" , )
parser.add_argument(
"--config_name" , default="" , type=lowerCAmelCase__ , help="Pretrained config name or path if not the same as model_name" )
parser.add_argument(
"--tokenizer_name" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="Pretrained tokenizer name or path if not the same as model_name" , )
parser.add_argument(
"--cache_dir" , default=str(Path(lowerCAmelCase__ ).parent / "test_run" / "cache" ) , type=lowerCAmelCase__ , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , )
parser.add_argument(
"--encoder_layerdrop" , type=lowerCAmelCase__ , help="Encoder layer dropout probability (Optional). Goes into model.config" , )
parser.add_argument(
"--decoder_layerdrop" , type=lowerCAmelCase__ , help="Decoder layer dropout probability (Optional). Goes into model.config" , )
parser.add_argument(
"--dropout" , type=lowerCAmelCase__ , help="Dropout probability (Optional). Goes into model.config" , )
parser.add_argument(
"--attention_dropout" , type=lowerCAmelCase__ , help="Attention dropout probability (Optional). Goes into model.config" , )
parser.add_argument("--learning_rate" , default=5e-5 , type=lowerCAmelCase__ , help="The initial learning rate for Adam." )
parser.add_argument(
"--lr_scheduler" , default="linear" , choices=lowerCAmelCase__ , metavar=lowerCAmelCase__ , type=lowerCAmelCase__ , help="Learning rate scheduler" , )
parser.add_argument("--weight_decay" , default=0.0 , type=lowerCAmelCase__ , help="Weight decay if we apply some." )
parser.add_argument("--adam_epsilon" , default=1e-8 , type=lowerCAmelCase__ , help="Epsilon for Adam optimizer." )
parser.add_argument("--warmup_steps" , default=0 , type=lowerCAmelCase__ , help="Linear warmup over warmup_steps." )
parser.add_argument("--num_workers" , default=4 , type=lowerCAmelCase__ , help="kwarg passed to DataLoader" )
parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=lowerCAmelCase__ )
parser.add_argument("--train_batch_size" , default=3_2 , type=lowerCAmelCase__ )
parser.add_argument("--eval_batch_size" , default=3_2 , type=lowerCAmelCase__ )
parser.add_argument("--adafactor" , action="store_true" )
class __magic_name__ ( pl.Callback ):
def _UpperCamelCase ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple ) -> Any:
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class __magic_name__ ( pl.Callback ):
def _UpperCamelCase ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] ) -> Any:
# print(pl_module.model.rag)
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(lowerCAmelCase__ )
class __magic_name__ ( pl.Callback ):
def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> int:
UpperCAmelCase = trainer.lr_schedulers[0]["scheduler"]
UpperCAmelCase = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : pl.Trainer , lowerCAmelCase__ : pl.LightningModule ) -> Union[str, Any]:
rank_zero_info("***** Validation results *****" )
UpperCAmelCase = trainer.callback_metrics
# Log results
for key in sorted(lowerCAmelCase__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info("{} = {}\n".format(lowerCAmelCase__ , str(metrics[key] ) ) )
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : pl.Trainer , lowerCAmelCase__ : pl.LightningModule ) -> Optional[int]:
rank_zero_info("***** Test results *****" )
UpperCAmelCase = trainer.callback_metrics
# Log and save results to file
UpperCAmelCase = os.path.join(pl_module.hparams.output_dir , "test_results.txt" )
with open(lowerCAmelCase__ , "w" ) as writer:
for key in sorted(lowerCAmelCase__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info("{} = {}\n".format(lowerCAmelCase__ , str(metrics[key] ) ) )
writer.write("{} = {}\n".format(lowerCAmelCase__ , str(metrics[key] ) ) )
def _lowerCAmelCase( __A , __A ):
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
"--output_dir" , default=str(Path(__A ).parent / "test_run" / "model_checkpoints" ) , type=__A , help="The output directory where the model predictions and checkpoints will be written." , )
parser.add_argument(
"--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , )
parser.add_argument(
"--fp16_opt_level" , type=__A , default="O2" , help=(
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
) , )
parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=__A )
parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=__A , help="Max gradient norm" )
parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." )
parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." )
parser.add_argument(
"--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=__A , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , )
parser.add_argument("--seed" , type=__A , default=42 , help="random seed for initialization" )
parser.add_argument(
"--data_dir" , default=str(Path(__A ).parent / "test_run" / "dummy-train-data" ) , type=__A , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , )
def _lowerCAmelCase( __A , __A , __A=None , __A=True , __A=[] , __A=None , __A=None , **__A , ):
pl.seed_everything(args.seed )
# init model
UpperCAmelCase = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=__A )
# add custom checkpoints
if checkpoint_callback is None:
UpperCAmelCase = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(__A )
if logging_callback is None:
UpperCAmelCase = LoggingCallback()
UpperCAmelCase = {}
if args.fpaa:
UpperCAmelCase = 16
if args.gpus > 1:
UpperCAmelCase = "auto"
UpperCAmelCase = "ddp"
UpperCAmelCase = args.accumulate_grad_batches
UpperCAmelCase = None
UpperCAmelCase = "auto"
UpperCAmelCase = pl.Trainer.from_argparse_args(
__A , weights_summary=__A , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__A , val_check_interval=1 , num_sanity_val_steps=2 , **__A , )
if args.do_train:
trainer.fit(__A )
else:
print("RAG modeling tests with new set functions successfuly executed!" )
return trainer
| 710 |
import unittest
import numpy as np
def _lowerCAmelCase( __A , __A , __A , __A = None , ):
UpperCAmelCase = np.shape(__A )
UpperCAmelCase = np.shape(__A )
UpperCAmelCase = np.shape(__A )
if shape_a[0] != shape_b[0]:
UpperCAmelCase = (
"Expected the same number of rows for A and B. "
F"Instead found A of size {shape_a} and B of size {shape_b}"
)
raise ValueError(__A )
if shape_b[1] != shape_c[1]:
UpperCAmelCase = (
"Expected the same number of columns for B and C. "
F"Instead found B of size {shape_b} and C of size {shape_c}"
)
raise ValueError(__A )
UpperCAmelCase = pseudo_inv
if a_inv is None:
try:
UpperCAmelCase = np.linalg.inv(__A )
except np.linalg.LinAlgError:
raise ValueError(
"Input matrix A is not invertible. Cannot compute Schur complement." )
return mat_c - mat_b.T @ a_inv @ mat_b
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : List[str] ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1], [6, 3]] )
UpperCAmelCase = schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = np.block([[a, b], [b.T, c]] )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
self.assertAlmostEqual(lowerCAmelCase__ , det_a * det_s )
def _UpperCamelCase ( self : str ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1], [6, 3]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 1 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase__ = {
"configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"],
"tokenization_perceiver": ["PerceiverTokenizer"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ["PerceiverFeatureExtractor"]
lowerCAmelCase__ = ["PerceiverImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
"PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST",
"PerceiverForImageClassificationConvProcessing",
"PerceiverForImageClassificationFourier",
"PerceiverForImageClassificationLearned",
"PerceiverForMaskedLM",
"PerceiverForMultimodalAutoencoding",
"PerceiverForOpticalFlow",
"PerceiverForSequenceClassification",
"PerceiverLayer",
"PerceiverModel",
"PerceiverPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 711 |
import argparse
import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
from accelerate import Accelerator
def _lowerCAmelCase( __A ):
UpperCAmelCase = fname.split(os.path.sep )[-1]
return re.search(r"^(.*)_\d+\.jpg$" , __A ).groups()[0]
class __magic_name__ ( _snake_case ):
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=None ) -> Optional[Any]:
UpperCAmelCase = file_names
UpperCAmelCase = image_transform
UpperCAmelCase = label_to_id
def __len__( self : Tuple ) -> List[str]:
return len(self.file_names )
def __getitem__( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> Dict:
UpperCAmelCase = self.file_names[idx]
UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ )
UpperCAmelCase = raw_image.convert("RGB" )
if self.image_transform is not None:
UpperCAmelCase = self.image_transform(lowerCAmelCase__ )
UpperCAmelCase = extract_label(lowerCAmelCase__ )
if self.label_to_id is not None:
UpperCAmelCase = self.label_to_id[label]
return {"image": image, "label": label}
def _lowerCAmelCase( __A , __A ):
# Initialize accelerator
if args.with_tracking:
UpperCAmelCase = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir )
else:
UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase = config["lr"]
UpperCAmelCase = int(config["num_epochs"] )
UpperCAmelCase = int(config["seed"] )
UpperCAmelCase = int(config["batch_size"] )
UpperCAmelCase = config["image_size"]
if not isinstance(__A , (list, tuple) ):
UpperCAmelCase = (image_size, image_size)
# Parse out whether we are saving every epoch or after a certain number of batches
if hasattr(args.checkpointing_steps , "isdigit" ):
if args.checkpointing_steps == "epoch":
UpperCAmelCase = args.checkpointing_steps
elif args.checkpointing_steps.isdigit():
UpperCAmelCase = int(args.checkpointing_steps )
else:
raise ValueError(
F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." )
else:
UpperCAmelCase = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
UpperCAmelCase = os.path.split(__A )[-1].split("." )[0]
accelerator.init_trackers(__A , __A )
# Grab all the image filenames
UpperCAmelCase = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )]
# Build the label correspondences
UpperCAmelCase = [extract_label(__A ) for fname in file_names]
UpperCAmelCase = list(set(__A ) )
id_to_label.sort()
UpperCAmelCase = {lbl: i for i, lbl in enumerate(__A )}
# Set the seed before splitting the data.
np.random.seed(__A )
torch.manual_seed(__A )
torch.cuda.manual_seed_all(__A )
# Split our filenames between train and validation
UpperCAmelCase = np.random.permutation(len(__A ) )
UpperCAmelCase = int(0.8 * len(__A ) )
UpperCAmelCase = random_perm[:cut]
UpperCAmelCase = random_perm[cut:]
# For training we use a simple RandomResizedCrop
UpperCAmelCase = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] )
UpperCAmelCase = PetsDataset(
[file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A )
# For evaluation, we use a deterministic Resize
UpperCAmelCase = Compose([Resize(__A ), ToTensor()] )
UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A )
# Instantiate dataloaders.
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase = create_model("resnet50d" , pretrained=__A , num_classes=len(__A ) )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCAmelCase = model.to(accelerator.device )
# Freezing the base model
for param in model.parameters():
UpperCAmelCase = False
for param in model.get_classifier().parameters():
UpperCAmelCase = True
# We normalize the batches of images to be a bit faster.
UpperCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device )
UpperCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device )
# Instantiate optimizer
UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 )
# Instantiate learning rate scheduler
UpperCAmelCase = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(
__A , __A , __A , __A , __A )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase = 0
# We also need to keep track of the starting epoch so files are named properly
UpperCAmelCase = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" )
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase = os.path.basename(args.resume_from_checkpoint )
else:
# Get the most recent checkpoint
UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()]
dirs.sort(key=os.path.getctime )
UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
UpperCAmelCase = os.path.splitext(__A )[0]
if "epoch" in training_difference:
UpperCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1
UpperCAmelCase = None
else:
UpperCAmelCase = int(training_difference.replace("step_" , "" ) )
UpperCAmelCase = resume_step // len(__A )
resume_step -= starting_epoch * len(__A )
# Now we train the model
for epoch in range(__A , __A ):
model.train()
if args.with_tracking:
UpperCAmelCase = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
UpperCAmelCase = accelerator.skip_first_batches(__A , __A )
overall_step += resume_step
else:
# After the first iteration though, we need to go back to the original dataloader
UpperCAmelCase = train_dataloader
for batch in active_dataloader:
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch["image"] - mean) / std
UpperCAmelCase = model(__A )
UpperCAmelCase = torch.nn.functional.cross_entropy(__A , batch["label"] )
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(__A )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
if isinstance(__A , __A ):
UpperCAmelCase = F"step_{overall_step}"
if overall_step % checkpointing_steps == 0:
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , __A )
accelerator.save_state(__A )
model.eval()
UpperCAmelCase = 0
UpperCAmelCase = 0
for step, batch in enumerate(__A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch["image"] - mean) / std
with torch.no_grad():
UpperCAmelCase = model(__A )
UpperCAmelCase = outputs.argmax(dim=-1 )
UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) )
UpperCAmelCase = predictions == references
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
UpperCAmelCase = accurate.item() / num_elems
# Use accelerator.print to print only on the main process.
accelerator.print(F"epoch {epoch}: {100 * eval_metric:.2f}" )
if args.with_tracking:
accelerator.log(
{
"accuracy": 100 * eval_metric,
"train_loss": total_loss.item() / len(__A ),
"epoch": epoch,
} , step=__A , )
if checkpointing_steps == "epoch":
UpperCAmelCase = F"epoch_{epoch}"
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , __A )
accelerator.save_state(__A )
if args.with_tracking:
accelerator.end_training()
def _lowerCAmelCase( ):
UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument("--data_dir" , required=__A , help="The data folder on disk." )
parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." )
parser.add_argument(
"--mixed_precision" , type=__A , default=__A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
parser.add_argument(
"--checkpointing_steps" , type=__A , default=__A , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , )
parser.add_argument(
"--output_dir" , type=__A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--resume_from_checkpoint" , type=__A , default=__A , help="If the training should continue from a checkpoint folder." , )
parser.add_argument(
"--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , )
parser.add_argument(
"--project_dir" , type=__A , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224}
training_function(__A , __A )
if __name__ == "__main__":
main()
| 1 | 0 |
from copy import deepcopy
class __magic_name__ :
def __init__( self : List[str] , lowerCAmelCase__ : list[int] | None = None , lowerCAmelCase__ : int | None = None ) -> None:
if arr is None and size is not None:
UpperCAmelCase = size
UpperCAmelCase = [0] * size
elif arr is not None:
self.init(lowerCAmelCase__ )
else:
raise ValueError("Either arr or size must be specified" )
def _UpperCamelCase ( self : int , lowerCAmelCase__ : list[int] ) -> None:
UpperCAmelCase = len(lowerCAmelCase__ )
UpperCAmelCase = deepcopy(lowerCAmelCase__ )
for i in range(1 , self.size ):
UpperCAmelCase = self.next_(lowerCAmelCase__ )
if j < self.size:
self.tree[j] += self.tree[i]
def _UpperCamelCase ( self : Dict ) -> list[int]:
UpperCAmelCase = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
UpperCAmelCase = self.next_(lowerCAmelCase__ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def _UpperCamelCase ( lowerCAmelCase__ : int ) -> int:
return index + (index & (-index))
@staticmethod
def _UpperCamelCase ( lowerCAmelCase__ : int ) -> int:
return index - (index & (-index))
def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None:
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
UpperCAmelCase = self.next_(lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None:
self.add(lowerCAmelCase__ , value - self.get(lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : int ) -> int:
if right == 0:
return 0
UpperCAmelCase = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
UpperCAmelCase = self.prev(lowerCAmelCase__ )
return result
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int:
return self.prefix(lowerCAmelCase__ ) - self.prefix(lowerCAmelCase__ )
def _UpperCamelCase ( self : int , lowerCAmelCase__ : int ) -> int:
return self.query(lowerCAmelCase__ , index + 1 )
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : int ) -> int:
value -= self.tree[0]
if value < 0:
return -1
UpperCAmelCase = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
UpperCAmelCase = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 712 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = 1 # (0 is vertical, 1 is horizontal)
def _lowerCAmelCase( ):
UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A )
print("Processing..." )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno(__A , __A , __A )
for index, image in enumerate(__A ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
UpperCAmelCase = random_chars(32 )
UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0]
UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(F"/{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"Success {index+1}/{len(__A )} with {file_name}" )
UpperCAmelCase = []
for anno in new_annos[index]:
UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(__A )
with open(F"/{file_root}.txt" , "w" ) as outfile:
outfile.write("\n".join(line for line in annos_list ) )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = []
UpperCAmelCase = []
for label_file in glob.glob(os.path.join(__A , "*.txt" ) ):
UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0]
with open(__A ) as in_file:
UpperCAmelCase = in_file.readlines()
UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" )
UpperCAmelCase = []
for obj_list in obj_lists:
UpperCAmelCase = obj_list.rstrip("\n" ).split(" " )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__A )
labels.append(__A )
return img_paths, labels
def _lowerCAmelCase( __A , __A , __A = 1 ):
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = []
for idx in range(len(__A ) ):
UpperCAmelCase = []
UpperCAmelCase = img_list[idx]
path_list.append(__A )
UpperCAmelCase = anno_list[idx]
UpperCAmelCase = cva.imread(__A )
if flip_type == 1:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__A )
new_imgs_list.append(__A )
return new_imgs_list, new_annos_lists, path_list
def _lowerCAmelCase( __A = 32 ):
assert number_char > 1, "The number of character should greater than 1"
UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(__A ) for _ in range(__A ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 1 | 0 |
from functools import reduce
lowerCAmelCase__ = (
"73167176531330624919225119674426574742355349194934"
"96983520312774506326239578318016984801869478851843"
"85861560789112949495459501737958331952853208805511"
"12540698747158523863050715693290963295227443043557"
"66896648950445244523161731856403098711121722383113"
"62229893423380308135336276614282806444486645238749"
"30358907296290491560440772390713810515859307960866"
"70172427121883998797908792274921901699720888093776"
"65727333001053367881220235421809751254540594752243"
"52584907711670556013604839586446706324415722155397"
"53697817977846174064955149290862569321978468622482"
"83972241375657056057490261407972968652414535100474"
"82166370484403199890008895243450658541227588666881"
"16427171479924442928230863465674813919123162824586"
"17866458359124566529476545682848912883142607690042"
"24219022671055626321111109370544217506941658960408"
"07198403850962455444362981230987879927244284909188"
"84580156166097919133875499200524063689912560717606"
"05886116467109405077541002256983155200055935729725"
"71636269561882670428252483600823257530420752963450"
)
def _lowerCAmelCase( __A = N ):
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda __A , __A : str(int(__A ) * int(__A ) ) , n[i : i + 13] ) )
for i in range(len(__A ) - 12 ) )
if __name__ == "__main__":
print(f"{solution() = }")
| 713 |
def _lowerCAmelCase( __A ):
if not isinstance(__A , __A ):
raise TypeError("only integers accepted as input" )
else:
UpperCAmelCase = str(abs(__A ) )
UpperCAmelCase = [list(__A ) for char in range(len(__A ) )]
for index in range(len(__A ) ):
num_transpositions[index].pop(__A )
return max(
int("".join(list(__A ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__("doctest").testmod()
| 1 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json",
}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = """lxmert"""
UpperCAmelCase = {}
def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[str]=7_6_8 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : List[Any]=9_5_0_0 , lowerCAmelCase__ : Any=1_6_0_0 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : str=1e-1_2 , lowerCAmelCase__ : str=9 , lowerCAmelCase__ : int=5 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Dict=6.67 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : List[Any] , ) -> Dict:
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = num_qa_labels
UpperCAmelCase = num_object_labels
UpperCAmelCase = num_attr_labels
UpperCAmelCase = l_layers
UpperCAmelCase = x_layers
UpperCAmelCase = r_layers
UpperCAmelCase = visual_feat_dim
UpperCAmelCase = visual_pos_dim
UpperCAmelCase = visual_loss_normalizer
UpperCAmelCase = task_matched
UpperCAmelCase = task_mask_lm
UpperCAmelCase = task_obj_predict
UpperCAmelCase = task_qa
UpperCAmelCase = visual_obj_loss
UpperCAmelCase = visual_attr_loss
UpperCAmelCase = visual_feat_loss
UpperCAmelCase = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers}
super().__init__(**lowerCAmelCase__ )
| 714 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
lowerCAmelCase__ = logging.getLogger(__name__)
lowerCAmelCase__ = 50 # max width of layer names
lowerCAmelCase__ = 70 # max width of quantizer names
def _lowerCAmelCase( __A ):
UpperCAmelCase = parser.add_argument_group("quant_trainer arguments" )
group.add_argument("--wprec" , type=__A , default=8 , help="weight precision" )
group.add_argument("--aprec" , type=__A , default=8 , help="activation precision" )
group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" )
group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" )
group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" )
group.add_argument("--quant-disable-keyword" , type=__A , nargs="+" , help="disable quantizers by keyword" )
group.add_argument("--quant-disable-layer-module" , type=__A , help="disable quantizers by keyword under layer." )
group.add_argument("--quant-enable-layer-module" , type=__A , help="enable quantizers by keyword under layer" )
group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" )
group.add_argument("--percentile" , default=__A , type=__A , help="percentile for PercentileCalibrator" )
group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" )
group.add_argument("--clip-gelu" , metavar="N" , type=__A , help="clip gelu output maximum value to N" )
group.add_argument(
"--recalibrate-weights" , action="store_true" , help=(
"recalibrate weight amaxes by taking the max of the weights."
" amaxes will be computed with the current quantization granularity (axis)."
) , )
def _lowerCAmelCase( __A ):
if args.calibrator == "max":
UpperCAmelCase = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("Specify --percentile when using percentile calibrator" )
UpperCAmelCase = "histogram"
elif args.calibrator == "mse":
UpperCAmelCase = "histogram"
else:
raise ValueError(F"Invalid calibrator {args.calibrator}" )
UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=__A )
UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(__A )
quant_nn.QuantLinear.set_default_quant_desc_weight(__A )
def _lowerCAmelCase( __A , __A , __A=False , __A=False ):
logger.info("Configuring Model for Quantization" )
logger.info(F"using quantization package {pytorch_quantization.__file__}" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(__A , ["embeddings"] , which="weight" , _disabled=__A )
if args.quant_disable:
set_quantizer_by_name(__A , [""] , _disabled=__A )
if args.quant_disable_keyword:
set_quantizer_by_name(__A , args.quant_disable_keyword , _disabled=__A )
if args.quant_disable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=__A )
if args.quant_enable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=__A )
if args.recalibrate_weights:
recalibrate_weights(__A )
if args.fuse_qkv:
fuse_qkv(__A , __A )
if args.clip_gelu:
clip_gelu(__A , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(__A )
def _lowerCAmelCase( __A ):
logger.info("Enabling Calibration" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F"{name:80}: {module}" )
def _lowerCAmelCase( __A , __A ):
logger.info("Loading calibrated amax" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax("percentile" , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(__A )
def _lowerCAmelCase( __A , __A ):
def fusea(__A , __A , __A ):
for mod in [qq, qk, qv]:
if not hasattr(__A , "_amax" ):
print(" WARNING: NO AMAX BUFFER" )
return
UpperCAmelCase = qq._amax.detach().item()
UpperCAmelCase = qk._amax.detach().item()
UpperCAmelCase = qv._amax.detach().item()
UpperCAmelCase = max(__A , __A , __A )
qq._amax.fill_(__A )
qk._amax.fill_(__A )
qv._amax.fill_(__A )
logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" )
for name, mod in model.named_modules():
if name.endswith(".attention.self" ):
logger.info(F"FUSE_QKV: {name:{name_width}}" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _lowerCAmelCase( __A , __A ):
for name, mod in model.named_modules():
if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ):
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=__A )
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None:
UpperCAmelCase = mod.weight.shape[0]
UpperCAmelCase = mod._weight_quantizer._amax.detach()
UpperCAmelCase = torch.ones(__A , dtype=amax.dtype , device=amax.device ) * amax
print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ):
if not hasattr(mod.weight_quantizer , "_amax" ):
print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set
UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__A , keepdims=__A ).detach()
logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" )
UpperCAmelCase = amax
def _lowerCAmelCase( __A , __A=25 , __A=180 , __A=None ):
if ignore is None:
UpperCAmelCase = []
elif not isinstance(__A , __A ):
UpperCAmelCase = [ignore]
UpperCAmelCase = 0
for name, mod in model.named_modules():
if not hasattr(__A , "weight" ):
continue
UpperCAmelCase = max(__A , len(__A ) )
for name, mod in model.named_modules():
UpperCAmelCase = getattr(__A , "_input_quantizer" , __A )
UpperCAmelCase = getattr(__A , "_weight_quantizer" , __A )
if not hasattr(__A , "weight" ):
continue
if type(__A ) in ignore:
continue
if [True for s in ignore if type(__A ) is str and s in name]:
continue
UpperCAmelCase = F"Act:{input_q.extra_repr()}"
UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}"
UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}"
if len(__A ) <= line_width:
logger.info(__A )
else:
logger.info(F"{name:{name_width}} {act_str}" )
logger.info(F"{' ':{name_width}} {wgt_str}" )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for name, mod in model.named_modules():
if isinstance(__A , pytorch_quantization.nn.TensorQuantizer ):
print(F"{name:80} {mod}" )
count += 1
print(F"{count} TensorQuantizers found in model" )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
UpperCAmelCase = getattr(__A , __A , __A )
if quantizer_mod is not None:
assert hasattr(__A , __A )
setattr(__A , __A , __A )
else:
logger.warning(F"{name} has no {quantizer}" )
def _lowerCAmelCase( __A , __A , __A="both" , **__A ):
UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
if which in ["input", "both"]:
set_quantizer(__A , __A , "_input_quantizer" , __A , __A )
if which in ["weight", "both"]:
set_quantizer(__A , __A , "_weight_quantizer" , __A , __A )
logger.info(__A )
def _lowerCAmelCase( __A , __A , **__A ):
for name, mod in model.named_modules():
if hasattr(__A , "_input_quantizer" ) or hasattr(__A , "_weight_quantizer" ):
for n in names:
if re.search(__A , __A ):
set_quantizers(__A , __A , **__A )
elif name.endswith("_quantizer" ):
for n in names:
if re.search(__A , __A ):
UpperCAmelCase = F"Warning: changing {name:{name_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
setattr(__A , __A , __A )
logger.info(__A )
| 1 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json",
}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = """data2vec-text"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=3_0_5_2_2 , lowerCAmelCase__ : List[str]=7_6_8 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : Optional[int]=3_0_7_2 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Any=5_1_2 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : int=1e-1_2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : str=0 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : List[Any]="absolute" , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=None , **lowerCAmelCase__ : str , ) -> List[str]:
super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = position_embedding_type
UpperCAmelCase = use_cache
UpperCAmelCase = classifier_dropout
class __magic_name__ ( _snake_case ):
@property
def _UpperCamelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 715 |
def _lowerCAmelCase( __A ):
assert column_title.isupper()
UpperCAmelCase = 0
UpperCAmelCase = len(__A ) - 1
UpperCAmelCase = 0
while index >= 0:
UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , __A )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 0 |
lowerCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCAmelCase__ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 716 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
lowerCAmelCase__ = get_tests_dir("fixtures")
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
# A mock response for an HTTP head request to emulate server down
UpperCAmelCase = mock.Mock()
UpperCAmelCase = 5_0_0
UpperCAmelCase = {}
UpperCAmelCase = HTTPError
UpperCAmelCase = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request" , return_value=lowerCAmelCase__ ) as mock_head:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# This check we did call the fake head request
mock_head.assert_called()
def _UpperCamelCase ( self : List[Any] ) -> Dict:
# This test is for deprecated behavior and can be removed in v5
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" )
@is_staging_test
class __magic_name__ ( unittest.TestCase ):
@classmethod
def _UpperCamelCase ( cls : List[str] ) -> List[Any]:
UpperCAmelCase = TOKEN
HfFolder.save_token(lowerCAmelCase__ )
@classmethod
def _UpperCamelCase ( cls : Optional[int] ) -> Union[str, Any]:
try:
delete_repo(token=cls._token , repo_id="test-feature-extractor" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" )
except HTTPError:
pass
def _UpperCamelCase ( self : Any ) -> Any:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="test-feature-extractor" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : List[Any] ) -> Tuple:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Dict ) -> List[str]:
CustomFeatureExtractor.register_for_auto_class()
UpperCAmelCase = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , )
UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowerCAmelCase__ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
| 1 | 0 |
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
lowerCAmelCase__ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n"
lowerCAmelCase__ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n"
lowerCAmelCase__ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
def _UpperCamelCase ( self : Optional[Any] ) -> MetricInfo:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , )
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : List[List[List[str]]] , lowerCAmelCase__ : List[List[str]] , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : int = 4 , ) -> Dict[str, float]:
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=lowerCAmelCase__ , hypotheses=lowerCAmelCase__ , min_len=lowerCAmelCase__ , max_len=lowerCAmelCase__ )
}
| 717 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
lowerCAmelCase__ = "src/diffusers"
# Matches is_xxx_available()
lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
lowerCAmelCase__ = "\n{0} = None\n"
lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n"
lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
def _lowerCAmelCase( __A ):
UpperCAmelCase = _re_backend.findall(__A )
if len(__A ) == 0:
return None
return "_and_".join(__A )
def _lowerCAmelCase( ):
with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCAmelCase = 0
UpperCAmelCase = {}
# Go through the end of the file
while line_index < len(__A ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCAmelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("else:" ):
line_index += 1
line_index += 1
UpperCAmelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(__A ) and len(lines[line_index] ) > 1:
UpperCAmelCase = lines[line_index]
UpperCAmelCase = _re_single_line_import.search(__A )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__A ) > 0:
UpperCAmelCase = objects
else:
line_index += 1
return backend_specific_objects
def _lowerCAmelCase( __A , __A ):
if name.isupper():
return DUMMY_CONSTANT.format(__A )
elif name.islower():
return DUMMY_FUNCTION.format(__A , __A )
else:
return DUMMY_CLASS.format(__A , __A )
def _lowerCAmelCase( __A=None ):
if backend_specific_objects is None:
UpperCAmelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCAmelCase = {}
for backend, objects in backend_specific_objects.items():
UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]"
UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] )
UpperCAmelCase = dummy_file
return dummy_files
def _lowerCAmelCase( __A=False ):
UpperCAmelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCAmelCase = {"torch": "pt"}
# Locate actual dummy modules and read their content.
UpperCAmelCase = os.path.join(__A , "utils" )
UpperCAmelCase = {
backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" )
for backend in dummy_files.keys()
}
UpperCAmelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__A ):
with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.read()
else:
UpperCAmelCase = ""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main "
"__init__ has new objects." )
with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"The main __init__ has objects that are not present in "
F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` "
"to fix this." )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCAmelCase__ = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 | 0 |
from __future__ import annotations
def _lowerCAmelCase( __A ):
if not nums:
raise ValueError("List is empty" )
return sum(__A ) / len(__A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 718 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class __magic_name__ ( _snake_case , _snake_case ):
UpperCAmelCase = """convnextv2"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]:
super().__init__(**lowerCAmelCase__ )
UpperCAmelCase = num_channels
UpperCAmelCase = patch_size
UpperCAmelCase = num_stages
UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes
UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths
UpperCAmelCase = hidden_act
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = drop_path_rate
UpperCAmelCase = image_size
UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )]
UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
| 1 | 0 |
'''simple docstring'''
import math
import sys
def _lowerCAmelCase( __A ):
UpperCAmelCase = ""
try:
with open(__A , "rb" ) as binary_file:
UpperCAmelCase = binary_file.read()
for dat in data:
UpperCAmelCase = F"{dat:08b}"
result += curr_byte
return result
except OSError:
print("File not accessible" )
sys.exit()
def _lowerCAmelCase( __A ):
UpperCAmelCase = {"0": "0", "1": "1"}
UpperCAmelCase , UpperCAmelCase = "", ""
UpperCAmelCase = len(__A )
for i in range(len(__A ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
UpperCAmelCase = lexicon[curr_string]
result += last_match_id
UpperCAmelCase = last_match_id + "0"
if math.loga(__A ).is_integer():
UpperCAmelCase = {}
for curr_key in list(__A ):
UpperCAmelCase = lexicon.pop(__A )
UpperCAmelCase = new_lex
UpperCAmelCase = last_match_id + "1"
index += 1
UpperCAmelCase = ""
return result
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = 8
try:
with open(__A , "wb" ) as opened_file:
UpperCAmelCase = [
to_write[i : i + byte_length]
for i in range(0 , len(__A ) , __A )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append("10000000" )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(__A , 2 ).to_bytes(1 , byteorder="big" ) )
except OSError:
print("File not accessible" )
sys.exit()
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
UpperCAmelCase = data_bits[counter:]
UpperCAmelCase = data_bits[counter + 1 :]
return data_bits
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = read_file_binary(__A )
UpperCAmelCase = remove_prefix(__A )
UpperCAmelCase = decompress_data(__A )
write_file_binary(__A , __A )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 719 |
lowerCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCAmelCase__ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 1 | 0 |
from __future__ import annotations
from functools import lru_cache
from math import ceil
lowerCAmelCase__ = 100
lowerCAmelCase__ = set(range(3, NUM_PRIMES, 2))
primes.add(2)
lowerCAmelCase__ = 42
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
if prime not in primes:
continue
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
@lru_cache(maxsize=100 )
def _lowerCAmelCase( __A ):
if number_to_partition < 0:
return set()
elif number_to_partition == 0:
return {1}
UpperCAmelCase = set()
UpperCAmelCase = 42
UpperCAmelCase = 42
for prime in primes:
if prime > number_to_partition:
continue
for sub in partition(number_to_partition - prime ):
ret.add(sub * prime )
return ret
def _lowerCAmelCase( __A = 5000 ):
for number_to_partition in range(1 , __A ):
if len(partition(__A ) ) > number_unique_partitions:
return number_to_partition
return None
if __name__ == "__main__":
print(f"{solution() = }")
| 720 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = KandinskyInpaintPipeline
UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
UpperCAmelCase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
UpperCAmelCase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCAmelCase = False
@property
def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
return 3_2
@property
def _UpperCamelCase ( self : int ) -> List[Any]:
return 3_2
@property
def _UpperCamelCase ( self : List[Any] ) -> List[Any]:
return self.time_input_dim
@property
def _UpperCamelCase ( self : Tuple ) -> Tuple:
return self.time_input_dim * 4
@property
def _UpperCamelCase ( self : Any ) -> Optional[int]:
return 1_0_0
@property
def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]:
UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" )
return tokenizer
@property
def _UpperCamelCase ( self : int ) -> Dict:
torch.manual_seed(0 )
UpperCAmelCase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , )
UpperCAmelCase = MultilingualCLIP(lowerCAmelCase__ )
UpperCAmelCase = text_encoder.eval()
return text_encoder
@property
def _UpperCamelCase ( self : Dict ) -> Optional[int]:
torch.manual_seed(0 )
UpperCAmelCase = {
"in_channels": 9,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase = UNetaDConditionModel(**lowerCAmelCase__ )
return model
@property
def _UpperCamelCase ( self : str ) -> Optional[Any]:
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _UpperCamelCase ( self : Dict ) -> List[Any]:
torch.manual_seed(0 )
UpperCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def _UpperCamelCase ( self : Tuple ) -> Any:
UpperCAmelCase = self.dummy_text_encoder
UpperCAmelCase = self.dummy_tokenizer
UpperCAmelCase = self.dummy_unet
UpperCAmelCase = self.dummy_movq
UpperCAmelCase = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , )
UpperCAmelCase = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0 ) -> str:
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ )
# create init_image
UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) )
# create mask
UpperCAmelCase = np.ones((6_4, 6_4) , dtype=np.floataa )
UpperCAmelCase = 0
if str(lowerCAmelCase__ ).startswith("mps" ):
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
else:
UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
UpperCAmelCase = {
"prompt": "horse",
"image": init_image,
"mask_image": mask,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 6_4,
"width": 6_4,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"output_type": "np",
}
return inputs
def _UpperCamelCase ( self : Dict ) -> List[str]:
UpperCAmelCase = "cpu"
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ )
UpperCAmelCase = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) )
UpperCAmelCase = output.images
UpperCAmelCase = pipe(
**self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0]
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
print(f"image.shape {image.shape}" )
assert image.shape == (1, 6_4, 6_4, 3)
UpperCAmelCase = np.array(
[0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def _UpperCamelCase ( self : str ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : str ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase ( self : Tuple ) -> int:
UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" )
UpperCAmelCase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa )
UpperCAmelCase = 0
UpperCAmelCase = "a hat"
UpperCAmelCase = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa )
pipe_prior.to(lowerCAmelCase__ )
UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa )
UpperCAmelCase = pipeline.to(lowerCAmelCase__ )
pipeline.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase , UpperCAmelCase = pipe_prior(
lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase = pipeline(
lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , )
UpperCAmelCase = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
| 1 | 0 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class __magic_name__ ( _snake_case ):
UpperCAmelCase = ["""image_processor""", """tokenizer"""]
UpperCAmelCase = """CLIPImageProcessor"""
UpperCAmelCase = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""")
def __init__( self : int , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Tuple=None , **lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , lowerCAmelCase__ , )
UpperCAmelCase = kwargs.pop("feature_extractor" )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(lowerCAmelCase__ , lowerCAmelCase__ )
def __call__( self : Optional[Any] , lowerCAmelCase__ : str=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Tuple=None , **lowerCAmelCase__ : List[str] ) -> Optional[Any]:
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
UpperCAmelCase = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ )
if images is not None:
UpperCAmelCase = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ )
if text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ )
def _UpperCamelCase ( self : Optional[Any] , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : Optional[Any] ) -> Any:
return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ )
def _UpperCamelCase ( self : Optional[Any] , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : str ) -> Union[str, Any]:
return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _UpperCamelCase ( self : Optional[int] ) -> List[Any]:
UpperCAmelCase = self.tokenizer.model_input_names
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 721 |
def _lowerCAmelCase( __A , __A ):
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _lowerCAmelCase( __A , __A=0 ):
return sorted(__A , key=lambda __A : x[column] )
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(points_counts - 1 ):
for j in range(i + 1 , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(min(6 , points_counts - 1 ) , __A ):
for j in range(max(0 , i - 6 ) , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A ):
# base case
if points_counts <= 3:
return dis_between_closest_pair(__A , __A )
# recursion
UpperCAmelCase = points_counts // 2
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[:mid] , __A )
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[mid:] , points_counts - mid )
UpperCAmelCase = min(__A , __A )
UpperCAmelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(__A )
UpperCAmelCase = dis_between_closest_in_strip(
__A , len(__A ) , __A )
return min(__A , __A )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = column_based_sort(__A , column=0 )
UpperCAmelCase = column_based_sort(__A , column=1 )
return (
closest_pair_of_points_sqr(
__A , __A , __A )
) ** 0.5
if __name__ == "__main__":
lowerCAmelCase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
print("Distance:", closest_pair_of_points(points, len(points)))
| 1 | 0 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
lowerCAmelCase__ = "src/diffusers"
# Matches is_xxx_available()
lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
lowerCAmelCase__ = "\n{0} = None\n"
lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n"
lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
def _lowerCAmelCase( __A ):
UpperCAmelCase = _re_backend.findall(__A )
if len(__A ) == 0:
return None
return "_and_".join(__A )
def _lowerCAmelCase( ):
with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCAmelCase = 0
UpperCAmelCase = {}
# Go through the end of the file
while line_index < len(__A ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCAmelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("else:" ):
line_index += 1
line_index += 1
UpperCAmelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(__A ) and len(lines[line_index] ) > 1:
UpperCAmelCase = lines[line_index]
UpperCAmelCase = _re_single_line_import.search(__A )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__A ) > 0:
UpperCAmelCase = objects
else:
line_index += 1
return backend_specific_objects
def _lowerCAmelCase( __A , __A ):
if name.isupper():
return DUMMY_CONSTANT.format(__A )
elif name.islower():
return DUMMY_FUNCTION.format(__A , __A )
else:
return DUMMY_CLASS.format(__A , __A )
def _lowerCAmelCase( __A=None ):
if backend_specific_objects is None:
UpperCAmelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCAmelCase = {}
for backend, objects in backend_specific_objects.items():
UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]"
UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] )
UpperCAmelCase = dummy_file
return dummy_files
def _lowerCAmelCase( __A=False ):
UpperCAmelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCAmelCase = {"torch": "pt"}
# Locate actual dummy modules and read their content.
UpperCAmelCase = os.path.join(__A , "utils" )
UpperCAmelCase = {
backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" )
for backend in dummy_files.keys()
}
UpperCAmelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__A ):
with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.read()
else:
UpperCAmelCase = ""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main "
"__init__ has new objects." )
with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"The main __init__ has objects that are not present in "
F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` "
"to fix this." )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCAmelCase__ = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 700 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class __magic_name__ :
def __init__( self : Optional[int] ) -> Optional[Any]:
UpperCAmelCase = ""
UpperCAmelCase = ""
UpperCAmelCase = []
UpperCAmelCase = 0
UpperCAmelCase = 2_5_6
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> List[str]:
UpperCAmelCase = cva.imread(lowerCAmelCase__ , 0 )
UpperCAmelCase = copy.deepcopy(self.img )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="x" )
UpperCAmelCase = np.sum(lowerCAmelCase__ )
for i in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase = x[i] / self.k
self.sk += prk
UpperCAmelCase = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase = int(last % last )
UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(lowerCAmelCase__ )
UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase = self.last_list[num]
cva.imwrite("output_data/output.jpg" , self.img )
def _UpperCamelCase ( self : str ) -> int:
plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] )
def _UpperCamelCase ( self : Dict ) -> Optional[Any]:
cva.imshow("Output-Image" , self.img )
cva.imshow("Input-Image" , self.original_image )
cva.waitKey(5_0_0_0 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowerCAmelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg")
lowerCAmelCase__ = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 1 | 0 |
from ..utils import DummyObject, requires_backends
class __magic_name__ ( metaclass=_snake_case ):
UpperCAmelCase = ["""flax""", """transformers"""]
def __init__( self : str , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Any ) -> Union[str, Any]:
requires_backends(self , ["flax", "transformers"] )
@classmethod
def _UpperCamelCase ( cls : Union[str, Any] , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Tuple ) -> Optional[int]:
requires_backends(cls , ["flax", "transformers"] )
@classmethod
def _UpperCamelCase ( cls : List[str] , *lowerCAmelCase__ : str , **lowerCAmelCase__ : Union[str, Any] ) -> Any:
requires_backends(cls , ["flax", "transformers"] )
class __magic_name__ ( metaclass=_snake_case ):
UpperCAmelCase = ["""flax""", """transformers"""]
def __init__( self : List[str] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]:
requires_backends(self , ["flax", "transformers"] )
@classmethod
def _UpperCamelCase ( cls : List[str] , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Any ) -> Optional[Any]:
requires_backends(cls , ["flax", "transformers"] )
@classmethod
def _UpperCamelCase ( cls : List[str] , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Tuple ) -> int:
requires_backends(cls , ["flax", "transformers"] )
class __magic_name__ ( metaclass=_snake_case ):
UpperCAmelCase = ["""flax""", """transformers"""]
def __init__( self : Dict , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[Any] ) -> Optional[int]:
requires_backends(self , ["flax", "transformers"] )
@classmethod
def _UpperCamelCase ( cls : Tuple , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : List[Any] ) -> Tuple:
requires_backends(cls , ["flax", "transformers"] )
@classmethod
def _UpperCamelCase ( cls : Any , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Any ) -> Optional[int]:
requires_backends(cls , ["flax", "transformers"] )
class __magic_name__ ( metaclass=_snake_case ):
UpperCAmelCase = ["""flax""", """transformers"""]
def __init__( self : Optional[int] , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : List[Any] ) -> int:
requires_backends(self , ["flax", "transformers"] )
@classmethod
def _UpperCamelCase ( cls : List[Any] , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Optional[Any] ) -> List[Any]:
requires_backends(cls , ["flax", "transformers"] )
@classmethod
def _UpperCamelCase ( cls : Optional[Any] , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : int ) -> List[str]:
requires_backends(cls , ["flax", "transformers"] )
| 701 |
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = LEDTokenizer
UpperCAmelCase = LEDTokenizerFast
UpperCAmelCase = True
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
super().setUp()
UpperCAmelCase = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
UpperCAmelCase = {"unk_token": "<unk>"}
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : str , **lowerCAmelCase__ : str ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
return "lower newer", "lower newer"
@cached_property
def _UpperCamelCase ( self : Dict ) -> str:
return LEDTokenizer.from_pretrained("allenai/led-base-16384" )
@cached_property
def _UpperCamelCase ( self : int ) -> Tuple:
return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" )
@require_torch
def _UpperCamelCase ( self : Tuple ) -> List[str]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
UpperCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIn("input_ids" , lowerCAmelCase__ )
self.assertIn("attention_mask" , lowerCAmelCase__ )
self.assertNotIn("labels" , lowerCAmelCase__ )
self.assertNotIn("decoder_attention_mask" , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : int ) -> int:
UpperCAmelCase = [
"Summary of the text.",
"Another summary.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , max_length=3_2 , padding="max_length" , return_tensors="pt" )
self.assertEqual(3_2 , targets["input_ids"].shape[1] )
@require_torch
def _UpperCamelCase ( self : Any ) -> int:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(
["I am a small frog" * 1_0_2_4, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) )
@require_torch
def _UpperCamelCase ( self : Dict ) -> Tuple:
UpperCAmelCase = ["A long paragraph for summarization."]
UpperCAmelCase = [
"Summary of the text.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = inputs["input_ids"]
UpperCAmelCase = targets["input_ids"]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = ["Summary of the text.", "Another summary."]
UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ )
UpperCAmelCase = [[0] * len(lowerCAmelCase__ ) for x in encoded_output["input_ids"]]
UpperCAmelCase = tokenizer.pad(lowerCAmelCase__ )
self.assertSequenceEqual(outputs["global_attention_mask"] , lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] ) -> int:
pass
def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = "A, <mask> AllenNLP sentence."
UpperCAmelCase = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
UpperCAmelCase = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
| 1 | 0 |
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = DiTPipeline
UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
UpperCAmelCase = PipelineTesterMixin.required_optional_params - {
"""latents""",
"""num_images_per_prompt""",
"""callback""",
"""callback_steps""",
}
UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
UpperCAmelCase = False
def _UpperCamelCase ( self : List[Any] ) -> Any:
torch.manual_seed(0 )
UpperCAmelCase = TransformeraDModel(
sample_size=1_6 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCAmelCase__ , activation_fn="gelu-approximate" , num_embeds_ada_norm=1_0_0_0 , norm_type="ada_norm_zero" , norm_elementwise_affine=lowerCAmelCase__ , )
UpperCAmelCase = AutoencoderKL()
UpperCAmelCase = DDIMScheduler()
UpperCAmelCase = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler}
return components
def _UpperCamelCase ( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=0 ) -> Tuple:
if str(lowerCAmelCase__ ).startswith("mps" ):
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
else:
UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
UpperCAmelCase = {
"class_labels": [1],
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def _UpperCamelCase ( self : Union[str, Any] ) -> Any:
UpperCAmelCase = "cpu"
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ )
pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = self.get_dummy_inputs(lowerCAmelCase__ )
UpperCAmelCase = pipe(**lowerCAmelCase__ ).images
UpperCAmelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 1_6, 1_6, 3) )
UpperCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] )
UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(lowerCAmelCase__ , 1e-3 )
def _UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]:
self._test_inference_batch_single_identical(relax_max_difference=lowerCAmelCase__ , expected_max_diff=1e-3 )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def _UpperCamelCase ( self : Any ) -> str:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@require_torch_gpu
@slow
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : str ) -> Dict:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase ( self : List[str] ) -> Optional[Any]:
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" )
pipe.to("cuda" )
UpperCAmelCase = ["vase", "umbrella", "white shark", "white wolf"]
UpperCAmelCase = pipe.get_label_ids(lowerCAmelCase__ )
UpperCAmelCase = pipe(lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=4_0 , output_type="np" ).images
for word, image in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = load_numpy(
f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" )
assert np.abs((expected_image - image).max() ) < 1e-2
def _UpperCamelCase ( self : Optional[int] ) -> List[Any]:
UpperCAmelCase = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" )
UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to("cuda" )
UpperCAmelCase = ["vase", "umbrella"]
UpperCAmelCase = pipe.get_label_ids(lowerCAmelCase__ )
UpperCAmelCase = torch.manual_seed(0 )
UpperCAmelCase = pipe(lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2_5 , output_type="np" ).images
for word, image in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
f"/dit/{word}_512.npy" )
assert np.abs((expected_image - image).max() ) < 1e-1
| 702 |
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
lowerCAmelCase__ = version.parse(importlib_metadata.version("nltk"))
if NLTK_VERSION >= version.Version("3.6.4"):
from nltk import word_tokenize
lowerCAmelCase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n"
lowerCAmelCase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n"
lowerCAmelCase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
def _UpperCamelCase ( self : int ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[
"https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score",
"https://en.wikipedia.org/wiki/METEOR",
] , )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : List[Any] ) -> Dict:
import nltk
nltk.download("wordnet" )
if NLTK_VERSION >= version.Version("3.6.5" ):
nltk.download("punkt" )
if NLTK_VERSION >= version.Version("3.6.6" ):
nltk.download("omw-1.4" )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=0.9 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Optional[int]=0.5 ) -> Any:
if NLTK_VERSION >= version.Version("3.6.5" ):
UpperCAmelCase = [
meteor_score.single_meteor_score(
word_tokenize(lowerCAmelCase__ ) , word_tokenize(lowerCAmelCase__ ) , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ )
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
else:
UpperCAmelCase = [
meteor_score.single_meteor_score(lowerCAmelCase__ , lowerCAmelCase__ , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ )
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
return {"meteor": np.mean(lowerCAmelCase__ )}
| 1 | 0 |
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
lowerCAmelCase__ : Optional[int] = open # noqa: we just need to have a builtin inside this module to test it properly
| 703 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json",
}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = """lxmert"""
UpperCAmelCase = {}
def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[str]=7_6_8 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : List[Any]=9_5_0_0 , lowerCAmelCase__ : Any=1_6_0_0 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : str=1e-1_2 , lowerCAmelCase__ : str=9 , lowerCAmelCase__ : int=5 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Dict=6.67 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : List[Any] , ) -> Dict:
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = num_qa_labels
UpperCAmelCase = num_object_labels
UpperCAmelCase = num_attr_labels
UpperCAmelCase = l_layers
UpperCAmelCase = x_layers
UpperCAmelCase = r_layers
UpperCAmelCase = visual_feat_dim
UpperCAmelCase = visual_pos_dim
UpperCAmelCase = visual_loss_normalizer
UpperCAmelCase = task_matched
UpperCAmelCase = task_mask_lm
UpperCAmelCase = task_obj_predict
UpperCAmelCase = task_qa
UpperCAmelCase = visual_obj_loss
UpperCAmelCase = visual_attr_loss
UpperCAmelCase = visual_feat_loss
UpperCAmelCase = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers}
super().__init__(**lowerCAmelCase__ )
| 1 | 0 |
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def _lowerCAmelCase( ):
UpperCAmelCase = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png"
UpperCAmelCase = Image.open(requests.get(__A , stream=__A ).raw ).convert("RGB" )
return image
def _lowerCAmelCase( __A ):
UpperCAmelCase = []
# fmt: off
# vision encoder
rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") )
rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") )
rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") )
rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") )
rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") )
rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) )
rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") )
rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") )
# QFormer
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") )
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") )
# fmt: on
return rename_keys
def _lowerCAmelCase( __A , __A , __A ):
UpperCAmelCase = dct.pop(__A )
UpperCAmelCase = val
def _lowerCAmelCase( __A , __A ):
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
UpperCAmelCase = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" )
UpperCAmelCase = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" )
# next, set bias in the state dict
UpperCAmelCase = torch.cat((q_bias, torch.zeros_like(__A , requires_grad=__A ), v_bias) )
UpperCAmelCase = qkv_bias
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = 364 if "coco" in model_name else 224
UpperCAmelCase = BlipaVisionConfig(image_size=__A ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
UpperCAmelCase = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=__A ).to_dict()
elif "opt-6.7b" in model_name:
UpperCAmelCase = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=__A ).to_dict()
elif "t5-xl" in model_name:
UpperCAmelCase = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
UpperCAmelCase = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict()
UpperCAmelCase = BlipaConfig(vision_config=__A , text_config=__A )
return config, image_size
@torch.no_grad()
def _lowerCAmelCase( __A , __A=None , __A=False ):
UpperCAmelCase = (
AutoTokenizer.from_pretrained("facebook/opt-2.7b" )
if "opt" in model_name
else AutoTokenizer.from_pretrained("google/flan-t5-xl" )
)
UpperCAmelCase = tokenizer("\n" , add_special_tokens=__A ).input_ids[0]
UpperCAmelCase , UpperCAmelCase = get_blipa_config(__A , eos_token_id=__A )
UpperCAmelCase = BlipaForConditionalGeneration(__A ).eval()
UpperCAmelCase = {
"blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"),
"blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"),
"blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"),
"blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"),
"blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"),
"blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"),
"blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"),
}
UpperCAmelCase , UpperCAmelCase = model_name_to_original[model_name]
# load original model
print("Loading original model..." )
UpperCAmelCase = "cuda" if torch.cuda.is_available() else "cpu"
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = load_model_and_preprocess(
name=__A , model_type=__A , is_eval=__A , device=__A )
original_model.eval()
print("Done!" )
# update state dict keys
UpperCAmelCase = original_model.state_dict()
UpperCAmelCase = create_rename_keys(__A )
for src, dest in rename_keys:
rename_key(__A , __A , __A )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
UpperCAmelCase = state_dict.pop(__A )
if key.startswith("Qformer.bert" ):
UpperCAmelCase = key.replace("Qformer.bert" , "qformer" )
if "attention.self" in key:
UpperCAmelCase = key.replace("self" , "attention" )
if "opt_proj" in key:
UpperCAmelCase = key.replace("opt_proj" , "language_projection" )
if "t5_proj" in key:
UpperCAmelCase = key.replace("t5_proj" , "language_projection" )
if key.startswith("opt" ):
UpperCAmelCase = key.replace("opt" , "language" )
if key.startswith("t5" ):
UpperCAmelCase = key.replace("t5" , "language" )
UpperCAmelCase = val
# read in qv biases
read_in_q_v_bias(__A , __A )
UpperCAmelCase , UpperCAmelCase = hf_model.load_state_dict(__A , strict=__A )
assert len(__A ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
UpperCAmelCase = load_demo_image()
UpperCAmelCase = vis_processors["eval"](__A ).unsqueeze(0 ).to(__A )
UpperCAmelCase = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(__A )
# create processor
UpperCAmelCase = BlipImageProcessor(
size={"height": image_size, "width": image_size} , image_mean=__A , image_std=__A )
UpperCAmelCase = BlipaProcessor(image_processor=__A , tokenizer=__A )
UpperCAmelCase = processor(images=__A , return_tensors="pt" ).pixel_values.to(__A )
# make sure processor creates exact same pixel values
assert torch.allclose(__A , __A )
original_model.to(__A )
hf_model.to(__A )
with torch.no_grad():
if "opt" in model_name:
UpperCAmelCase = original_model({"image": original_pixel_values, "text_input": [""]} ).logits
UpperCAmelCase = hf_model(__A , __A ).logits
else:
UpperCAmelCase = original_model(
{"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits
UpperCAmelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 )
UpperCAmelCase = hf_model(__A , __A , labels=__A ).logits
assert original_logits.shape == logits.shape
print("First values of original logits:" , original_logits[0, :3, :3] )
print("First values of HF logits:" , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
UpperCAmelCase = torch.tensor(
[[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=__A )
assert torch.allclose(logits[0, :3, :3] , __A , atol=1E-4 )
elif model_name == "blip2-flan-t5-xl-coco":
UpperCAmelCase = torch.tensor(
[[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=__A )
else:
# cast to same type
UpperCAmelCase = logits.dtype
assert torch.allclose(original_logits.to(__A ) , __A , atol=1E-2 )
print("Looks ok!" )
print("Generating a caption..." )
UpperCAmelCase = ""
UpperCAmelCase = tokenizer(__A , return_tensors="pt" ).input_ids.to(__A )
UpperCAmelCase = original_model.generate({"image": original_pixel_values} )
UpperCAmelCase = hf_model.generate(
__A , __A , do_sample=__A , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print("Original generation:" , __A )
UpperCAmelCase = input_ids.shape[1]
UpperCAmelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__A )
UpperCAmelCase = [text.strip() for text in output_text]
print("HF generation:" , __A )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(__A )
hf_model.save_pretrained(__A )
if push_to_hub:
processor.push_to_hub(F"nielsr/{model_name}" )
hf_model.push_to_hub(F"nielsr/{model_name}" )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
lowerCAmelCase__ = [
"blip2-opt-2.7b",
"blip2-opt-6.7b",
"blip2-opt-2.7b-coco",
"blip2-opt-6.7b-coco",
"blip2-flan-t5-xl",
"blip2-flan-t5-xl-coco",
"blip2-flan-t5-xxl",
]
parser.add_argument(
"--model_name",
default="blip2-opt-2.7b",
choices=choices,
type=str,
help="Path to hf config.json of model to convert",
)
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model and processor to the hub after converting",
)
lowerCAmelCase__ = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 704 |
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def _lowerCAmelCase( __A = 100 ):
UpperCAmelCase = 1
UpperCAmelCase = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase = pre_numerator
UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase = cur_numerator
UpperCAmelCase = e_cont * pre_numerator + temp
return sum_digits(__A )
if __name__ == "__main__":
print(f"{solution() = }")
| 1 | 0 |
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
UpperCAmelCase = TapasConfig.from_json_file(__A )
# set absolute/relative position embeddings parameter
UpperCAmelCase = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
UpperCAmelCase = TapasForQuestionAnswering(config=__A )
elif task == "WTQ":
# run_task_main.py hparams
UpperCAmelCase = 4
UpperCAmelCase = True
# hparam_utils.py hparams
UpperCAmelCase = 0.664694
UpperCAmelCase = 0.207951
UpperCAmelCase = 0.121194
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = False
UpperCAmelCase = 0.0352513
UpperCAmelCase = TapasForQuestionAnswering(config=__A )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
UpperCAmelCase = 4
UpperCAmelCase = False
# hparam_utils.py hparams
UpperCAmelCase = 36.4519
UpperCAmelCase = 0.903421
UpperCAmelCase = 222.088
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = 0.763141
UpperCAmelCase = TapasForQuestionAnswering(config=__A )
elif task == "TABFACT":
UpperCAmelCase = TapasForSequenceClassification(config=__A )
elif task == "MLM":
UpperCAmelCase = TapasForMaskedLM(config=__A )
elif task == "INTERMEDIATE_PRETRAINING":
UpperCAmelCase = TapasModel(config=__A )
else:
raise ValueError(F"Task {task} not supported." )
print(F"Building PyTorch model from configuration: {config}" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(__A , __A , __A )
# Save pytorch-model (weights and configuration)
print(F"Save PyTorch model to {pytorch_dump_path}" )
model.save_pretrained(__A )
# Save tokenizer files
print(F"Save tokenizer files to {pytorch_dump_path}" )
UpperCAmelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 )
tokenizer.save_pretrained(__A )
print("Used relative position embeddings:" , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA."
)
parser.add_argument(
"--reset_position_index_per_cell",
default=False,
action="store_true",
help="Whether to use relative position embeddings or not. Defaults to True.",
)
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--tapas_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained TAPAS model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowerCAmelCase__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 705 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 1 | 0 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def _lowerCAmelCase( __A , __A , __A , __A ):
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), F"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), F"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"
def _lowerCAmelCase( __A , __A , __A , __A , __A=True ):
model.train()
UpperCAmelCase = model(__A )
UpperCAmelCase = F.mse_loss(__A , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(__A )
def _lowerCAmelCase( __A , __A=False ):
set_seed(42 )
UpperCAmelCase = RegressionModel()
UpperCAmelCase = deepcopy(__A )
UpperCAmelCase = RegressionDataset(length=80 )
UpperCAmelCase = DataLoader(__A , batch_size=16 )
model.to(accelerator.device )
if sched:
UpperCAmelCase = AdamW(params=model.parameters() , lr=1E-3 )
UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1E-3 )
UpperCAmelCase = LambdaLR(__A , lr_lambda=lambda __A : epoch**0.65 )
UpperCAmelCase = LambdaLR(__A , lr_lambda=lambda __A : epoch**0.65 )
# Make a copy of `model`
if sched:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(__A , __A , __A , __A )
else:
UpperCAmelCase , UpperCAmelCase = accelerator.prepare(__A , __A )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def _lowerCAmelCase( __A ):
# Test when on a single CPU or GPU that the context manager does nothing
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_training_setup(__A )
# Use a single batch
UpperCAmelCase , UpperCAmelCase = next(iter(__A ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
UpperCAmelCase , UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase , UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__A , __A , __A , __A )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(__A ):
step_model(__A , __A , __A , __A )
else:
# Sync grads
step_model(__A , __A , __A , __A )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(__A , __A , __A , __A )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase = ddp_input[torch.randperm(len(__A ) )]
def _lowerCAmelCase( __A ):
# Test on distributed setup that context manager behaves properly
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_training_setup(__A )
# Use a single batch
UpperCAmelCase , UpperCAmelCase = next(iter(__A ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
UpperCAmelCase , UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase , UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__A , __A , __A , __A )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(__A ):
step_model(__A , __A , __A , __A )
else:
# Sync grads
step_model(__A , __A , __A , __A )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase = ddp_input[torch.randperm(len(__A ) )]
def _lowerCAmelCase( __A=False , __A=False ):
UpperCAmelCase = Accelerator(
split_batches=__A , dispatch_batches=__A , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_training_setup(__A )
for iteration, batch in enumerate(__A ):
UpperCAmelCase , UpperCAmelCase = batch.values()
# Gather the distributed inputs and targs for the base model
UpperCAmelCase , UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase , UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__A , __A , __A , __A , __A )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(__A ):
step_model(__A , __A , __A , __A )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(__A ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase = ddp_input[torch.randperm(len(__A ) )]
GradientState._reset_state()
def _lowerCAmelCase( __A=False , __A=False ):
UpperCAmelCase = Accelerator(
split_batches=__A , dispatch_batches=__A , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_training_setup(__A , __A )
for iteration, batch in enumerate(__A ):
UpperCAmelCase , UpperCAmelCase = batch.values()
# Gather the distributed inputs and targs for the base model
UpperCAmelCase , UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase , UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(__A , __A , __A , __A , __A )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__A )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(__A ):
step_model(__A , __A , __A , __A )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), F"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n"
UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__A ))
if accelerator.num_processes > 1:
check_model_parameters(__A , __A , __A , __A )
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
GradientState._reset_state()
def _lowerCAmelCase( ):
UpperCAmelCase = Accelerator()
UpperCAmelCase = RegressionDataset(length=80 )
UpperCAmelCase = DataLoader(__A , batch_size=16 )
UpperCAmelCase = RegressionDataset(length=96 )
UpperCAmelCase = DataLoader(__A , batch_size=16 )
UpperCAmelCase , UpperCAmelCase = accelerator.prepare(__A , __A )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(__A ):
assert id(accelerator.gradient_state.active_dataloader ) == id(__A )
if iteration < len(__A ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(__A ):
assert id(accelerator.gradient_state.active_dataloader ) == id(__A )
if batch_num < len(__A ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def _lowerCAmelCase( ):
UpperCAmelCase = Accelerator()
UpperCAmelCase = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**" )
test_noop_sync(__A )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**" )
test_distributed_sync(__A )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , )
test_gradient_accumulation(__A , __A )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , )
test_gradient_accumulation_with_opt_and_scheduler(__A , __A )
def _lowerCAmelCase( __A ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 706 |
import numpy
# List of input, output pairs
lowerCAmelCase__ = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
lowerCAmelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150))
lowerCAmelCase__ = [2, 4, 1, 5]
lowerCAmelCase__ = len(train_data)
lowerCAmelCase__ = 0.0_0_9
def _lowerCAmelCase( __A , __A="train" ):
return calculate_hypothesis_value(__A , __A ) - output(
__A , __A )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for i in range(len(__A ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def _lowerCAmelCase( __A , __A ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def _lowerCAmelCase( __A , __A ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def _lowerCAmelCase( __A , __A=m ):
UpperCAmelCase = 0
for i in range(__A ):
if index == -1:
summation_value += _error(__A )
else:
summation_value += _error(__A ) * train_data[i][0][index]
return summation_value
def _lowerCAmelCase( __A ):
UpperCAmelCase = summation_of_cost_derivative(__A , __A ) / m
return cost_derivative_value
def _lowerCAmelCase( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCAmelCase = 0.000002
UpperCAmelCase = 0
UpperCAmelCase = 0
while True:
j += 1
UpperCAmelCase = [0, 0, 0, 0]
for i in range(0 , len(__A ) ):
UpperCAmelCase = get_cost_derivative(i - 1 )
UpperCAmelCase = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
__A , __A , atol=__A , rtol=__A , ):
break
UpperCAmelCase = temp_parameter_vector
print(("Number of iterations:", j) )
def _lowerCAmelCase( ):
for i in range(len(__A ) ):
print(("Actual output value:", output(__A , "test" )) )
print(("Hypothesis output:", calculate_hypothesis_value(__A , "test" )) )
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| 1 | 0 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class __magic_name__ ( unittest.TestCase ):
def __init__( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , lowerCAmelCase__ : Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[str, Any]=7 , lowerCAmelCase__ : Dict=3_0 , lowerCAmelCase__ : Dict=4_0_0 , lowerCAmelCase__ : Dict=3 , ) -> Union[str, Any]:
UpperCAmelCase = parent
UpperCAmelCase = do_resize
UpperCAmelCase = size if size is not None else {"shortest_edge": 2_8_8}
UpperCAmelCase = size_divisor
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = do_normalize
UpperCAmelCase = do_center_crop
UpperCAmelCase = image_mean
UpperCAmelCase = image_std
UpperCAmelCase = do_pad
UpperCAmelCase = batch_size
UpperCAmelCase = num_channels
UpperCAmelCase = min_resolution
UpperCAmelCase = max_resolution
def _UpperCamelCase ( self : Union[str, Any] ) -> str:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any]=False ) -> int:
if not batched:
UpperCAmelCase = self.size["shortest_edge"]
UpperCAmelCase = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
UpperCAmelCase , UpperCAmelCase = image.size
else:
UpperCAmelCase , UpperCAmelCase = image.shape[1], image.shape[2]
UpperCAmelCase = size / min(lowerCAmelCase__ , lowerCAmelCase__ )
if h < w:
UpperCAmelCase , UpperCAmelCase = size, scale * w
else:
UpperCAmelCase , UpperCAmelCase = scale * h, size
UpperCAmelCase = int((1_3_3_3 / 8_0_0) * size )
if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size:
UpperCAmelCase = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = newh * scale
UpperCAmelCase = neww * scale
UpperCAmelCase , UpperCAmelCase = int(newh + 0.5 ), int(neww + 0.5 )
UpperCAmelCase , UpperCAmelCase = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
UpperCAmelCase = []
for image in image_inputs:
UpperCAmelCase , UpperCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
UpperCAmelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
UpperCAmelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = BridgeTowerImageProcessor if is_vision_available() else None
def _UpperCamelCase ( self : Dict ) -> Tuple:
UpperCAmelCase = BridgeTowerImageProcessingTester(self )
@property
def _UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def _UpperCamelCase ( self : str ) -> Dict:
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "image_mean" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "image_std" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "size_divisor" ) )
def _UpperCamelCase ( self : Dict ) -> Tuple:
pass
def _UpperCamelCase ( self : Dict ) -> int:
# Initialize image processor
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values
UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _UpperCamelCase ( self : Any ) -> Union[str, Any]:
# Initialize image processor
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values
UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _UpperCamelCase ( self : Optional[int] ) -> Dict:
# Initialize image processor
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values
UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 707 |
def _lowerCAmelCase( __A , __A , __A ):
if n == 0:
return 1
elif n % 2 == 1:
return (binary_exponentiation(__A , n - 1 , __A ) * a) % mod
else:
UpperCAmelCase = binary_exponentiation(__A , n / 2 , __A )
return (b * b) % mod
# a prime number
lowerCAmelCase__ = 701
lowerCAmelCase__ = 1000000000
lowerCAmelCase__ = 10
# using binary exponentiation function, O(log(p)):
print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p)
print((a / b) % p == (a * b ** (p - 2)) % p)
| 1 | 0 |
import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
lowerCAmelCase__ = None
lowerCAmelCase__ = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
lowerCAmelCase__ = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class __magic_name__ :
UpperCAmelCase = True
UpperCAmelCase = None
# Automatically constructed
UpperCAmelCase = """PIL.Image.Image"""
UpperCAmelCase = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} )
UpperCAmelCase = field(default="""Image""" , init=_snake_case , repr=_snake_case )
def __call__( self : Tuple ) -> Dict:
return self.pa_type
def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'." )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = np.array(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
return {"path": value, "bytes": None}
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
return {"path": None, "bytes": value}
elif isinstance(lowerCAmelCase__ , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(lowerCAmelCase__ )
elif value.get("path" ) is not None and os.path.isfile(value["path"] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("path" )}
elif value.get("bytes" ) is not None or value.get("path" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("bytes" ), "path": value.get("path" )}
else:
raise ValueError(
f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : dict , lowerCAmelCase__ : List[Any]=None ) -> "PIL.Image.Image":
if not self.decode:
raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support decoding images, please install 'Pillow'." )
if token_per_repo_id is None:
UpperCAmelCase = {}
UpperCAmelCase , UpperCAmelCase = value["path"], value["bytes"]
if bytes_ is None:
if path is None:
raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}." )
else:
if is_local_path(lowerCAmelCase__ ):
UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ )
else:
UpperCAmelCase = path.split("::" )[-1]
try:
UpperCAmelCase = string_to_dict(lowerCAmelCase__ , config.HUB_DATASETS_URL )["repo_id"]
UpperCAmelCase = token_per_repo_id.get(lowerCAmelCase__ )
except ValueError:
UpperCAmelCase = None
with xopen(lowerCAmelCase__ , "rb" , use_auth_token=lowerCAmelCase__ ) as f:
UpperCAmelCase = BytesIO(f.read() )
UpperCAmelCase = PIL.Image.open(bytes_ )
else:
UpperCAmelCase = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def _UpperCamelCase ( self : Tuple ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("binary" ),
"path": Value("string" ),
}
)
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray:
if pa.types.is_string(storage.type ):
UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() )
UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() )
UpperCAmelCase = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("bytes" ) >= 0:
UpperCAmelCase = storage.field("bytes" )
else:
UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() )
if storage.type.get_field_index("path" ) >= 0:
UpperCAmelCase = storage.field("path" )
else:
UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() )
UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
UpperCAmelCase = pa.array(
[encode_np_array(np.array(lowerCAmelCase__ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() )
UpperCAmelCase = pa.StructArray.from_arrays(
[bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() )
return array_cast(lowerCAmelCase__ , self.pa_type )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : pa.StructArray ) -> pa.StructArray:
@no_op_if_value_is_null
def path_to_bytes(lowerCAmelCase__ : Union[str, Any] ):
with xopen(lowerCAmelCase__ , "rb" ) as f:
UpperCAmelCase = f.read()
return bytes_
UpperCAmelCase = pa.array(
[
(path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
UpperCAmelCase = pa.array(
[os.path.basename(lowerCAmelCase__ ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , )
UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() )
return array_cast(lowerCAmelCase__ , self.pa_type )
def _lowerCAmelCase( ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'." )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
UpperCAmelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def _lowerCAmelCase( __A : Union[str, Any] ):
UpperCAmelCase = BytesIO()
if image.format in list_image_compression_formats():
UpperCAmelCase = image.format
else:
UpperCAmelCase = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF"
image.save(__A , format=__A )
return buffer.getvalue()
def _lowerCAmelCase( __A : int ):
if hasattr(__A , "filename" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(__A )}
def _lowerCAmelCase( __A : int ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'." )
UpperCAmelCase = array.dtype
UpperCAmelCase = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER
UpperCAmelCase = dtype.kind
UpperCAmelCase = dtype.itemsize
UpperCAmelCase = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
UpperCAmelCase = np.dtype("|u1" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
F"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." )
if dtype is not dest_dtype:
warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
UpperCAmelCase = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
UpperCAmelCase = dtype_byteorder + dtype_kind + str(__A )
UpperCAmelCase = np.dtype(__A )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
F"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" )
UpperCAmelCase = PIL.Image.fromarray(array.astype(__A ) )
return {"path": None, "bytes": image_to_bytes(__A )}
def _lowerCAmelCase( __A : Tuple ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'." )
if objs:
UpperCAmelCase , UpperCAmelCase = first_non_null_value(__A )
if isinstance(__A , __A ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(__A , np.ndarray ):
UpperCAmelCase = no_op_if_value_is_null(__A )
return [obj_to_image_dict_func(__A ) for obj in objs]
elif isinstance(__A , PIL.Image.Image ):
UpperCAmelCase = no_op_if_value_is_null(__A )
return [obj_to_image_dict_func(__A ) for obj in objs]
else:
return objs
else:
return objs
| 708 |
lowerCAmelCase__ = {
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
lowerCAmelCase__ = {value: key for key, value in encode_dict.items()}
def _lowerCAmelCase( __A ):
UpperCAmelCase = ""
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception("encode() accepts only letters of the alphabet and spaces" )
return encoded
def _lowerCAmelCase( __A ):
if set(__A ) - {"A", "B", " "} != set():
raise Exception("decode() accepts only 'A', 'B' and spaces" )
UpperCAmelCase = ""
for word in coded.split():
while len(__A ) != 0:
decoded += decode_dict[word[:5]]
UpperCAmelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 0 |
import math
def _lowerCAmelCase( __A , __A ):
return math.pow(__A , 2 ) - a
def _lowerCAmelCase( __A ):
return 2 * x
def _lowerCAmelCase( __A ):
UpperCAmelCase = 2.0
while start <= a:
UpperCAmelCase = math.pow(__A , 2 )
return start
def _lowerCAmelCase( __A , __A = 9999 , __A = 0.00000000000001 ):
if a < 0:
raise ValueError("math domain error" )
UpperCAmelCase = get_initial_point(__A )
for _ in range(__A ):
UpperCAmelCase = value
UpperCAmelCase = value - fx(__A , __A ) / fx_derivative(__A )
if abs(prev_value - value ) < tolerance:
return value
return value
if __name__ == "__main__":
from doctest import testmod
testmod()
| 709 |
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
lowerCAmelCase__ = {"UserAgent": UserAgent().random}
def _lowerCAmelCase( __A ):
UpperCAmelCase = script.contents[0]
UpperCAmelCase = json.loads(data[data.find("{\"config\"" ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class __magic_name__ :
def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Any:
UpperCAmelCase = f"https://www.instagram.com/{username}/"
UpperCAmelCase = self.get_json()
def _UpperCamelCase ( self : List[str] ) -> dict:
UpperCAmelCase = requests.get(self.url , headers=lowerCAmelCase__ ).text
UpperCAmelCase = BeautifulSoup(lowerCAmelCase__ , "html.parser" ).find_all("script" )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self : Tuple ) -> str:
return f"{self.__class__.__name__}('{self.username}')"
def __str__( self : Optional[int] ) -> str:
return f"{self.fullname} ({self.username}) is {self.biography}"
@property
def _UpperCamelCase ( self : Any ) -> str:
return self.user_data["username"]
@property
def _UpperCamelCase ( self : List[Any] ) -> str:
return self.user_data["full_name"]
@property
def _UpperCamelCase ( self : List[str] ) -> str:
return self.user_data["biography"]
@property
def _UpperCamelCase ( self : Optional[int] ) -> str:
return self.user_data["business_email"]
@property
def _UpperCamelCase ( self : str ) -> str:
return self.user_data["external_url"]
@property
def _UpperCamelCase ( self : int ) -> int:
return self.user_data["edge_followed_by"]["count"]
@property
def _UpperCamelCase ( self : List[Any] ) -> int:
return self.user_data["edge_follow"]["count"]
@property
def _UpperCamelCase ( self : List[str] ) -> int:
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def _UpperCamelCase ( self : Tuple ) -> str:
return self.user_data["profile_pic_url_hd"]
@property
def _UpperCamelCase ( self : Optional[int] ) -> bool:
return self.user_data["is_verified"]
@property
def _UpperCamelCase ( self : Optional[Any] ) -> bool:
return self.user_data["is_private"]
def _lowerCAmelCase( __A = "github" ):
import os
if os.environ.get("CI" ):
return # test failing on GitHub Actions
UpperCAmelCase = InstagramUser(__A )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , __A )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 120000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "support@github.com"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith("https://instagram." )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ = InstagramUser("github")
print(instagram_user)
print(f"{instagram_user.number_of_posts = }")
print(f"{instagram_user.number_of_followers = }")
print(f"{instagram_user.number_of_followings = }")
print(f"{instagram_user.email = }")
print(f"{instagram_user.website = }")
print(f"{instagram_user.profile_picture_url = }")
print(f"{instagram_user.is_verified = }")
print(f"{instagram_user.is_private = }")
| 1 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase__ = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ["BeitFeatureExtractor"]
lowerCAmelCase__ = ["BeitImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
"BEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BeitForImageClassification",
"BeitForMaskedImageModeling",
"BeitForSemanticSegmentation",
"BeitModel",
"BeitPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
"FlaxBeitForImageClassification",
"FlaxBeitForMaskedImageModeling",
"FlaxBeitModel",
"FlaxBeitPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_beit import BeitFeatureExtractor
from .image_processing_beit import BeitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_beit import (
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
BeitPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_beit import (
FlaxBeitForImageClassification,
FlaxBeitForMaskedImageModeling,
FlaxBeitModel,
FlaxBeitPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 710 |
import unittest
import numpy as np
def _lowerCAmelCase( __A , __A , __A , __A = None , ):
UpperCAmelCase = np.shape(__A )
UpperCAmelCase = np.shape(__A )
UpperCAmelCase = np.shape(__A )
if shape_a[0] != shape_b[0]:
UpperCAmelCase = (
"Expected the same number of rows for A and B. "
F"Instead found A of size {shape_a} and B of size {shape_b}"
)
raise ValueError(__A )
if shape_b[1] != shape_c[1]:
UpperCAmelCase = (
"Expected the same number of columns for B and C. "
F"Instead found B of size {shape_b} and C of size {shape_c}"
)
raise ValueError(__A )
UpperCAmelCase = pseudo_inv
if a_inv is None:
try:
UpperCAmelCase = np.linalg.inv(__A )
except np.linalg.LinAlgError:
raise ValueError(
"Input matrix A is not invertible. Cannot compute Schur complement." )
return mat_c - mat_b.T @ a_inv @ mat_b
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : List[str] ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1], [6, 3]] )
UpperCAmelCase = schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = np.block([[a, b], [b.T, c]] )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
self.assertAlmostEqual(lowerCAmelCase__ , det_a * det_s )
def _UpperCamelCase ( self : str ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1], [6, 3]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 1 | 0 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class __magic_name__ ( _snake_case ):
def __init__( self : Any , lowerCAmelCase__ : str = "▁" , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[str, AddedToken] = "<unk>" , lowerCAmelCase__ : Union[str, AddedToken] = "</s>" , lowerCAmelCase__ : Union[str, AddedToken] = "<pad>" , ) -> Optional[Any]:
UpperCAmelCase = {
"pad": {"id": 0, "token": pad_token},
"eos": {"id": 1, "token": eos_token},
"unk": {"id": 2, "token": unk_token},
}
UpperCAmelCase = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
UpperCAmelCase = token_dict["token"]
UpperCAmelCase = Tokenizer(Unigram() )
UpperCAmelCase = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(" {2,}" ) , " " ),
normalizers.Lowercase(),
] )
UpperCAmelCase = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ),
pre_tokenizers.Digits(individual_digits=lowerCAmelCase__ ),
pre_tokenizers.Punctuation(),
] )
UpperCAmelCase = decoders.Metaspace(replacement=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ )
UpperCAmelCase = TemplateProcessing(
single=f"$A {self.special_tokens['eos']['token']}" , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , )
UpperCAmelCase = {
"model": "SentencePieceUnigram",
"replacement": replacement,
"add_prefix_space": add_prefix_space,
}
super().__init__(lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Union[str, List[str]] , lowerCAmelCase__ : int = 8_0_0_0 , lowerCAmelCase__ : bool = True , ) -> List[str]:
UpperCAmelCase = trainers.UnigramTrainer(
vocab_size=lowerCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=lowerCAmelCase__ , )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = [files]
self._tokenizer.train(lowerCAmelCase__ , trainer=lowerCAmelCase__ )
self.add_unk_id()
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Union[Iterator[str], Iterator[Iterator[str]]] , lowerCAmelCase__ : int = 8_0_0_0 , lowerCAmelCase__ : bool = True , ) -> List[Any]:
UpperCAmelCase = trainers.UnigramTrainer(
vocab_size=lowerCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=lowerCAmelCase__ , )
self._tokenizer.train_from_iterator(lowerCAmelCase__ , trainer=lowerCAmelCase__ )
self.add_unk_id()
def _UpperCamelCase ( self : List[Any] ) -> Dict:
UpperCAmelCase = json.loads(self._tokenizer.to_str() )
UpperCAmelCase = self.special_tokens["unk"]["id"]
UpperCAmelCase = Tokenizer.from_str(json.dumps(lowerCAmelCase__ ) )
| 711 |
import argparse
import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
from accelerate import Accelerator
def _lowerCAmelCase( __A ):
UpperCAmelCase = fname.split(os.path.sep )[-1]
return re.search(r"^(.*)_\d+\.jpg$" , __A ).groups()[0]
class __magic_name__ ( _snake_case ):
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=None ) -> Optional[Any]:
UpperCAmelCase = file_names
UpperCAmelCase = image_transform
UpperCAmelCase = label_to_id
def __len__( self : Tuple ) -> List[str]:
return len(self.file_names )
def __getitem__( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> Dict:
UpperCAmelCase = self.file_names[idx]
UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ )
UpperCAmelCase = raw_image.convert("RGB" )
if self.image_transform is not None:
UpperCAmelCase = self.image_transform(lowerCAmelCase__ )
UpperCAmelCase = extract_label(lowerCAmelCase__ )
if self.label_to_id is not None:
UpperCAmelCase = self.label_to_id[label]
return {"image": image, "label": label}
def _lowerCAmelCase( __A , __A ):
# Initialize accelerator
if args.with_tracking:
UpperCAmelCase = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir )
else:
UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase = config["lr"]
UpperCAmelCase = int(config["num_epochs"] )
UpperCAmelCase = int(config["seed"] )
UpperCAmelCase = int(config["batch_size"] )
UpperCAmelCase = config["image_size"]
if not isinstance(__A , (list, tuple) ):
UpperCAmelCase = (image_size, image_size)
# Parse out whether we are saving every epoch or after a certain number of batches
if hasattr(args.checkpointing_steps , "isdigit" ):
if args.checkpointing_steps == "epoch":
UpperCAmelCase = args.checkpointing_steps
elif args.checkpointing_steps.isdigit():
UpperCAmelCase = int(args.checkpointing_steps )
else:
raise ValueError(
F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." )
else:
UpperCAmelCase = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
UpperCAmelCase = os.path.split(__A )[-1].split("." )[0]
accelerator.init_trackers(__A , __A )
# Grab all the image filenames
UpperCAmelCase = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )]
# Build the label correspondences
UpperCAmelCase = [extract_label(__A ) for fname in file_names]
UpperCAmelCase = list(set(__A ) )
id_to_label.sort()
UpperCAmelCase = {lbl: i for i, lbl in enumerate(__A )}
# Set the seed before splitting the data.
np.random.seed(__A )
torch.manual_seed(__A )
torch.cuda.manual_seed_all(__A )
# Split our filenames between train and validation
UpperCAmelCase = np.random.permutation(len(__A ) )
UpperCAmelCase = int(0.8 * len(__A ) )
UpperCAmelCase = random_perm[:cut]
UpperCAmelCase = random_perm[cut:]
# For training we use a simple RandomResizedCrop
UpperCAmelCase = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] )
UpperCAmelCase = PetsDataset(
[file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A )
# For evaluation, we use a deterministic Resize
UpperCAmelCase = Compose([Resize(__A ), ToTensor()] )
UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A )
# Instantiate dataloaders.
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase = create_model("resnet50d" , pretrained=__A , num_classes=len(__A ) )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCAmelCase = model.to(accelerator.device )
# Freezing the base model
for param in model.parameters():
UpperCAmelCase = False
for param in model.get_classifier().parameters():
UpperCAmelCase = True
# We normalize the batches of images to be a bit faster.
UpperCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device )
UpperCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device )
# Instantiate optimizer
UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 )
# Instantiate learning rate scheduler
UpperCAmelCase = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(
__A , __A , __A , __A , __A )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase = 0
# We also need to keep track of the starting epoch so files are named properly
UpperCAmelCase = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" )
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase = os.path.basename(args.resume_from_checkpoint )
else:
# Get the most recent checkpoint
UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()]
dirs.sort(key=os.path.getctime )
UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
UpperCAmelCase = os.path.splitext(__A )[0]
if "epoch" in training_difference:
UpperCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1
UpperCAmelCase = None
else:
UpperCAmelCase = int(training_difference.replace("step_" , "" ) )
UpperCAmelCase = resume_step // len(__A )
resume_step -= starting_epoch * len(__A )
# Now we train the model
for epoch in range(__A , __A ):
model.train()
if args.with_tracking:
UpperCAmelCase = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
UpperCAmelCase = accelerator.skip_first_batches(__A , __A )
overall_step += resume_step
else:
# After the first iteration though, we need to go back to the original dataloader
UpperCAmelCase = train_dataloader
for batch in active_dataloader:
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch["image"] - mean) / std
UpperCAmelCase = model(__A )
UpperCAmelCase = torch.nn.functional.cross_entropy(__A , batch["label"] )
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(__A )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
if isinstance(__A , __A ):
UpperCAmelCase = F"step_{overall_step}"
if overall_step % checkpointing_steps == 0:
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , __A )
accelerator.save_state(__A )
model.eval()
UpperCAmelCase = 0
UpperCAmelCase = 0
for step, batch in enumerate(__A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch["image"] - mean) / std
with torch.no_grad():
UpperCAmelCase = model(__A )
UpperCAmelCase = outputs.argmax(dim=-1 )
UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) )
UpperCAmelCase = predictions == references
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
UpperCAmelCase = accurate.item() / num_elems
# Use accelerator.print to print only on the main process.
accelerator.print(F"epoch {epoch}: {100 * eval_metric:.2f}" )
if args.with_tracking:
accelerator.log(
{
"accuracy": 100 * eval_metric,
"train_loss": total_loss.item() / len(__A ),
"epoch": epoch,
} , step=__A , )
if checkpointing_steps == "epoch":
UpperCAmelCase = F"epoch_{epoch}"
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , __A )
accelerator.save_state(__A )
if args.with_tracking:
accelerator.end_training()
def _lowerCAmelCase( ):
UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument("--data_dir" , required=__A , help="The data folder on disk." )
parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." )
parser.add_argument(
"--mixed_precision" , type=__A , default=__A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
parser.add_argument(
"--checkpointing_steps" , type=__A , default=__A , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , )
parser.add_argument(
"--output_dir" , type=__A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--resume_from_checkpoint" , type=__A , default=__A , help="If the training should continue from a checkpoint folder." , )
parser.add_argument(
"--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , )
parser.add_argument(
"--project_dir" , type=__A , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224}
training_function(__A , __A )
if __name__ == "__main__":
main()
| 1 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase__ = logging.get_logger(__name__)
class __magic_name__ ( _snake_case ):
UpperCAmelCase = ["""pixel_values"""]
def __init__( self : List[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : Any , ) -> None:
super().__init__(**lowerCAmelCase__ )
UpperCAmelCase = size if size is not None else {"height": 3_8_4, "width": 3_8_4}
UpperCAmelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = resample
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD
UpperCAmelCase = do_convert_rgb
def _UpperCamelCase ( self : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : List[Any] , ) -> np.ndarray:
UpperCAmelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" )
UpperCAmelCase = (size["height"], size["width"])
return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[int, float] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[int] , ) -> Optional[Any]:
return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : List[Any] , ) -> np.ndarray:
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase__ : int , ) -> PIL.Image.Image:
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
UpperCAmelCase = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
UpperCAmelCase = [convert_to_rgb(lowerCAmelCase__ ) for image in images]
# All transformations expect numpy arrays.
UpperCAmelCase = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if do_resize:
UpperCAmelCase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images]
if do_rescale:
UpperCAmelCase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images]
if do_normalize:
UpperCAmelCase = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images]
UpperCAmelCase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images]
UpperCAmelCase = BatchFeature(data={"pixel_values": images} , tensor_type=lowerCAmelCase__ )
return encoded_outputs
| 712 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = 1 # (0 is vertical, 1 is horizontal)
def _lowerCAmelCase( ):
UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A )
print("Processing..." )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno(__A , __A , __A )
for index, image in enumerate(__A ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
UpperCAmelCase = random_chars(32 )
UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0]
UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(F"/{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"Success {index+1}/{len(__A )} with {file_name}" )
UpperCAmelCase = []
for anno in new_annos[index]:
UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(__A )
with open(F"/{file_root}.txt" , "w" ) as outfile:
outfile.write("\n".join(line for line in annos_list ) )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = []
UpperCAmelCase = []
for label_file in glob.glob(os.path.join(__A , "*.txt" ) ):
UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0]
with open(__A ) as in_file:
UpperCAmelCase = in_file.readlines()
UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" )
UpperCAmelCase = []
for obj_list in obj_lists:
UpperCAmelCase = obj_list.rstrip("\n" ).split(" " )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__A )
labels.append(__A )
return img_paths, labels
def _lowerCAmelCase( __A , __A , __A = 1 ):
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = []
for idx in range(len(__A ) ):
UpperCAmelCase = []
UpperCAmelCase = img_list[idx]
path_list.append(__A )
UpperCAmelCase = anno_list[idx]
UpperCAmelCase = cva.imread(__A )
if flip_type == 1:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__A )
new_imgs_list.append(__A )
return new_imgs_list, new_annos_lists, path_list
def _lowerCAmelCase( __A = 32 ):
assert number_char > 1, "The number of character should greater than 1"
UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(__A ) for _ in range(__A ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 1 | 0 |
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
lowerCAmelCase__ = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
"text-classification",
"language-modeling",
"summarization",
"token-classification",
"question-answering",
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
lowerCAmelCase__ = logging.getLogger()
def _lowerCAmelCase( ):
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument("-f" )
UpperCAmelCase = parser.parse_args()
return args.f
def _lowerCAmelCase( __A , __A="eval" ):
UpperCAmelCase = os.path.join(__A , F"{split}_results.json" )
if os.path.exists(__A ):
with open(__A , "r" ) as f:
return json.load(__A )
raise ValueError(F"can't find {path}" )
lowerCAmelCase__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __magic_name__ ( _snake_case ):
def _UpperCamelCase ( self : Any ) -> List[str]:
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split()
with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ):
run_flax_glue.main()
UpperCAmelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result["eval_accuracy"] , 0.75 )
@slow
def _UpperCamelCase ( self : Any ) -> List[str]:
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ):
run_clm_flax.main()
UpperCAmelCase = get_results(lowerCAmelCase__ )
self.assertLess(result["eval_perplexity"] , 1_0_0 )
@slow
def _UpperCamelCase ( self : Union[str, Any] ) -> Any:
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split()
with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ):
run_summarization_flax.main()
UpperCAmelCase = get_results(lowerCAmelCase__ , split="test" )
self.assertGreaterEqual(result["test_rouge1"] , 1_0 )
self.assertGreaterEqual(result["test_rouge2"] , 2 )
self.assertGreaterEqual(result["test_rougeL"] , 7 )
self.assertGreaterEqual(result["test_rougeLsum"] , 7 )
@slow
def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split()
with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ):
run_mlm_flax.main()
UpperCAmelCase = get_results(lowerCAmelCase__ )
self.assertLess(result["eval_perplexity"] , 4_2 )
@slow
def _UpperCamelCase ( self : int ) -> Dict:
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ):
run_ta_mlm_flax.main()
UpperCAmelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result["eval_accuracy"] , 0.42 )
@slow
def _UpperCamelCase ( self : int ) -> Any:
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
UpperCAmelCase = 7 if get_gpu_count() > 1 else 2
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split()
with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ):
run_flax_ner.main()
UpperCAmelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result["eval_accuracy"] , 0.75 )
self.assertGreaterEqual(result["eval_f1"] , 0.3 )
@slow
def _UpperCamelCase ( self : Optional[Any] ) -> int:
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split()
with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ):
run_qa.main()
UpperCAmelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result["eval_f1"] , 3_0 )
self.assertGreaterEqual(result["eval_exact"] , 3_0 )
| 713 |
def _lowerCAmelCase( __A ):
if not isinstance(__A , __A ):
raise TypeError("only integers accepted as input" )
else:
UpperCAmelCase = str(abs(__A ) )
UpperCAmelCase = [list(__A ) for char in range(len(__A ) )]
for index in range(len(__A ) ):
num_transpositions[index].pop(__A )
return max(
int("".join(list(__A ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__("doctest").testmod()
| 1 | 0 |
import math
def _lowerCAmelCase( __A ):
return math.sqrt(__A ) * math.sqrt(__A ) == num
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
UpperCAmelCase = n
while left <= right:
UpperCAmelCase = (left + right) // 2
if mid**2 == n:
return True
elif mid**2 > n:
UpperCAmelCase = mid - 1
else:
UpperCAmelCase = mid + 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 714 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
lowerCAmelCase__ = logging.getLogger(__name__)
lowerCAmelCase__ = 50 # max width of layer names
lowerCAmelCase__ = 70 # max width of quantizer names
def _lowerCAmelCase( __A ):
UpperCAmelCase = parser.add_argument_group("quant_trainer arguments" )
group.add_argument("--wprec" , type=__A , default=8 , help="weight precision" )
group.add_argument("--aprec" , type=__A , default=8 , help="activation precision" )
group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" )
group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" )
group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" )
group.add_argument("--quant-disable-keyword" , type=__A , nargs="+" , help="disable quantizers by keyword" )
group.add_argument("--quant-disable-layer-module" , type=__A , help="disable quantizers by keyword under layer." )
group.add_argument("--quant-enable-layer-module" , type=__A , help="enable quantizers by keyword under layer" )
group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" )
group.add_argument("--percentile" , default=__A , type=__A , help="percentile for PercentileCalibrator" )
group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" )
group.add_argument("--clip-gelu" , metavar="N" , type=__A , help="clip gelu output maximum value to N" )
group.add_argument(
"--recalibrate-weights" , action="store_true" , help=(
"recalibrate weight amaxes by taking the max of the weights."
" amaxes will be computed with the current quantization granularity (axis)."
) , )
def _lowerCAmelCase( __A ):
if args.calibrator == "max":
UpperCAmelCase = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("Specify --percentile when using percentile calibrator" )
UpperCAmelCase = "histogram"
elif args.calibrator == "mse":
UpperCAmelCase = "histogram"
else:
raise ValueError(F"Invalid calibrator {args.calibrator}" )
UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=__A )
UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(__A )
quant_nn.QuantLinear.set_default_quant_desc_weight(__A )
def _lowerCAmelCase( __A , __A , __A=False , __A=False ):
logger.info("Configuring Model for Quantization" )
logger.info(F"using quantization package {pytorch_quantization.__file__}" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(__A , ["embeddings"] , which="weight" , _disabled=__A )
if args.quant_disable:
set_quantizer_by_name(__A , [""] , _disabled=__A )
if args.quant_disable_keyword:
set_quantizer_by_name(__A , args.quant_disable_keyword , _disabled=__A )
if args.quant_disable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=__A )
if args.quant_enable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=__A )
if args.recalibrate_weights:
recalibrate_weights(__A )
if args.fuse_qkv:
fuse_qkv(__A , __A )
if args.clip_gelu:
clip_gelu(__A , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(__A )
def _lowerCAmelCase( __A ):
logger.info("Enabling Calibration" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F"{name:80}: {module}" )
def _lowerCAmelCase( __A , __A ):
logger.info("Loading calibrated amax" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax("percentile" , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(__A )
def _lowerCAmelCase( __A , __A ):
def fusea(__A , __A , __A ):
for mod in [qq, qk, qv]:
if not hasattr(__A , "_amax" ):
print(" WARNING: NO AMAX BUFFER" )
return
UpperCAmelCase = qq._amax.detach().item()
UpperCAmelCase = qk._amax.detach().item()
UpperCAmelCase = qv._amax.detach().item()
UpperCAmelCase = max(__A , __A , __A )
qq._amax.fill_(__A )
qk._amax.fill_(__A )
qv._amax.fill_(__A )
logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" )
for name, mod in model.named_modules():
if name.endswith(".attention.self" ):
logger.info(F"FUSE_QKV: {name:{name_width}}" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _lowerCAmelCase( __A , __A ):
for name, mod in model.named_modules():
if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ):
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=__A )
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None:
UpperCAmelCase = mod.weight.shape[0]
UpperCAmelCase = mod._weight_quantizer._amax.detach()
UpperCAmelCase = torch.ones(__A , dtype=amax.dtype , device=amax.device ) * amax
print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ):
if not hasattr(mod.weight_quantizer , "_amax" ):
print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set
UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__A , keepdims=__A ).detach()
logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" )
UpperCAmelCase = amax
def _lowerCAmelCase( __A , __A=25 , __A=180 , __A=None ):
if ignore is None:
UpperCAmelCase = []
elif not isinstance(__A , __A ):
UpperCAmelCase = [ignore]
UpperCAmelCase = 0
for name, mod in model.named_modules():
if not hasattr(__A , "weight" ):
continue
UpperCAmelCase = max(__A , len(__A ) )
for name, mod in model.named_modules():
UpperCAmelCase = getattr(__A , "_input_quantizer" , __A )
UpperCAmelCase = getattr(__A , "_weight_quantizer" , __A )
if not hasattr(__A , "weight" ):
continue
if type(__A ) in ignore:
continue
if [True for s in ignore if type(__A ) is str and s in name]:
continue
UpperCAmelCase = F"Act:{input_q.extra_repr()}"
UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}"
UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}"
if len(__A ) <= line_width:
logger.info(__A )
else:
logger.info(F"{name:{name_width}} {act_str}" )
logger.info(F"{' ':{name_width}} {wgt_str}" )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for name, mod in model.named_modules():
if isinstance(__A , pytorch_quantization.nn.TensorQuantizer ):
print(F"{name:80} {mod}" )
count += 1
print(F"{count} TensorQuantizers found in model" )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
UpperCAmelCase = getattr(__A , __A , __A )
if quantizer_mod is not None:
assert hasattr(__A , __A )
setattr(__A , __A , __A )
else:
logger.warning(F"{name} has no {quantizer}" )
def _lowerCAmelCase( __A , __A , __A="both" , **__A ):
UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
if which in ["input", "both"]:
set_quantizer(__A , __A , "_input_quantizer" , __A , __A )
if which in ["weight", "both"]:
set_quantizer(__A , __A , "_weight_quantizer" , __A , __A )
logger.info(__A )
def _lowerCAmelCase( __A , __A , **__A ):
for name, mod in model.named_modules():
if hasattr(__A , "_input_quantizer" ) or hasattr(__A , "_weight_quantizer" ):
for n in names:
if re.search(__A , __A ):
set_quantizers(__A , __A , **__A )
elif name.endswith("_quantizer" ):
for n in names:
if re.search(__A , __A ):
UpperCAmelCase = F"Warning: changing {name:{name_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
setattr(__A , __A , __A )
logger.info(__A )
| 1 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase__ = "▁"
lowerCAmelCase__ = {"vocab_file": "spiece.model"}
lowerCAmelCase__ = {
"vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}
}
lowerCAmelCase__ = {
"google/pegasus-xsum": 512,
}
lowerCAmelCase__ = logging.get_logger(__name__)
class __magic_name__ ( _snake_case ):
UpperCAmelCase = VOCAB_FILES_NAMES
UpperCAmelCase = VOCAB_FILES_NAMES
UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase = ["""input_ids""", """attention_mask"""]
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple="<pad>" , lowerCAmelCase__ : List[str]="</s>" , lowerCAmelCase__ : Union[str, Any]="<unk>" , lowerCAmelCase__ : Tuple="<mask_2>" , lowerCAmelCase__ : int="<mask_1>" , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : List[Any]=1_0_3 , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> None:
UpperCAmelCase = offset
if additional_special_tokens is not None:
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError(
f"additional_special_tokens should be of type {type(lowerCAmelCase__ )}, but is"
f" {type(lowerCAmelCase__ )}" )
UpperCAmelCase = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f"<unk_{i}>" for i in range(len(lowerCAmelCase__ ) , self.offset - 1 )
]
if len(set(lowerCAmelCase__ ) ) != len(lowerCAmelCase__ ):
raise ValueError(
"Please make sure that the provided additional_special_tokens do not contain an incorrectly"
f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." )
UpperCAmelCase = additional_special_tokens_extended
else:
UpperCAmelCase = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )]
UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token_sent=lowerCAmelCase__ , offset=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , )
UpperCAmelCase = mask_token_sent
UpperCAmelCase = vocab_file
UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase__ )
# add special tokens to encoder dict
UpperCAmelCase = {
0: self.pad_token,
1: self.eos_token,
}
if self.mask_token_sent is not None:
self.encoder.update(
{
2: self.mask_token_sent,
3: self.mask_token,
} )
if self.offset > 0:
# entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102
# mask_token_sent is already added to list -> so start at 1
self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} )
UpperCAmelCase = {v: k for k, v in self.encoder.items()}
@property
def _UpperCamelCase ( self : List[Any] ) -> int:
return len(self.sp_model ) + self.offset
def _UpperCamelCase ( self : str ) -> Dict[str, int]:
UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Union[str, Any] ) -> List[Any]:
UpperCAmelCase = self.__dict__.copy()
UpperCAmelCase = None
return state
def __setstate__( self : List[Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
UpperCAmelCase = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
UpperCAmelCase = {}
UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : str ) -> List[str]:
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : str ) -> int:
if token in self.decoder:
return self.decoder[token]
elif token in self.added_tokens_decoder:
return self.added_tokens_decoder[token]
UpperCAmelCase = self.sp_model.piece_to_id(lowerCAmelCase__ )
return sp_id + self.offset
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : int ) -> str:
if index in self.encoder:
return self.encoder[index]
elif index in self.added_tokens_encoder:
return self.added_tokens_encoder[index]
else:
UpperCAmelCase = self.sp_model.IdToPiece(index - self.offset )
return token
def _UpperCamelCase ( self : str , lowerCAmelCase__ : Optional[int] ) -> str:
UpperCAmelCase = []
UpperCAmelCase = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(lowerCAmelCase__ ) + token
UpperCAmelCase = []
else:
current_sub_tokens.append(lowerCAmelCase__ )
out_string += self.sp_model.decode(lowerCAmelCase__ )
return out_string.strip()
def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : int=False ) -> int:
return 1
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Any ) -> str:
UpperCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def _UpperCamelCase ( self : int , lowerCAmelCase__ : List , lowerCAmelCase__ : Optional[List] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
if already_has_special_tokens:
return self._special_token_mask(lowerCAmelCase__ )
elif token_ids_a is None:
return self._special_token_mask(lowerCAmelCase__ ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int=None ) -> List[int]:
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def _UpperCamelCase ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
UpperCAmelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , "wb" ) as fi:
UpperCAmelCase = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,)
| 715 |
def _lowerCAmelCase( __A ):
assert column_title.isupper()
UpperCAmelCase = 0
UpperCAmelCase = len(__A ) - 1
UpperCAmelCase = 0
while index >= 0:
UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , __A )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 0 |
# flake8: noqa
# Lint as: python3
lowerCAmelCase__ = [
"VerificationMode",
"Version",
"disable_progress_bar",
"enable_progress_bar",
"is_progress_bar_enabled",
"experimental",
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 716 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
lowerCAmelCase__ = get_tests_dir("fixtures")
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
# A mock response for an HTTP head request to emulate server down
UpperCAmelCase = mock.Mock()
UpperCAmelCase = 5_0_0
UpperCAmelCase = {}
UpperCAmelCase = HTTPError
UpperCAmelCase = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request" , return_value=lowerCAmelCase__ ) as mock_head:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# This check we did call the fake head request
mock_head.assert_called()
def _UpperCamelCase ( self : List[Any] ) -> Dict:
# This test is for deprecated behavior and can be removed in v5
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" )
@is_staging_test
class __magic_name__ ( unittest.TestCase ):
@classmethod
def _UpperCamelCase ( cls : List[str] ) -> List[Any]:
UpperCAmelCase = TOKEN
HfFolder.save_token(lowerCAmelCase__ )
@classmethod
def _UpperCamelCase ( cls : Optional[int] ) -> Union[str, Any]:
try:
delete_repo(token=cls._token , repo_id="test-feature-extractor" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" )
except HTTPError:
pass
def _UpperCamelCase ( self : Any ) -> Any:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="test-feature-extractor" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : List[Any] ) -> Tuple:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Dict ) -> List[str]:
CustomFeatureExtractor.register_for_auto_class()
UpperCAmelCase = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , )
UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowerCAmelCase__ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
| 1 | 0 |
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def _lowerCAmelCase( __A ):
monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() )
@pytest.fixture
def _lowerCAmelCase( __A ):
class __magic_name__ :
def __init__( self : Optional[int] , lowerCAmelCase__ : int ) -> int:
UpperCAmelCase = metric_id
class __magic_name__ :
UpperCAmelCase = [MetricMock(_snake_case ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]]
def _UpperCamelCase ( self : List[str] ) -> Dict:
return self._metrics
monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() )
@pytest.mark.parametrize(
"func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
if "tmp_path" in args:
UpperCAmelCase = tuple(arg if arg != "tmp_path" else tmp_path for arg in args )
with pytest.warns(__A , match="https://huggingface.co/docs/evaluate" ):
func(*__A )
| 717 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
lowerCAmelCase__ = "src/diffusers"
# Matches is_xxx_available()
lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
lowerCAmelCase__ = "\n{0} = None\n"
lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n"
lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
def _lowerCAmelCase( __A ):
UpperCAmelCase = _re_backend.findall(__A )
if len(__A ) == 0:
return None
return "_and_".join(__A )
def _lowerCAmelCase( ):
with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCAmelCase = 0
UpperCAmelCase = {}
# Go through the end of the file
while line_index < len(__A ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCAmelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("else:" ):
line_index += 1
line_index += 1
UpperCAmelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(__A ) and len(lines[line_index] ) > 1:
UpperCAmelCase = lines[line_index]
UpperCAmelCase = _re_single_line_import.search(__A )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__A ) > 0:
UpperCAmelCase = objects
else:
line_index += 1
return backend_specific_objects
def _lowerCAmelCase( __A , __A ):
if name.isupper():
return DUMMY_CONSTANT.format(__A )
elif name.islower():
return DUMMY_FUNCTION.format(__A , __A )
else:
return DUMMY_CLASS.format(__A , __A )
def _lowerCAmelCase( __A=None ):
if backend_specific_objects is None:
UpperCAmelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCAmelCase = {}
for backend, objects in backend_specific_objects.items():
UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]"
UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] )
UpperCAmelCase = dummy_file
return dummy_files
def _lowerCAmelCase( __A=False ):
UpperCAmelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCAmelCase = {"torch": "pt"}
# Locate actual dummy modules and read their content.
UpperCAmelCase = os.path.join(__A , "utils" )
UpperCAmelCase = {
backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" )
for backend in dummy_files.keys()
}
UpperCAmelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__A ):
with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.read()
else:
UpperCAmelCase = ""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main "
"__init__ has new objects." )
with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"The main __init__ has objects that are not present in "
F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` "
"to fix this." )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCAmelCase__ = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 | 0 |
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __magic_name__ ( unittest.TestCase ):
@parameterized.expand([(None,), ("foo.json",)] )
def _UpperCamelCase ( self : str , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]:
UpperCAmelCase = GenerationConfig(
do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowerCAmelCase__ , config_name=lowerCAmelCase__ )
UpperCAmelCase = GenerationConfig.from_pretrained(lowerCAmelCase__ , config_name=lowerCAmelCase__ )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , lowerCAmelCase__ )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 5_0 )
self.assertEqual(loaded_config.max_length , 2_0 )
self.assertEqual(loaded_config.max_time , lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> Optional[Any]:
UpperCAmelCase = AutoConfig.from_pretrained("gpt2" )
UpperCAmelCase = GenerationConfig.from_model_config(lowerCAmelCase__ )
UpperCAmelCase = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def _UpperCamelCase ( self : int ) -> int:
UpperCAmelCase = GenerationConfig()
UpperCAmelCase = {
"max_new_tokens": 1_0_2_4,
"foo": "bar",
}
UpperCAmelCase = copy.deepcopy(lowerCAmelCase__ )
UpperCAmelCase = generation_config.update(**lowerCAmelCase__ )
# update_kwargs was not modified (no side effects)
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(lowerCAmelCase__ , {"foo": "bar"} )
def _UpperCamelCase ( self : List[Any] ) -> Dict:
UpperCAmelCase = GenerationConfig()
UpperCAmelCase = "bar"
with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir:
generation_config.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase = GenerationConfig.from_pretrained(lowerCAmelCase__ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , "bar" )
UpperCAmelCase = GenerationConfig.from_model_config(lowerCAmelCase__ )
assert not hasattr(lowerCAmelCase__ , "foo" ) # no new kwargs should be initialized if from config
def _UpperCamelCase ( self : Tuple ) -> Dict:
UpperCAmelCase = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , lowerCAmelCase__ )
self.assertEqual(default_config.num_beams , 1 )
UpperCAmelCase = GenerationConfig(
do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , lowerCAmelCase__ )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase = GenerationConfig.from_pretrained(lowerCAmelCase__ , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , lowerCAmelCase__ )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __magic_name__ ( unittest.TestCase ):
@classmethod
def _UpperCamelCase ( cls : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase = TOKEN
HfFolder.save_token(lowerCAmelCase__ )
@classmethod
def _UpperCamelCase ( cls : List[str] ) -> int:
try:
delete_repo(token=cls._token , repo_id="test-generation-config" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org" )
except HTTPError:
pass
def _UpperCamelCase ( self : List[Any] ) -> Any:
UpperCAmelCase = GenerationConfig(
do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("test-generation-config" , use_auth_token=self._token )
UpperCAmelCase = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-generation-config" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowerCAmelCase__ , repo_id="test-generation-config" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Any ) -> Dict:
UpperCAmelCase = GenerationConfig(
do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token )
UpperCAmelCase = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowerCAmelCase__ , repo_id="valid_org/test-generation-config-org" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
| 718 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class __magic_name__ ( _snake_case , _snake_case ):
UpperCAmelCase = """convnextv2"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]:
super().__init__(**lowerCAmelCase__ )
UpperCAmelCase = num_channels
UpperCAmelCase = patch_size
UpperCAmelCase = num_stages
UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes
UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths
UpperCAmelCase = hidden_act
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = drop_path_rate
UpperCAmelCase = image_size
UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )]
UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
| 1 | 0 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
lowerCAmelCase__ = {
"vocab_file": {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json",
"allenai/longformer-large-4096": (
"https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json"
),
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json"
),
},
"merges_file": {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt",
"allenai/longformer-large-4096": (
"https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt"
),
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt"
),
},
}
lowerCAmelCase__ = {
"allenai/longformer-base-4096": 4096,
"allenai/longformer-large-4096": 4096,
"allenai/longformer-large-4096-finetuned-triviaqa": 4096,
"allenai/longformer-base-4096-extra.pos.embd.only": 4096,
"allenai/longformer-large-4096-extra.pos.embd.only": 4096,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def _lowerCAmelCase( ):
UpperCAmelCase = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
UpperCAmelCase = bs[:]
UpperCAmelCase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(__A )
cs.append(2**8 + n )
n += 1
UpperCAmelCase = [chr(__A ) for n in cs]
return dict(zip(__A , __A ) )
def _lowerCAmelCase( __A ):
UpperCAmelCase = set()
UpperCAmelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase = char
return pairs
class __magic_name__ ( _snake_case ):
UpperCAmelCase = VOCAB_FILES_NAMES
UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase = ["""input_ids""", """attention_mask"""]
def __init__( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple="replace" , lowerCAmelCase__ : str="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Dict="<s>" , lowerCAmelCase__ : Dict="<unk>" , lowerCAmelCase__ : Optional[Any]="<pad>" , lowerCAmelCase__ : int="<mask>" , lowerCAmelCase__ : str=False , **lowerCAmelCase__ : List[Any] , ) -> List[str]:
UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , )
with open(lowerCAmelCase__ , encoding="utf-8" ) as vocab_handle:
UpperCAmelCase = json.load(lowerCAmelCase__ )
UpperCAmelCase = {v: k for k, v in self.encoder.items()}
UpperCAmelCase = errors # how to handle errors in decoding
UpperCAmelCase = bytes_to_unicode()
UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCAmelCase__ , encoding="utf-8" ) as merges_handle:
UpperCAmelCase = merges_handle.read().split("\n" )[1:-1]
UpperCAmelCase = [tuple(merge.split() ) for merge in bpe_merges]
UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
UpperCAmelCase = {}
UpperCAmelCase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCAmelCase = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
def _UpperCamelCase ( self : List[Any] ) -> Optional[int]:
return len(self.encoder )
def _UpperCamelCase ( self : Optional[int] ) -> str:
return dict(self.encoder , **self.added_tokens_encoder )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Optional[int] ) -> int:
if token in self.cache:
return self.cache[token]
UpperCAmelCase = tuple(lowerCAmelCase__ )
UpperCAmelCase = get_pairs(lowerCAmelCase__ )
if not pairs:
return token
while True:
UpperCAmelCase = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
UpperCAmelCase , UpperCAmelCase = bigram
UpperCAmelCase = []
UpperCAmelCase = 0
while i < len(lowerCAmelCase__ ):
try:
UpperCAmelCase = word.index(lowerCAmelCase__ , lowerCAmelCase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCAmelCase = j
if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCAmelCase = tuple(lowerCAmelCase__ )
UpperCAmelCase = new_word
if len(lowerCAmelCase__ ) == 1:
break
else:
UpperCAmelCase = get_pairs(lowerCAmelCase__ )
UpperCAmelCase = " ".join(lowerCAmelCase__ )
UpperCAmelCase = word
return word
def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : List[str] ) -> str:
UpperCAmelCase = []
for token in re.findall(self.pat , lowerCAmelCase__ ):
UpperCAmelCase = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) )
return bpe_tokens
def _UpperCamelCase ( self : str , lowerCAmelCase__ : List[str] ) -> str:
return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) )
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Dict ) -> Tuple:
return self.decoder.get(lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Dict ) -> Tuple:
UpperCAmelCase = "".join(lowerCAmelCase__ )
UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _UpperCamelCase ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
UpperCAmelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + "\n" )
UpperCAmelCase = 0
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
UpperCAmelCase = token_index
writer.write(" ".join(lowerCAmelCase__ ) + "\n" )
index += 1
return vocab_file, merge_file
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase = [self.cls_token_id]
UpperCAmelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _UpperCamelCase ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1]
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase = [self.sep_token_id]
UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _UpperCamelCase ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]=False , **lowerCAmelCase__ : List[Any] ) -> str:
UpperCAmelCase = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()):
UpperCAmelCase = " " + text
return (text, kwargs)
| 719 |
lowerCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCAmelCase__ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 1 | 0 |
import pytest
import datasets
# Import fixture modules as plugins
lowerCAmelCase__ = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"]
def _lowerCAmelCase( __A , __A ):
# Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit")
for item in items:
if any(marker in item.keywords for marker in ["integration", "unit"] ):
continue
item.add_marker(pytest.mark.unit )
def _lowerCAmelCase( __A ):
config.addinivalue_line("markers" , "torchaudio_latest: mark test to run with torchaudio>=0.12" )
@pytest.fixture(autouse=__A )
def _lowerCAmelCase( __A , __A ):
# test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work?
UpperCAmelCase = tmp_path_factory.getbasetemp() / "cache"
UpperCAmelCase = test_hf_cache_home / "datasets"
UpperCAmelCase = test_hf_cache_home / "metrics"
UpperCAmelCase = test_hf_cache_home / "modules"
monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" , str(__A ) )
monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" , str(__A ) )
monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" , str(__A ) )
UpperCAmelCase = test_hf_datasets_cache / "downloads"
monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" , str(__A ) )
UpperCAmelCase = test_hf_datasets_cache / "downloads" / "extracted"
monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(__A ) )
@pytest.fixture(autouse=__A , scope="session" )
def _lowerCAmelCase( ):
datasets.disable_progress_bar()
@pytest.fixture(autouse=__A )
def _lowerCAmelCase( __A ):
# don't take tests into account when counting downloads
monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" , __A )
@pytest.fixture
def _lowerCAmelCase( __A ):
# Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0
# To be removed once SQLAlchemy 2.0 supported
monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" , __A )
| 720 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = KandinskyInpaintPipeline
UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
UpperCAmelCase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
UpperCAmelCase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCAmelCase = False
@property
def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
return 3_2
@property
def _UpperCamelCase ( self : int ) -> List[Any]:
return 3_2
@property
def _UpperCamelCase ( self : List[Any] ) -> List[Any]:
return self.time_input_dim
@property
def _UpperCamelCase ( self : Tuple ) -> Tuple:
return self.time_input_dim * 4
@property
def _UpperCamelCase ( self : Any ) -> Optional[int]:
return 1_0_0
@property
def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]:
UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" )
return tokenizer
@property
def _UpperCamelCase ( self : int ) -> Dict:
torch.manual_seed(0 )
UpperCAmelCase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , )
UpperCAmelCase = MultilingualCLIP(lowerCAmelCase__ )
UpperCAmelCase = text_encoder.eval()
return text_encoder
@property
def _UpperCamelCase ( self : Dict ) -> Optional[int]:
torch.manual_seed(0 )
UpperCAmelCase = {
"in_channels": 9,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase = UNetaDConditionModel(**lowerCAmelCase__ )
return model
@property
def _UpperCamelCase ( self : str ) -> Optional[Any]:
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _UpperCamelCase ( self : Dict ) -> List[Any]:
torch.manual_seed(0 )
UpperCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def _UpperCamelCase ( self : Tuple ) -> Any:
UpperCAmelCase = self.dummy_text_encoder
UpperCAmelCase = self.dummy_tokenizer
UpperCAmelCase = self.dummy_unet
UpperCAmelCase = self.dummy_movq
UpperCAmelCase = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , )
UpperCAmelCase = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0 ) -> str:
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ )
# create init_image
UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) )
# create mask
UpperCAmelCase = np.ones((6_4, 6_4) , dtype=np.floataa )
UpperCAmelCase = 0
if str(lowerCAmelCase__ ).startswith("mps" ):
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
else:
UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
UpperCAmelCase = {
"prompt": "horse",
"image": init_image,
"mask_image": mask,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 6_4,
"width": 6_4,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"output_type": "np",
}
return inputs
def _UpperCamelCase ( self : Dict ) -> List[str]:
UpperCAmelCase = "cpu"
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ )
UpperCAmelCase = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) )
UpperCAmelCase = output.images
UpperCAmelCase = pipe(
**self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0]
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
print(f"image.shape {image.shape}" )
assert image.shape == (1, 6_4, 6_4, 3)
UpperCAmelCase = np.array(
[0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def _UpperCamelCase ( self : str ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : str ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase ( self : Tuple ) -> int:
UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" )
UpperCAmelCase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa )
UpperCAmelCase = 0
UpperCAmelCase = "a hat"
UpperCAmelCase = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa )
pipe_prior.to(lowerCAmelCase__ )
UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa )
UpperCAmelCase = pipeline.to(lowerCAmelCase__ )
pipeline.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase , UpperCAmelCase = pipe_prior(
lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase = pipeline(
lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , )
UpperCAmelCase = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
| 1 | 0 |
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name
class __magic_name__ ( _snake_case , _snake_case ):
@register_to_config
def __init__( self : Optional[Any] , lowerCAmelCase__ : bool , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None ) -> Optional[int]:
super().__init__()
UpperCAmelCase = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
UpperCAmelCase = torch.zeros(lowerCAmelCase__ , lowerCAmelCase__ )
else:
UpperCAmelCase = None
UpperCAmelCase = torch.nn.Parameter(lowerCAmelCase__ )
class __magic_name__ ( _snake_case ):
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
def __init__( self : str , lowerCAmelCase__ : VQModel , lowerCAmelCase__ : CLIPTextModel , lowerCAmelCase__ : CLIPTokenizer , lowerCAmelCase__ : TransformeraDModel , lowerCAmelCase__ : VQDiffusionScheduler , lowerCAmelCase__ : LearnedClassifierFreeSamplingEmbeddings , ) -> int:
super().__init__()
self.register_modules(
vqvae=lowerCAmelCase__ , transformer=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , learned_classifier_free_sampling_embeddings=lowerCAmelCase__ , )
def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Union[str, Any]:
UpperCAmelCase = len(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else 1
# get prompt text embeddings
UpperCAmelCase = self.tokenizer(
lowerCAmelCase__ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , )
UpperCAmelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
UpperCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length]
UpperCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
UpperCAmelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=lowerCAmelCase__ )
# duplicate text embeddings for each generation per prompt
UpperCAmelCase = prompt_embeds.repeat_interleave(lowerCAmelCase__ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
UpperCAmelCase = self.learned_classifier_free_sampling_embeddings.embeddings
UpperCAmelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(lowerCAmelCase__ , 1 , 1 )
else:
UpperCAmelCase = [""] * batch_size
UpperCAmelCase = text_input_ids.shape[-1]
UpperCAmelCase = self.tokenizer(
lowerCAmelCase__ , padding="max_length" , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" , )
UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
UpperCAmelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=lowerCAmelCase__ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCAmelCase = negative_prompt_embeds.shape[1]
UpperCAmelCase = negative_prompt_embeds.repeat(1 , lowerCAmelCase__ , 1 )
UpperCAmelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowerCAmelCase__ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCAmelCase = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self : Optional[Any] , lowerCAmelCase__ : Union[str, List[str]] , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 5.0 , lowerCAmelCase__ : float = 1.0 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[str] = "pil" , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase__ : int = 1 , ) -> Union[ImagePipelineOutput, Tuple]:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = 1
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = len(lowerCAmelCase__ )
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase__ )}" )
UpperCAmelCase = batch_size * num_images_per_prompt
UpperCAmelCase = guidance_scale > 1.0
UpperCAmelCase = self._encode_prompt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(lowerCAmelCase__ )}." )
# get the initial completely masked latents unless the user supplied it
UpperCAmelCase = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
UpperCAmelCase = self.transformer.num_vector_embeds - 1
UpperCAmelCase = torch.full(lowerCAmelCase__ , lowerCAmelCase__ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
"Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,"
f" {self.transformer.num_vector_embeds - 1} (inclusive)." )
UpperCAmelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(lowerCAmelCase__ , device=self.device )
UpperCAmelCase = self.scheduler.timesteps.to(self.device )
UpperCAmelCase = latents
for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ):
# expand the sample if we are doing classifier free guidance
UpperCAmelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
UpperCAmelCase = self.transformer(lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , timestep=lowerCAmelCase__ ).sample
if do_classifier_free_guidance:
UpperCAmelCase , UpperCAmelCase = model_output.chunk(2 )
UpperCAmelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(lowerCAmelCase__ , dim=1 , keepdim=lowerCAmelCase__ )
UpperCAmelCase = self.truncate(lowerCAmelCase__ , lowerCAmelCase__ )
# remove `log(0)`'s (`-inf`s)
UpperCAmelCase = model_output.clamp(-7_0 )
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase = self.scheduler.step(lowerCAmelCase__ , timestep=lowerCAmelCase__ , sample=lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = self.vqvae.config.vq_embed_dim
UpperCAmelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
UpperCAmelCase = self.vqvae.quantize.get_codebook_entry(lowerCAmelCase__ , shape=lowerCAmelCase__ )
UpperCAmelCase = self.vqvae.decode(lowerCAmelCase__ , force_not_quantize=lowerCAmelCase__ ).sample
UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase = self.numpy_to_pil(lowerCAmelCase__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCAmelCase__ )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : float ) -> torch.FloatTensor:
UpperCAmelCase , UpperCAmelCase = torch.sort(lowerCAmelCase__ , 1 , descending=lowerCAmelCase__ )
UpperCAmelCase = torch.exp(lowerCAmelCase__ )
UpperCAmelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
UpperCAmelCase = torch.full_like(keep_mask[:, 0:1, :] , lowerCAmelCase__ )
UpperCAmelCase = torch.cat((all_true, keep_mask) , dim=1 )
UpperCAmelCase = keep_mask[:, :-1, :]
UpperCAmelCase = keep_mask.gather(1 , indices.argsort(1 ) )
UpperCAmelCase = log_p_x_0.clone()
UpperCAmelCase = -torch.inf # -inf = log(0)
return rv
| 721 |
def _lowerCAmelCase( __A , __A ):
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _lowerCAmelCase( __A , __A=0 ):
return sorted(__A , key=lambda __A : x[column] )
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(points_counts - 1 ):
for j in range(i + 1 , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(min(6 , points_counts - 1 ) , __A ):
for j in range(max(0 , i - 6 ) , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A ):
# base case
if points_counts <= 3:
return dis_between_closest_pair(__A , __A )
# recursion
UpperCAmelCase = points_counts // 2
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[:mid] , __A )
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[mid:] , points_counts - mid )
UpperCAmelCase = min(__A , __A )
UpperCAmelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(__A )
UpperCAmelCase = dis_between_closest_in_strip(
__A , len(__A ) , __A )
return min(__A , __A )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = column_based_sort(__A , column=0 )
UpperCAmelCase = column_based_sort(__A , column=1 )
return (
closest_pair_of_points_sqr(
__A , __A , __A )
) ** 0.5
if __name__ == "__main__":
lowerCAmelCase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
print("Distance:", closest_pair_of_points(points, len(points)))
| 1 | 0 |
from typing import Any
class __magic_name__ :
def __init__( self : int , lowerCAmelCase__ : Any ) -> Tuple:
UpperCAmelCase = data
UpperCAmelCase = None
class __magic_name__ :
def __init__( self : Tuple ) -> Tuple:
UpperCAmelCase = None
def _UpperCamelCase ( self : Dict ) -> List[str]:
UpperCAmelCase = self.head
while temp is not None:
print(temp.data , end=" " )
UpperCAmelCase = temp.next
print()
def _UpperCamelCase ( self : str , lowerCAmelCase__ : Any ) -> Optional[int]:
UpperCAmelCase = Node(lowerCAmelCase__ )
UpperCAmelCase = self.head
UpperCAmelCase = new_node
def _UpperCamelCase ( self : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : int ) -> str:
if node_data_a == node_data_a:
return
else:
UpperCAmelCase = self.head
while node_a is not None and node_a.data != node_data_a:
UpperCAmelCase = node_a.next
UpperCAmelCase = self.head
while node_a is not None and node_a.data != node_data_a:
UpperCAmelCase = node_a.next
if node_a is None or node_a is None:
return
UpperCAmelCase , UpperCAmelCase = node_a.data, node_a.data
if __name__ == "__main__":
lowerCAmelCase__ = LinkedList()
for i in range(5, 0, -1):
ll.push(i)
ll.print_list()
ll.swap_nodes(1, 4)
print("After swapping")
ll.print_list()
| 700 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class __magic_name__ :
def __init__( self : Optional[int] ) -> Optional[Any]:
UpperCAmelCase = ""
UpperCAmelCase = ""
UpperCAmelCase = []
UpperCAmelCase = 0
UpperCAmelCase = 2_5_6
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> List[str]:
UpperCAmelCase = cva.imread(lowerCAmelCase__ , 0 )
UpperCAmelCase = copy.deepcopy(self.img )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="x" )
UpperCAmelCase = np.sum(lowerCAmelCase__ )
for i in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase = x[i] / self.k
self.sk += prk
UpperCAmelCase = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase = int(last % last )
UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(lowerCAmelCase__ )
UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase = self.last_list[num]
cva.imwrite("output_data/output.jpg" , self.img )
def _UpperCamelCase ( self : str ) -> int:
plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] )
def _UpperCamelCase ( self : Dict ) -> Optional[Any]:
cva.imshow("Output-Image" , self.img )
cva.imshow("Input-Image" , self.original_image )
cva.waitKey(5_0_0_0 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowerCAmelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg")
lowerCAmelCase__ = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 1 | 0 |
import inspect
import unittest
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : Dict ) -> Tuple:
try:
import diffusers # noqa: F401
except ImportError:
assert False
def _UpperCamelCase ( self : Tuple ) -> List[Any]:
import diffusers
from diffusers.dependency_versions_table import deps
UpperCAmelCase = inspect.getmembers(lowerCAmelCase__ , inspect.isclass )
for cls_name, cls_module in all_classes:
if "dummy_" in cls_module.__module__:
for backend in cls_module._backends:
if backend == "k_diffusion":
UpperCAmelCase = "k-diffusion"
elif backend == "invisible_watermark":
UpperCAmelCase = "invisible-watermark"
assert backend in deps, f"{backend} is not in the deps table!"
| 701 |
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = LEDTokenizer
UpperCAmelCase = LEDTokenizerFast
UpperCAmelCase = True
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
super().setUp()
UpperCAmelCase = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
UpperCAmelCase = {"unk_token": "<unk>"}
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : str , **lowerCAmelCase__ : str ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
return "lower newer", "lower newer"
@cached_property
def _UpperCamelCase ( self : Dict ) -> str:
return LEDTokenizer.from_pretrained("allenai/led-base-16384" )
@cached_property
def _UpperCamelCase ( self : int ) -> Tuple:
return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" )
@require_torch
def _UpperCamelCase ( self : Tuple ) -> List[str]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
UpperCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIn("input_ids" , lowerCAmelCase__ )
self.assertIn("attention_mask" , lowerCAmelCase__ )
self.assertNotIn("labels" , lowerCAmelCase__ )
self.assertNotIn("decoder_attention_mask" , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : int ) -> int:
UpperCAmelCase = [
"Summary of the text.",
"Another summary.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , max_length=3_2 , padding="max_length" , return_tensors="pt" )
self.assertEqual(3_2 , targets["input_ids"].shape[1] )
@require_torch
def _UpperCamelCase ( self : Any ) -> int:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(
["I am a small frog" * 1_0_2_4, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) )
@require_torch
def _UpperCamelCase ( self : Dict ) -> Tuple:
UpperCAmelCase = ["A long paragraph for summarization."]
UpperCAmelCase = [
"Summary of the text.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = inputs["input_ids"]
UpperCAmelCase = targets["input_ids"]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = ["Summary of the text.", "Another summary."]
UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ )
UpperCAmelCase = [[0] * len(lowerCAmelCase__ ) for x in encoded_output["input_ids"]]
UpperCAmelCase = tokenizer.pad(lowerCAmelCase__ )
self.assertSequenceEqual(outputs["global_attention_mask"] , lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] ) -> int:
pass
def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = "A, <mask> AllenNLP sentence."
UpperCAmelCase = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
UpperCAmelCase = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
| 1 | 0 |
import unittest
from transformers import AutoTokenizer, FalconConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
)
class __magic_name__ :
def __init__( self : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[Any]=9_9 , lowerCAmelCase__ : Union[str, Any]=3_2 , lowerCAmelCase__ : Optional[Any]=5 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Tuple=3_7 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : List[str]=5_1_2 , lowerCAmelCase__ : Any=1_6 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Optional[int]=None , ) -> Dict:
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_input_mask
UpperCAmelCase = use_token_type_ids
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = type_sequence_label_size
UpperCAmelCase = initializer_range
UpperCAmelCase = num_labels
UpperCAmelCase = num_choices
UpperCAmelCase = scope
def _UpperCamelCase ( self : int ) -> Tuple:
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = None
if self.use_input_mask:
UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self : List[Any] ) -> Tuple:
return FalconConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=lowerCAmelCase__ , )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ) -> Dict:
UpperCAmelCase = FalconModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
UpperCAmelCase = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , ) -> Tuple:
UpperCAmelCase = True
UpperCAmelCase = FalconModel(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , )
UpperCAmelCase = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , )
UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , ) -> str:
UpperCAmelCase = FalconForCausalLM(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict , ) -> Optional[Any]:
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = FalconForCausalLM(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
# first forward pass
UpperCAmelCase = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ , )
UpperCAmelCase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCAmelCase = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0]
UpperCAmelCase = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0]
# select random slice
UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) )
def _UpperCamelCase ( self : List[str] ) -> str:
UpperCAmelCase = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) = config_and_inputs
UpperCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class __magic_name__ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ):
UpperCAmelCase = (
(
FalconModel,
FalconForCausalLM,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconForQuestionAnswering,
)
if is_torch_available()
else ()
)
UpperCAmelCase = (FalconForCausalLM,) if is_torch_available() else ()
UpperCAmelCase = (
{
"""feature-extraction""": FalconModel,
"""text-classification""": FalconForSequenceClassification,
"""text-generation""": FalconForCausalLM,
"""question-answering""": FalconForQuestionAnswering,
"""token-classification""": FalconForTokenClassification,
"""zero-shot""": FalconForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCAmelCase = False
UpperCAmelCase = False
def _UpperCamelCase ( self : Any ) -> Dict:
UpperCAmelCase = FalconModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 )
def _UpperCamelCase ( self : List[str] ) -> Any:
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : List[str] ) -> int:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _UpperCamelCase ( self : Any ) -> Union[str, Any]:
UpperCAmelCase , *UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
for alibi in [True, False]:
UpperCAmelCase = alibi
self.model_tester.create_and_check_model(lowerCAmelCase__ , *lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> Dict:
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = 3
UpperCAmelCase = input_dict["input_ids"]
UpperCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase__ )
UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase = FalconForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _UpperCamelCase ( self : Optional[Any] ) -> Any:
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = 3
UpperCAmelCase = "single_label_classification"
UpperCAmelCase = input_dict["input_ids"]
UpperCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase__ )
UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase = FalconForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _UpperCamelCase ( self : List[str] ) -> Any:
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = input_dict["input_ids"]
UpperCAmelCase = FalconForCausalLM(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(lowerCAmelCase__ , use_cache=lowerCAmelCase__ )
UpperCAmelCase = input_ids.shape[0]
UpperCAmelCase = model._convert_to_rw_cache(result.past_key_values )
UpperCAmelCase = model._convert_cache_to_standard_format(lowerCAmelCase__ , lowerCAmelCase__ )
for layer in range(len(lowerCAmelCase__ ) ):
for tensor_idx in range(2 ):
self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 )
self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 )
self.assertTrue(
torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) )
def _UpperCamelCase ( self : List[str] ) -> Dict:
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = 3
UpperCAmelCase = "multi_label_classification"
UpperCAmelCase = input_dict["input_ids"]
UpperCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase__ )
UpperCAmelCase = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase = FalconForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
# Falcon can have different numbers of KV-heads than the number of query heads, so we need
# to override this test to use the right head counts.
for model_class in self.all_generative_model_classes:
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
# If it doesn't support cache, pass the test
if not hasattr(lowerCAmelCase__ , "use_cache" ):
return
UpperCAmelCase = model_class(lowerCAmelCase__ ).to(lowerCAmelCase__ )
if "use_cache" not in inputs:
UpperCAmelCase = True
UpperCAmelCase = model(**lowerCAmelCase__ )
# If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
if "past_key_values" not in outputs:
return
UpperCAmelCase = (
getattr(lowerCAmelCase__ , "decoder_layers" , lowerCAmelCase__ )
or getattr(lowerCAmelCase__ , "num_decoder_layers" , lowerCAmelCase__ )
or config.num_hidden_layers
)
UpperCAmelCase = getattr(lowerCAmelCase__ , "num_kv_heads" , config.num_attention_heads )
UpperCAmelCase = getattr(lowerCAmelCase__ , "d_model" , config.hidden_size )
UpperCAmelCase = embed_dim // num_attention_heads
UpperCAmelCase = outputs["past_key_values"]
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
UpperCAmelCase , UpperCAmelCase = inputs["input_ids"].shape
for i in range(lowerCAmelCase__ ):
if config.new_decoder_architecture:
UpperCAmelCase = config.num_attention_heads
elif config.multi_query:
UpperCAmelCase = 1
self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2
self.assertEqual(
past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
self.assertEqual(
past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
@require_torch
class __magic_name__ ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]:
UpperCAmelCase = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b" )
UpperCAmelCase = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b" )
model.eval()
model.to(lowerCAmelCase__ )
UpperCAmelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCAmelCase__ )
UpperCAmelCase = (
"My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday."
)
UpperCAmelCase = model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=1_9 )
UpperCAmelCase = tokenizer.batch_decode(lowerCAmelCase__ )[0]
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]:
# The big models are way too big for the CI, so we use tiny random models that resemble their
# architectures but with much smaller and fewer layers
for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]:
UpperCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
UpperCAmelCase = FalconForCausalLM.from_pretrained(lowerCAmelCase__ )
model.eval()
model.to(lowerCAmelCase__ )
UpperCAmelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCAmelCase__ )
# We just test that these run without errors - the models are randomly initialized
# and so the actual text outputs will be garbage
model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=4 )
model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=4 )
model.generate(**lowerCAmelCase__ , num_beams=2 , max_new_tokens=4 )
@slow
def _UpperCamelCase ( self : List[str] ) -> Tuple:
# The big models are way too big for the CI, so we use tiny random models that resemble their
# architectures but with much smaller and fewer layers
with torch.no_grad():
for repo in [
"Rocketknight1/falcon-rw-1b",
"Rocketknight1/tiny-random-falcon-7b",
"Rocketknight1/tiny-random-falcon-40b",
]:
UpperCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
UpperCAmelCase = FalconForCausalLM.from_pretrained(lowerCAmelCase__ )
model.eval()
model.to(device=lowerCAmelCase__ )
UpperCAmelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCAmelCase__ )
# Test results are the same with and without cache
UpperCAmelCase = model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=2_0 , use_cache=lowerCAmelCase__ )
UpperCAmelCase = model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=2_0 , use_cache=lowerCAmelCase__ )
self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
| 702 |
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
lowerCAmelCase__ = version.parse(importlib_metadata.version("nltk"))
if NLTK_VERSION >= version.Version("3.6.4"):
from nltk import word_tokenize
lowerCAmelCase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n"
lowerCAmelCase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n"
lowerCAmelCase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
def _UpperCamelCase ( self : int ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[
"https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score",
"https://en.wikipedia.org/wiki/METEOR",
] , )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : List[Any] ) -> Dict:
import nltk
nltk.download("wordnet" )
if NLTK_VERSION >= version.Version("3.6.5" ):
nltk.download("punkt" )
if NLTK_VERSION >= version.Version("3.6.6" ):
nltk.download("omw-1.4" )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=0.9 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Optional[int]=0.5 ) -> Any:
if NLTK_VERSION >= version.Version("3.6.5" ):
UpperCAmelCase = [
meteor_score.single_meteor_score(
word_tokenize(lowerCAmelCase__ ) , word_tokenize(lowerCAmelCase__ ) , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ )
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
else:
UpperCAmelCase = [
meteor_score.single_meteor_score(lowerCAmelCase__ , lowerCAmelCase__ , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ )
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
return {"meteor": np.mean(lowerCAmelCase__ )}
| 1 | 0 |
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
lowerCAmelCase__ : List[str] = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
lowerCAmelCase__ : Tuple = [ord(letter) for letter in string.ascii_lowercase]
lowerCAmelCase__ : Any = {ord(char) for char in VALID_CHARS}
lowerCAmelCase__ : Tuple = ["the", "be", "to", "of", "and", "in", "that", "have"]
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = ""
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
for keychar, cipherchar in zip(cycle(__A ) , __A ):
UpperCAmelCase = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(__A )
return decoded
def _lowerCAmelCase( __A ):
UpperCAmelCase = []
for key in product(__A , repeat=3 ):
UpperCAmelCase = try_key(__A , __A )
if encoded is not None:
possibles.append(__A )
return possibles
def _lowerCAmelCase( __A , __A ):
return [possible for possible in possibles if common_word in possible.lower()]
def _lowerCAmelCase( __A = "p059_cipher.txt" ):
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = Path(__A ).parent.joinpath(__A ).read_text(encoding="utf-8" )
UpperCAmelCase = [int(__A ) for number in data.strip().split("," )]
UpperCAmelCase = filter_valid_chars(__A )
for common_word in COMMON_WORDS:
UpperCAmelCase = filter_common_word(__A , __A )
if len(__A ) == 1:
break
UpperCAmelCase = possibles[0]
return sum(ord(__A ) for char in decoded_text )
if __name__ == "__main__":
print(f"{solution() = }")
| 703 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json",
}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = """lxmert"""
UpperCAmelCase = {}
def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[str]=7_6_8 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : List[Any]=9_5_0_0 , lowerCAmelCase__ : Any=1_6_0_0 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : str=1e-1_2 , lowerCAmelCase__ : str=9 , lowerCAmelCase__ : int=5 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Dict=6.67 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : List[Any] , ) -> Dict:
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = num_qa_labels
UpperCAmelCase = num_object_labels
UpperCAmelCase = num_attr_labels
UpperCAmelCase = l_layers
UpperCAmelCase = x_layers
UpperCAmelCase = r_layers
UpperCAmelCase = visual_feat_dim
UpperCAmelCase = visual_pos_dim
UpperCAmelCase = visual_loss_normalizer
UpperCAmelCase = task_matched
UpperCAmelCase = task_mask_lm
UpperCAmelCase = task_obj_predict
UpperCAmelCase = task_qa
UpperCAmelCase = visual_obj_loss
UpperCAmelCase = visual_attr_loss
UpperCAmelCase = visual_feat_loss
UpperCAmelCase = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers}
super().__init__(**lowerCAmelCase__ )
| 1 | 0 |
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
lowerCAmelCase__ = "pt"
elif is_tf_available():
lowerCAmelCase__ = "tf"
else:
lowerCAmelCase__ = "jax"
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = ByTaTokenizer
UpperCAmelCase = False
def _UpperCamelCase ( self : List[str] ) -> Any:
super().setUp()
UpperCAmelCase = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _UpperCamelCase ( self : Dict ) -> Optional[int]:
return ByTaTokenizer.from_pretrained("google/byt5-small" )
def _UpperCamelCase ( self : Any , **lowerCAmelCase__ : Union[str, Any] ) -> ByTaTokenizer:
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Optional[int]=2_0 , lowerCAmelCase__ : str=5 ) -> Tuple[str, list]:
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for ByT5 because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
UpperCAmelCase = []
for i in range(len(lowerCAmelCase__ ) ):
try:
UpperCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase__ )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
UpperCAmelCase = list(filter(lambda lowerCAmelCase__ : re.match(r"^[ a-zA-Z]+$" , t[1] ) , lowerCAmelCase__ ) )
UpperCAmelCase = list(filter(lambda lowerCAmelCase__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCAmelCase__ ) , lowerCAmelCase__ ) )
if max_length is not None and len(lowerCAmelCase__ ) > max_length:
UpperCAmelCase = toks[:max_length]
if min_length is not None and len(lowerCAmelCase__ ) < min_length and len(lowerCAmelCase__ ) > 0:
while len(lowerCAmelCase__ ) < min_length:
UpperCAmelCase = toks + toks
# toks_str = [t[1] for t in toks]
UpperCAmelCase = [t[0] for t in toks]
# Ensure consistency
UpperCAmelCase = tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ )
if " " not in output_txt and len(lowerCAmelCase__ ) > 1:
UpperCAmelCase = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase__ )
+ " "
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase__ )
)
if with_prefix_space:
UpperCAmelCase = " " + output_txt
UpperCAmelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
return output_txt, output_ids
def _UpperCamelCase ( self : List[Any] ) -> List[str]:
UpperCAmelCase = self.ta_base_tokenizer
UpperCAmelCase = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] )
UpperCAmelCase = tokenizer(["hi", "I went to the gym", ""] )
self.assertListEqual(batch_with_eos_added["input_ids"] , batch_without_eos_added["input_ids"] )
def _UpperCamelCase ( self : int ) -> List[Any]:
UpperCAmelCase = self.ta_base_tokenizer
UpperCAmelCase = "Unicode €."
UpperCAmelCase = tokenizer(lowerCAmelCase__ )
UpperCAmelCase = [8_8, 1_1_3, 1_0_8, 1_0_2, 1_1_4, 1_0_3, 1_0_4, 3_5, 2_2_9, 1_3_3, 1_7_5, 4_9, 1]
self.assertEqual(encoded["input_ids"] , lowerCAmelCase__ )
# decoding
UpperCAmelCase = tokenizer.decode(lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , "Unicode €.</s>" )
UpperCAmelCase = tokenizer("e è é ê ë" )
UpperCAmelCase = [1_0_4, 3_5, 1_9_8, 1_7_1, 3_5, 1_9_8, 1_7_2, 3_5, 1_9_8, 1_7_3, 3_5, 1_9_8, 1_7_4, 1]
self.assertEqual(encoded["input_ids"] , lowerCAmelCase__ )
# decoding
UpperCAmelCase = tokenizer.decode(lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , "e è é ê ë</s>" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "e è é ê ë</s>" )
def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]:
UpperCAmelCase = self.ta_base_tokenizer
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
# fmt: off
UpperCAmelCase = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 1, 0]
# fmt: on
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
if FRAMEWORK != "jax":
UpperCAmelCase = list(batch.input_ids.numpy()[0] )
else:
UpperCAmelCase = list(batch.input_ids.tolist()[0] )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 3_7) , batch.input_ids.shape )
self.assertEqual((2, 3_7) , batch.attention_mask.shape )
def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]:
UpperCAmelCase = self.ta_base_tokenizer
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("input_ids" , lowerCAmelCase__ )
self.assertIn("attention_mask" , lowerCAmelCase__ )
self.assertNotIn("decoder_input_ids" , lowerCAmelCase__ )
self.assertNotIn("decoder_attention_mask" , lowerCAmelCase__ )
def _UpperCamelCase ( self : Tuple ) -> List[Any]:
UpperCAmelCase = self.ta_base_tokenizer
UpperCAmelCase = [
"Summary of the text.",
"Another summary.",
]
UpperCAmelCase = tokenizer(
text_target=lowerCAmelCase__ , max_length=3_2 , padding="max_length" , truncation=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ )
self.assertEqual(3_2 , targets["input_ids"].shape[1] )
def _UpperCamelCase ( self : Optional[Any] ) -> List[Any]:
UpperCAmelCase = self.ta_base_tokenizer
UpperCAmelCase = ["A long paragraph for summarization. </s>"]
UpperCAmelCase = ["Summary of the text. </s>"]
# fmt: off
UpperCAmelCase = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 3_5, 1]
UpperCAmelCase = [8_6, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_2_4, 3_5, 1_1_4, 1_0_5, 3_5, 1_1_9, 1_0_7, 1_0_4, 3_5, 1_1_9, 1_0_4, 1_2_3, 1_1_9, 4_9, 3_5, 1]
# fmt: on
UpperCAmelCase = tokenizer(lowerCAmelCase__ , text_target=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , batch["input_ids"][0] )
self.assertEqual(lowerCAmelCase__ , batch["labels"][0] )
def _UpperCamelCase ( self : List[str] ) -> int:
# safety check on max_len default value so we are sure the test works
UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
self.assertNotEqual(tokenizer.model_max_length , 4_2 )
# Now let's start the test
UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = " He is very happy, UNwant\u00E9d,running"
UpperCAmelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
tokenizer.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ )
UpperCAmelCase = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
shutil.rmtree(lowerCAmelCase__ )
UpperCAmelCase = self.get_tokenizers(model_max_length=4_2 )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = " He is very happy, UNwant\u00E9d,running"
tokenizer.add_tokens(["bim", "bambam"] )
UpperCAmelCase = tokenizer.additional_special_tokens
additional_special_tokens.append("new_additional_special_token" )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
UpperCAmelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
tokenizer.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ )
UpperCAmelCase = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 4_2 )
UpperCAmelCase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ , model_max_length=4_3 )
self.assertEqual(tokenizer.model_max_length , 4_3 )
shutil.rmtree(lowerCAmelCase__ )
def _UpperCamelCase ( self : Any ) -> int:
UpperCAmelCase = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(lowerCAmelCase__ )
with open(os.path.join(lowerCAmelCase__ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file:
UpperCAmelCase = json.load(lowerCAmelCase__ )
with open(os.path.join(lowerCAmelCase__ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file:
UpperCAmelCase = json.load(lowerCAmelCase__ )
UpperCAmelCase = [f"<extra_id_{i}>" for i in range(1_2_5 )]
UpperCAmelCase = added_tokens_extra_ids + [
"an_additional_special_token"
]
UpperCAmelCase = added_tokens_extra_ids + [
"an_additional_special_token"
]
with open(os.path.join(lowerCAmelCase__ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
with open(os.path.join(lowerCAmelCase__ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
UpperCAmelCase = tokenizer_class.from_pretrained(
lowerCAmelCase__ , )
self.assertIn(
"an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
UpperCAmelCase = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=lowerCAmelCase__ )]
UpperCAmelCase = tokenizer_class.from_pretrained(
lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , )
self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens )
self.assertEqual(
["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , )
def _UpperCamelCase ( self : str ) -> Tuple:
UpperCAmelCase = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase = tokenizer_class.from_pretrained(lowerCAmelCase__ )
self.assertTrue(tokenizer.decode([2_5_5] ) == "" )
def _UpperCamelCase ( self : Optional[Any] ) -> Dict:
pass
def _UpperCamelCase ( self : Optional[Any] ) -> Tuple:
pass
def _UpperCamelCase ( self : Dict ) -> List[str]:
pass
def _UpperCamelCase ( self : Optional[int] ) -> int:
pass
def _UpperCamelCase ( self : int ) -> int:
# The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings
# and special added tokens as tokens
UpperCAmelCase = self.get_tokenizers(fast=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
UpperCAmelCase = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"]
UpperCAmelCase = tokenizer.convert_tokens_to_string(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : Optional[int] ) -> List[str]:
UpperCAmelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
UpperCAmelCase = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
UpperCAmelCase = 0
UpperCAmelCase = tokenizer.convert_ids_to_tokens(
lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
for attr in attributes_list:
setattr(lowerCAmelCase__ , attr + "_id" , lowerCAmelCase__ )
self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(getattr(lowerCAmelCase__ , attr + "_id" ) , lowerCAmelCase__ )
setattr(lowerCAmelCase__ , attr + "_id" , lowerCAmelCase__ )
self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(getattr(lowerCAmelCase__ , attr + "_id" ) , lowerCAmelCase__ )
setattr(lowerCAmelCase__ , "additional_special_tokens_ids" , [] )
self.assertListEqual(getattr(lowerCAmelCase__ , "additional_special_tokens" ) , [] )
self.assertListEqual(getattr(lowerCAmelCase__ , "additional_special_tokens_ids" ) , [] )
setattr(lowerCAmelCase__ , "additional_special_tokens_ids" , [token_id_to_test_setters] )
self.assertListEqual(getattr(lowerCAmelCase__ , "additional_special_tokens" ) , [token_to_test_setters] )
self.assertListEqual(getattr(lowerCAmelCase__ , "additional_special_tokens_ids" ) , [token_id_to_test_setters] )
| 704 |
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def _lowerCAmelCase( __A = 100 ):
UpperCAmelCase = 1
UpperCAmelCase = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase = pre_numerator
UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase = cur_numerator
UpperCAmelCase = e_cont * pre_numerator + temp
return sum_digits(__A )
if __name__ == "__main__":
print(f"{solution() = }")
| 1 | 0 |
import os
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen, xsplitext
from ..table import array_cast
from ..utils.py_utils import no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
from .features import FeatureType
lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = False, False, False
@dataclass
class __magic_name__ :
UpperCAmelCase = None
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = None
# Automatically constructed
UpperCAmelCase = """dict"""
UpperCAmelCase = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} )
UpperCAmelCase = field(default="""Audio""" , init=_snake_case , repr=_snake_case )
def __call__( self : List[str] ) -> List[Any]:
return self.pa_type
def _UpperCamelCase ( self : str , lowerCAmelCase__ : Union[str, bytes, dict] ) -> dict:
try:
import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files.
except ImportError as err:
raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
return {"bytes": None, "path": value}
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
return {"bytes": value, "path": None}
elif "array" in value:
# convert the audio array to wav bytes
UpperCAmelCase = BytesIO()
sf.write(lowerCAmelCase__ , value["array"] , value["sampling_rate"] , format="wav" )
return {"bytes": buffer.getvalue(), "path": None}
elif value.get("path" ) is not None and os.path.isfile(value["path"] ):
# we set "bytes": None to not duplicate the data if they're already available locally
if value["path"].endswith("pcm" ):
# "PCM" only has raw audio bytes
if value.get("sampling_rate" ) is None:
# At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate
raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" )
if value.get("bytes" ):
# If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!)
UpperCAmelCase = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7
else:
UpperCAmelCase = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 3_2_7_6_7
UpperCAmelCase = BytesIO(bytes() )
sf.write(lowerCAmelCase__ , lowerCAmelCase__ , value["sampling_rate"] , format="wav" )
return {"bytes": buffer.getvalue(), "path": None}
else:
return {"bytes": None, "path": value.get("path" )}
elif value.get("bytes" ) is not None or value.get("path" ) is not None:
# store the audio bytes, and path is used to infer the audio format using the file extension
return {"bytes": value.get("bytes" ), "path": value.get("path" )}
else:
raise ValueError(
f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." )
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : dict , lowerCAmelCase__ : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict:
if not self.decode:
raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." )
UpperCAmelCase , UpperCAmelCase = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None)
if path is None and file is None:
raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}." )
try:
import librosa
import soundfile as sf
except ImportError as err:
raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err
UpperCAmelCase = xsplitext(lowerCAmelCase__ )[1][1:].lower() if path is not None else None
if not config.IS_OPUS_SUPPORTED and audio_format == "opus":
raise RuntimeError(
"Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, "
"You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " )
elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
raise RuntimeError(
"Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, "
"You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " )
if file is None:
UpperCAmelCase = token_per_repo_id or {}
UpperCAmelCase = path.split("::" )[-1]
try:
UpperCAmelCase = string_to_dict(lowerCAmelCase__ , config.HUB_DATASETS_URL )["repo_id"]
UpperCAmelCase = token_per_repo_id[repo_id]
except (ValueError, KeyError):
UpperCAmelCase = None
with xopen(lowerCAmelCase__ , "rb" , use_auth_token=lowerCAmelCase__ ) as f:
UpperCAmelCase , UpperCAmelCase = sf.read(lowerCAmelCase__ )
else:
UpperCAmelCase , UpperCAmelCase = sf.read(lowerCAmelCase__ )
UpperCAmelCase = array.T
if self.mono:
UpperCAmelCase = librosa.to_mono(lowerCAmelCase__ )
if self.sampling_rate and self.sampling_rate != sampling_rate:
UpperCAmelCase = librosa.resample(lowerCAmelCase__ , orig_sr=lowerCAmelCase__ , target_sr=self.sampling_rate )
UpperCAmelCase = self.sampling_rate
return {"path": path, "array": array, "sampling_rate": sampling_rate}
def _UpperCamelCase ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
from .features import Value
if self.decode:
raise ValueError("Cannot flatten a decoded Audio feature." )
return {
"bytes": Value("binary" ),
"path": Value("string" ),
}
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray:
if pa.types.is_string(storage.type ):
UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() )
UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() )
UpperCAmelCase = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ):
UpperCAmelCase = pa.array([Audio().encode_example(lowerCAmelCase__ ) if x is not None else None for x in storage.to_pylist()] )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("bytes" ) >= 0:
UpperCAmelCase = storage.field("bytes" )
else:
UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() )
if storage.type.get_field_index("path" ) >= 0:
UpperCAmelCase = storage.field("path" )
else:
UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() )
UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() )
return array_cast(lowerCAmelCase__ , self.pa_type )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : pa.StructArray ) -> pa.StructArray:
@no_op_if_value_is_null
def path_to_bytes(lowerCAmelCase__ : List[Any] ):
with xopen(lowerCAmelCase__ , "rb" ) as f:
UpperCAmelCase = f.read()
return bytes_
UpperCAmelCase = pa.array(
[
(path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
UpperCAmelCase = pa.array(
[os.path.basename(lowerCAmelCase__ ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , )
UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() )
return array_cast(lowerCAmelCase__ , self.pa_type )
| 705 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 1 | 0 |
import numpy as np
from PIL import Image
def _lowerCAmelCase( __A , __A , __A ):
UpperCAmelCase = np.array(__A )
if arr.shape[0] != arr.shape[1]:
raise ValueError("The input array is not a square matrix" )
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
# compute the shape of the output matrix
UpperCAmelCase = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
UpperCAmelCase = np.zeros((maxpool_shape, maxpool_shape) )
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
UpperCAmelCase = np.max(arr[i : i + size, j : j + size] )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
UpperCAmelCase = 0
UpperCAmelCase = 0
return updated_arr
def _lowerCAmelCase( __A , __A , __A ):
UpperCAmelCase = np.array(__A )
if arr.shape[0] != arr.shape[1]:
raise ValueError("The input array is not a square matrix" )
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
# compute the shape of the output matrix
UpperCAmelCase = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
UpperCAmelCase = np.zeros((avgpool_shape, avgpool_shape) )
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
UpperCAmelCase = int(np.average(arr[i : i + size, j : j + size] ) )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
UpperCAmelCase = 0
UpperCAmelCase = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name="avgpooling", verbose=True)
# Loading the image
lowerCAmelCase__ = Image.open("path_to_image")
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 706 |
import numpy
# List of input, output pairs
lowerCAmelCase__ = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
lowerCAmelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150))
lowerCAmelCase__ = [2, 4, 1, 5]
lowerCAmelCase__ = len(train_data)
lowerCAmelCase__ = 0.0_0_9
def _lowerCAmelCase( __A , __A="train" ):
return calculate_hypothesis_value(__A , __A ) - output(
__A , __A )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for i in range(len(__A ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def _lowerCAmelCase( __A , __A ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def _lowerCAmelCase( __A , __A ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def _lowerCAmelCase( __A , __A=m ):
UpperCAmelCase = 0
for i in range(__A ):
if index == -1:
summation_value += _error(__A )
else:
summation_value += _error(__A ) * train_data[i][0][index]
return summation_value
def _lowerCAmelCase( __A ):
UpperCAmelCase = summation_of_cost_derivative(__A , __A ) / m
return cost_derivative_value
def _lowerCAmelCase( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCAmelCase = 0.000002
UpperCAmelCase = 0
UpperCAmelCase = 0
while True:
j += 1
UpperCAmelCase = [0, 0, 0, 0]
for i in range(0 , len(__A ) ):
UpperCAmelCase = get_cost_derivative(i - 1 )
UpperCAmelCase = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
__A , __A , atol=__A , rtol=__A , ):
break
UpperCAmelCase = temp_parameter_vector
print(("Number of iterations:", j) )
def _lowerCAmelCase( ):
for i in range(len(__A ) ):
print(("Actual output value:", output(__A , "test" )) )
print(("Hypothesis output:", calculate_hypothesis_value(__A , "test" )) )
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| 1 | 0 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class __magic_name__ ( _snake_case , _snake_case ):
@register_to_config
def __init__( self : Optional[Any] , *,
lowerCAmelCase__ : int = 4 , lowerCAmelCase__ : int = 7_6_8 , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , ) -> Optional[int]:
super().__init__()
UpperCAmelCase = nn.Parameter(torch.zeros(lowerCAmelCase__ ) )
# parameters for additional clip time embeddings
UpperCAmelCase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ )
# parameters for encoder hidden states
UpperCAmelCase = clip_extra_context_tokens
UpperCAmelCase = nn.Linear(
lowerCAmelCase__ , self.clip_extra_context_tokens * cross_attention_dim )
UpperCAmelCase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = nn.LayerNorm(lowerCAmelCase__ )
def _UpperCamelCase ( self : str , *, lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] ) -> List[Any]:
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
UpperCAmelCase = image_embeddings.shape[0]
UpperCAmelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
UpperCAmelCase = classifier_free_guidance_embeddings.expand(
lowerCAmelCase__ , -1 )
UpperCAmelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
UpperCAmelCase = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
UpperCAmelCase = self.embedding_proj(lowerCAmelCase__ )
UpperCAmelCase = self.clip_image_embeddings_project_to_time_embeddings(lowerCAmelCase__ )
UpperCAmelCase = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
UpperCAmelCase = self.clip_extra_context_tokens_proj(lowerCAmelCase__ )
UpperCAmelCase = clip_extra_context_tokens.reshape(lowerCAmelCase__ , -1 , self.clip_extra_context_tokens )
UpperCAmelCase = clip_extra_context_tokens.permute(0 , 2 , 1 )
UpperCAmelCase = self.encoder_hidden_states_proj(lowerCAmelCase__ )
UpperCAmelCase = self.text_encoder_hidden_states_norm(lowerCAmelCase__ )
UpperCAmelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 707 |
def _lowerCAmelCase( __A , __A , __A ):
if n == 0:
return 1
elif n % 2 == 1:
return (binary_exponentiation(__A , n - 1 , __A ) * a) % mod
else:
UpperCAmelCase = binary_exponentiation(__A , n / 2 , __A )
return (b * b) % mod
# a prime number
lowerCAmelCase__ = 701
lowerCAmelCase__ = 1000000000
lowerCAmelCase__ = 10
# using binary exponentiation function, O(log(p)):
print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p)
print((a / b) % p == (a * b ** (p - 2)) % p)
| 1 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase__ = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
"UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST",
"UniSpeechForCTC",
"UniSpeechForPreTraining",
"UniSpeechForSequenceClassification",
"UniSpeechModel",
"UniSpeechPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 708 |
lowerCAmelCase__ = {
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
lowerCAmelCase__ = {value: key for key, value in encode_dict.items()}
def _lowerCAmelCase( __A ):
UpperCAmelCase = ""
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception("encode() accepts only letters of the alphabet and spaces" )
return encoded
def _lowerCAmelCase( __A ):
if set(__A ) - {"A", "B", " "} != set():
raise Exception("decode() accepts only 'A', 'B' and spaces" )
UpperCAmelCase = ""
for word in coded.split():
while len(__A ) != 0:
decoded += decode_dict[word[:5]]
UpperCAmelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json"
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = """fnet"""
def __init__( self : Union[str, Any] , lowerCAmelCase__ : List[str]=3_2_0_0_0 , lowerCAmelCase__ : Tuple=7_6_8 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : int=3_0_7_2 , lowerCAmelCase__ : Optional[Any]="gelu_new" , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Any=5_1_2 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : List[Any]=1e-1_2 , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Dict=5_1_2 , lowerCAmelCase__ : str=3 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : List[Any]=2 , **lowerCAmelCase__ : Optional[Any] , ) -> str:
super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = vocab_size
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = initializer_range
UpperCAmelCase = type_vocab_size
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = use_tpu_fourier_optimizations
UpperCAmelCase = tpu_short_seq_length
| 709 |
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
lowerCAmelCase__ = {"UserAgent": UserAgent().random}
def _lowerCAmelCase( __A ):
UpperCAmelCase = script.contents[0]
UpperCAmelCase = json.loads(data[data.find("{\"config\"" ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class __magic_name__ :
def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Any:
UpperCAmelCase = f"https://www.instagram.com/{username}/"
UpperCAmelCase = self.get_json()
def _UpperCamelCase ( self : List[str] ) -> dict:
UpperCAmelCase = requests.get(self.url , headers=lowerCAmelCase__ ).text
UpperCAmelCase = BeautifulSoup(lowerCAmelCase__ , "html.parser" ).find_all("script" )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self : Tuple ) -> str:
return f"{self.__class__.__name__}('{self.username}')"
def __str__( self : Optional[int] ) -> str:
return f"{self.fullname} ({self.username}) is {self.biography}"
@property
def _UpperCamelCase ( self : Any ) -> str:
return self.user_data["username"]
@property
def _UpperCamelCase ( self : List[Any] ) -> str:
return self.user_data["full_name"]
@property
def _UpperCamelCase ( self : List[str] ) -> str:
return self.user_data["biography"]
@property
def _UpperCamelCase ( self : Optional[int] ) -> str:
return self.user_data["business_email"]
@property
def _UpperCamelCase ( self : str ) -> str:
return self.user_data["external_url"]
@property
def _UpperCamelCase ( self : int ) -> int:
return self.user_data["edge_followed_by"]["count"]
@property
def _UpperCamelCase ( self : List[Any] ) -> int:
return self.user_data["edge_follow"]["count"]
@property
def _UpperCamelCase ( self : List[str] ) -> int:
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def _UpperCamelCase ( self : Tuple ) -> str:
return self.user_data["profile_pic_url_hd"]
@property
def _UpperCamelCase ( self : Optional[int] ) -> bool:
return self.user_data["is_verified"]
@property
def _UpperCamelCase ( self : Optional[Any] ) -> bool:
return self.user_data["is_private"]
def _lowerCAmelCase( __A = "github" ):
import os
if os.environ.get("CI" ):
return # test failing on GitHub Actions
UpperCAmelCase = InstagramUser(__A )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , __A )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 120000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "support@github.com"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith("https://instagram." )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ = InstagramUser("github")
print(instagram_user)
print(f"{instagram_user.number_of_posts = }")
print(f"{instagram_user.number_of_followers = }")
print(f"{instagram_user.number_of_followings = }")
print(f"{instagram_user.email = }")
print(f"{instagram_user.website = }")
print(f"{instagram_user.profile_picture_url = }")
print(f"{instagram_user.is_verified = }")
print(f"{instagram_user.is_private = }")
| 1 | 0 |
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def _lowerCAmelCase( __A , __A ):
# Load checkpoint
UpperCAmelCase = torch.load(__A , map_location="cpu" )
UpperCAmelCase = chkpt["model"]
# We have the base model one level deeper than the original XLM repository
UpperCAmelCase = {}
for k, v in state_dict.items():
if "pred_layer" in k:
UpperCAmelCase = v
else:
UpperCAmelCase = v
UpperCAmelCase = chkpt["params"]
UpperCAmelCase = {n: v for n, v in config.items() if not isinstance(__A , (torch.FloatTensor, numpy.ndarray) )}
UpperCAmelCase = chkpt["dico_word2id"]
UpperCAmelCase = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()}
# Save pytorch-model
UpperCAmelCase = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
UpperCAmelCase = pytorch_dump_folder_path + "/" + CONFIG_NAME
UpperCAmelCase = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"]
print(F"Save PyTorch model to {pytorch_weights_dump_path}" )
torch.save(__A , __A )
print(F"Save configuration file to {pytorch_config_dump_path}" )
with open(__A , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(__A , indent=2 ) + "\n" )
print(F"Save vocab file to {pytorch_config_dump_path}" )
with open(__A , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(__A , indent=2 ) + "\n" )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowerCAmelCase__ = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 710 |
import unittest
import numpy as np
def _lowerCAmelCase( __A , __A , __A , __A = None , ):
UpperCAmelCase = np.shape(__A )
UpperCAmelCase = np.shape(__A )
UpperCAmelCase = np.shape(__A )
if shape_a[0] != shape_b[0]:
UpperCAmelCase = (
"Expected the same number of rows for A and B. "
F"Instead found A of size {shape_a} and B of size {shape_b}"
)
raise ValueError(__A )
if shape_b[1] != shape_c[1]:
UpperCAmelCase = (
"Expected the same number of columns for B and C. "
F"Instead found B of size {shape_b} and C of size {shape_c}"
)
raise ValueError(__A )
UpperCAmelCase = pseudo_inv
if a_inv is None:
try:
UpperCAmelCase = np.linalg.inv(__A )
except np.linalg.LinAlgError:
raise ValueError(
"Input matrix A is not invertible. Cannot compute Schur complement." )
return mat_c - mat_b.T @ a_inv @ mat_b
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : List[str] ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1], [6, 3]] )
UpperCAmelCase = schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = np.block([[a, b], [b.T, c]] )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
self.assertAlmostEqual(lowerCAmelCase__ , det_a * det_s )
def _UpperCamelCase ( self : str ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1], [6, 3]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 1 | 0 |
from copy import deepcopy
from typing import Optional, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
class __magic_name__ ( _snake_case ):
UpperCAmelCase = ["""image_processor"""]
UpperCAmelCase = """SamImageProcessor"""
def __init__( self : List[Any] , lowerCAmelCase__ : int ) -> Dict:
super().__init__(lowerCAmelCase__ )
UpperCAmelCase = self.image_processor
UpperCAmelCase = -1_0
UpperCAmelCase = self.image_processor.size["longest_edge"]
def __call__( self : Dict , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> BatchEncoding:
UpperCAmelCase = self.image_processor(
lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , )
# pop arguments that are not used in the foward but used nevertheless
UpperCAmelCase = encoding_image_processor["original_sizes"]
if hasattr(lowerCAmelCase__ , "numpy" ): # Checks if Torch or TF tensor
UpperCAmelCase = original_sizes.numpy()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._check_and_preprocess_points(
input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , )
UpperCAmelCase = self._normalize_and_convert(
lowerCAmelCase__ , lowerCAmelCase__ , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , )
return encoding_image_processor
def _UpperCamelCase ( self : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Optional[Any]="pt" , ) -> Optional[int]:
if input_points is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
UpperCAmelCase = [
self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0] ) for point in input_points
]
else:
UpperCAmelCase = [
self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__ )
for point, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
# check that all arrays have the same shape
if not all(point.shape == input_points[0].shape for point in input_points ):
if input_labels is not None:
UpperCAmelCase , UpperCAmelCase = self._pad_points_and_labels(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = np.array(lowerCAmelCase__ )
if input_labels is not None:
UpperCAmelCase = np.array(lowerCAmelCase__ )
if input_boxes is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
UpperCAmelCase = [
self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0] , is_bounding_box=lowerCAmelCase__ )
for box in input_boxes
]
else:
UpperCAmelCase = [
self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__ , is_bounding_box=lowerCAmelCase__ )
for box, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
UpperCAmelCase = np.array(lowerCAmelCase__ )
if input_boxes is not None:
if return_tensors == "pt":
UpperCAmelCase = torch.from_numpy(lowerCAmelCase__ )
# boxes batch size of 1 by default
UpperCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes
elif return_tensors == "tf":
UpperCAmelCase = tf.convert_to_tensor(lowerCAmelCase__ )
# boxes batch size of 1 by default
UpperCAmelCase = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes
encoding_image_processor.update({"input_boxes": input_boxes} )
if input_points is not None:
if return_tensors == "pt":
UpperCAmelCase = torch.from_numpy(lowerCAmelCase__ )
# point batch size of 1 by default
UpperCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points
elif return_tensors == "tf":
UpperCAmelCase = tf.convert_to_tensor(lowerCAmelCase__ )
# point batch size of 1 by default
UpperCAmelCase = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_points.shape ) != 4 else input_points
encoding_image_processor.update({"input_points": input_points} )
if input_labels is not None:
if return_tensors == "pt":
UpperCAmelCase = torch.from_numpy(lowerCAmelCase__ )
# point batch size of 1 by default
UpperCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels
elif return_tensors == "tf":
UpperCAmelCase = tf.convert_to_tensor(lowerCAmelCase__ )
# point batch size of 1 by default
UpperCAmelCase = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_labels.shape ) != 3 else input_labels
encoding_image_processor.update({"input_labels": input_labels} )
return encoding_image_processor
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any ) -> Any:
UpperCAmelCase = max([point.shape[0] for point in input_points] )
UpperCAmelCase = []
for i, point in enumerate(lowerCAmelCase__ ):
if point.shape[0] != expected_nb_points:
UpperCAmelCase = np.concatenate(
[point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 )
UpperCAmelCase = np.append(input_labels[i] , [self.point_pad_value] )
processed_input_points.append(lowerCAmelCase__ )
UpperCAmelCase = processed_input_points
return input_points, input_labels
def _UpperCamelCase ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any=False ) -> np.ndarray:
UpperCAmelCase , UpperCAmelCase = original_size
UpperCAmelCase , UpperCAmelCase = self.image_processor._get_preprocess_shape(lowerCAmelCase__ , longest_edge=lowerCAmelCase__ )
UpperCAmelCase = deepcopy(lowerCAmelCase__ ).astype(lowerCAmelCase__ )
if is_bounding_box:
UpperCAmelCase = coords.reshape(-1 , 2 , 2 )
UpperCAmelCase = coords[..., 0] * (new_w / old_w)
UpperCAmelCase = coords[..., 1] * (new_h / old_h)
if is_bounding_box:
UpperCAmelCase = coords.reshape(-1 , 4 )
return coords
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Optional[int]=None , ) -> int:
if input_points is not None:
if hasattr(lowerCAmelCase__ , "numpy" ): # Checks for TF or Torch tensor
UpperCAmelCase = input_points.numpy().tolist()
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_points[0] , lowerCAmelCase__ ):
raise ValueError("Input points must be a list of list of floating points." )
UpperCAmelCase = [np.array(lowerCAmelCase__ ) for input_point in input_points]
else:
UpperCAmelCase = None
if input_labels is not None:
if hasattr(lowerCAmelCase__ , "numpy" ):
UpperCAmelCase = input_labels.numpy().tolist()
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_labels[0] , lowerCAmelCase__ ):
raise ValueError("Input labels must be a list of list integers." )
UpperCAmelCase = [np.array(lowerCAmelCase__ ) for label in input_labels]
else:
UpperCAmelCase = None
if input_boxes is not None:
if hasattr(lowerCAmelCase__ , "numpy" ):
UpperCAmelCase = input_boxes.numpy().tolist()
if (
not isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
or not isinstance(input_boxes[0] , lowerCAmelCase__ )
or not isinstance(input_boxes[0][0] , lowerCAmelCase__ )
):
raise ValueError("Input boxes must be a list of list of list of floating points." )
UpperCAmelCase = [np.array(lowerCAmelCase__ ).astype(np.floataa ) for box in input_boxes]
else:
UpperCAmelCase = None
return input_points, input_labels, input_boxes
@property
def _UpperCamelCase ( self : Optional[Any] ) -> int:
UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(lowerCAmelCase__ ) )
def _UpperCamelCase ( self : List[str] , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Tuple ) -> List[Any]:
return self.image_processor.post_process_masks(*lowerCAmelCase__ , **lowerCAmelCase__ )
| 711 |
import argparse
import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
from accelerate import Accelerator
def _lowerCAmelCase( __A ):
UpperCAmelCase = fname.split(os.path.sep )[-1]
return re.search(r"^(.*)_\d+\.jpg$" , __A ).groups()[0]
class __magic_name__ ( _snake_case ):
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=None ) -> Optional[Any]:
UpperCAmelCase = file_names
UpperCAmelCase = image_transform
UpperCAmelCase = label_to_id
def __len__( self : Tuple ) -> List[str]:
return len(self.file_names )
def __getitem__( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> Dict:
UpperCAmelCase = self.file_names[idx]
UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ )
UpperCAmelCase = raw_image.convert("RGB" )
if self.image_transform is not None:
UpperCAmelCase = self.image_transform(lowerCAmelCase__ )
UpperCAmelCase = extract_label(lowerCAmelCase__ )
if self.label_to_id is not None:
UpperCAmelCase = self.label_to_id[label]
return {"image": image, "label": label}
def _lowerCAmelCase( __A , __A ):
# Initialize accelerator
if args.with_tracking:
UpperCAmelCase = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir )
else:
UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase = config["lr"]
UpperCAmelCase = int(config["num_epochs"] )
UpperCAmelCase = int(config["seed"] )
UpperCAmelCase = int(config["batch_size"] )
UpperCAmelCase = config["image_size"]
if not isinstance(__A , (list, tuple) ):
UpperCAmelCase = (image_size, image_size)
# Parse out whether we are saving every epoch or after a certain number of batches
if hasattr(args.checkpointing_steps , "isdigit" ):
if args.checkpointing_steps == "epoch":
UpperCAmelCase = args.checkpointing_steps
elif args.checkpointing_steps.isdigit():
UpperCAmelCase = int(args.checkpointing_steps )
else:
raise ValueError(
F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." )
else:
UpperCAmelCase = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
UpperCAmelCase = os.path.split(__A )[-1].split("." )[0]
accelerator.init_trackers(__A , __A )
# Grab all the image filenames
UpperCAmelCase = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )]
# Build the label correspondences
UpperCAmelCase = [extract_label(__A ) for fname in file_names]
UpperCAmelCase = list(set(__A ) )
id_to_label.sort()
UpperCAmelCase = {lbl: i for i, lbl in enumerate(__A )}
# Set the seed before splitting the data.
np.random.seed(__A )
torch.manual_seed(__A )
torch.cuda.manual_seed_all(__A )
# Split our filenames between train and validation
UpperCAmelCase = np.random.permutation(len(__A ) )
UpperCAmelCase = int(0.8 * len(__A ) )
UpperCAmelCase = random_perm[:cut]
UpperCAmelCase = random_perm[cut:]
# For training we use a simple RandomResizedCrop
UpperCAmelCase = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] )
UpperCAmelCase = PetsDataset(
[file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A )
# For evaluation, we use a deterministic Resize
UpperCAmelCase = Compose([Resize(__A ), ToTensor()] )
UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A )
# Instantiate dataloaders.
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase = create_model("resnet50d" , pretrained=__A , num_classes=len(__A ) )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCAmelCase = model.to(accelerator.device )
# Freezing the base model
for param in model.parameters():
UpperCAmelCase = False
for param in model.get_classifier().parameters():
UpperCAmelCase = True
# We normalize the batches of images to be a bit faster.
UpperCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device )
UpperCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device )
# Instantiate optimizer
UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 )
# Instantiate learning rate scheduler
UpperCAmelCase = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(
__A , __A , __A , __A , __A )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase = 0
# We also need to keep track of the starting epoch so files are named properly
UpperCAmelCase = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" )
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase = os.path.basename(args.resume_from_checkpoint )
else:
# Get the most recent checkpoint
UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()]
dirs.sort(key=os.path.getctime )
UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
UpperCAmelCase = os.path.splitext(__A )[0]
if "epoch" in training_difference:
UpperCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1
UpperCAmelCase = None
else:
UpperCAmelCase = int(training_difference.replace("step_" , "" ) )
UpperCAmelCase = resume_step // len(__A )
resume_step -= starting_epoch * len(__A )
# Now we train the model
for epoch in range(__A , __A ):
model.train()
if args.with_tracking:
UpperCAmelCase = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
UpperCAmelCase = accelerator.skip_first_batches(__A , __A )
overall_step += resume_step
else:
# After the first iteration though, we need to go back to the original dataloader
UpperCAmelCase = train_dataloader
for batch in active_dataloader:
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch["image"] - mean) / std
UpperCAmelCase = model(__A )
UpperCAmelCase = torch.nn.functional.cross_entropy(__A , batch["label"] )
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(__A )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
if isinstance(__A , __A ):
UpperCAmelCase = F"step_{overall_step}"
if overall_step % checkpointing_steps == 0:
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , __A )
accelerator.save_state(__A )
model.eval()
UpperCAmelCase = 0
UpperCAmelCase = 0
for step, batch in enumerate(__A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch["image"] - mean) / std
with torch.no_grad():
UpperCAmelCase = model(__A )
UpperCAmelCase = outputs.argmax(dim=-1 )
UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) )
UpperCAmelCase = predictions == references
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
UpperCAmelCase = accurate.item() / num_elems
# Use accelerator.print to print only on the main process.
accelerator.print(F"epoch {epoch}: {100 * eval_metric:.2f}" )
if args.with_tracking:
accelerator.log(
{
"accuracy": 100 * eval_metric,
"train_loss": total_loss.item() / len(__A ),
"epoch": epoch,
} , step=__A , )
if checkpointing_steps == "epoch":
UpperCAmelCase = F"epoch_{epoch}"
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , __A )
accelerator.save_state(__A )
if args.with_tracking:
accelerator.end_training()
def _lowerCAmelCase( ):
UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument("--data_dir" , required=__A , help="The data folder on disk." )
parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." )
parser.add_argument(
"--mixed_precision" , type=__A , default=__A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
parser.add_argument(
"--checkpointing_steps" , type=__A , default=__A , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , )
parser.add_argument(
"--output_dir" , type=__A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--resume_from_checkpoint" , type=__A , default=__A , help="If the training should continue from a checkpoint folder." , )
parser.add_argument(
"--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , )
parser.add_argument(
"--project_dir" , type=__A , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224}
training_function(__A , __A )
if __name__ == "__main__":
main()
| 1 | 0 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ = {
"configuration_autoformer": [
"AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AutoformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
"AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"AutoformerForPrediction",
"AutoformerModel",
"AutoformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 712 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = 1 # (0 is vertical, 1 is horizontal)
def _lowerCAmelCase( ):
UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A )
print("Processing..." )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno(__A , __A , __A )
for index, image in enumerate(__A ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
UpperCAmelCase = random_chars(32 )
UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0]
UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(F"/{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"Success {index+1}/{len(__A )} with {file_name}" )
UpperCAmelCase = []
for anno in new_annos[index]:
UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(__A )
with open(F"/{file_root}.txt" , "w" ) as outfile:
outfile.write("\n".join(line for line in annos_list ) )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = []
UpperCAmelCase = []
for label_file in glob.glob(os.path.join(__A , "*.txt" ) ):
UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0]
with open(__A ) as in_file:
UpperCAmelCase = in_file.readlines()
UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" )
UpperCAmelCase = []
for obj_list in obj_lists:
UpperCAmelCase = obj_list.rstrip("\n" ).split(" " )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__A )
labels.append(__A )
return img_paths, labels
def _lowerCAmelCase( __A , __A , __A = 1 ):
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = []
for idx in range(len(__A ) ):
UpperCAmelCase = []
UpperCAmelCase = img_list[idx]
path_list.append(__A )
UpperCAmelCase = anno_list[idx]
UpperCAmelCase = cva.imread(__A )
if flip_type == 1:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__A )
new_imgs_list.append(__A )
return new_imgs_list, new_annos_lists, path_list
def _lowerCAmelCase( __A = 32 ):
assert number_char > 1, "The number of character should greater than 1"
UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(__A ) for _ in range(__A ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 1 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_pegasus import PegasusTokenizer
else:
lowerCAmelCase__ = None
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = "▁"
lowerCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase__ = {
"vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"},
"tokenizer_file": {
"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json"
},
}
lowerCAmelCase__ = {
"google/pegasus-xsum": 512,
}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = VOCAB_FILES_NAMES
UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase = PegasusTokenizer
UpperCAmelCase = ["""input_ids""", """attention_mask"""]
def __init__( self : List[str] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Dict="<pad>" , lowerCAmelCase__ : Union[str, Any]="</s>" , lowerCAmelCase__ : str="<unk>" , lowerCAmelCase__ : Dict="<mask_2>" , lowerCAmelCase__ : str="<mask_1>" , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Optional[Any]=1_0_3 , **lowerCAmelCase__ : Any , ) -> int:
UpperCAmelCase = offset
if additional_special_tokens is not None:
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError(
f"additional_special_tokens should be of type {type(lowerCAmelCase__ )}, but is"
f" {type(lowerCAmelCase__ )}" )
UpperCAmelCase = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f"<unk_{i}>" for i in range(len(lowerCAmelCase__ ) , self.offset - 1 )
]
if len(set(lowerCAmelCase__ ) ) != len(lowerCAmelCase__ ):
raise ValueError(
"Please make sure that the provided additional_special_tokens do not contain an incorrectly"
f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." )
UpperCAmelCase = additional_special_tokens_extended
else:
UpperCAmelCase = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )]
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , mask_token_sent=lowerCAmelCase__ , offset=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , )
UpperCAmelCase = vocab_file
UpperCAmelCase = False if not self.vocab_file else True
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Any ) -> List[str]:
UpperCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ):
raise ValueError(
"There should be 3 special tokens: mask_token, pad_token, and eos_token +"
f" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}" )
return [1 if x in all_special_ids else 0 for x in seq]
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : List , lowerCAmelCase__ : Optional[List] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
if already_has_special_tokens:
return self._special_token_mask(lowerCAmelCase__ )
elif token_ids_a is None:
return self._special_token_mask(lowerCAmelCase__ ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=None ) -> List[int]:
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def _UpperCamelCase ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
UpperCAmelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ):
copyfile(self.vocab_file , lowerCAmelCase__ )
return (out_vocab_file,)
| 713 |
def _lowerCAmelCase( __A ):
if not isinstance(__A , __A ):
raise TypeError("only integers accepted as input" )
else:
UpperCAmelCase = str(abs(__A ) )
UpperCAmelCase = [list(__A ) for char in range(len(__A ) )]
for index in range(len(__A ) ):
num_transpositions[index].pop(__A )
return max(
int("".join(list(__A ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__("doctest").testmod()
| 1 | 0 |
from math import pi
def _lowerCAmelCase( __A , __A ):
return 2 * pi * radius * (angle / 360)
if __name__ == "__main__":
print(arc_length(90, 10))
| 714 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
lowerCAmelCase__ = logging.getLogger(__name__)
lowerCAmelCase__ = 50 # max width of layer names
lowerCAmelCase__ = 70 # max width of quantizer names
def _lowerCAmelCase( __A ):
UpperCAmelCase = parser.add_argument_group("quant_trainer arguments" )
group.add_argument("--wprec" , type=__A , default=8 , help="weight precision" )
group.add_argument("--aprec" , type=__A , default=8 , help="activation precision" )
group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" )
group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" )
group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" )
group.add_argument("--quant-disable-keyword" , type=__A , nargs="+" , help="disable quantizers by keyword" )
group.add_argument("--quant-disable-layer-module" , type=__A , help="disable quantizers by keyword under layer." )
group.add_argument("--quant-enable-layer-module" , type=__A , help="enable quantizers by keyword under layer" )
group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" )
group.add_argument("--percentile" , default=__A , type=__A , help="percentile for PercentileCalibrator" )
group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" )
group.add_argument("--clip-gelu" , metavar="N" , type=__A , help="clip gelu output maximum value to N" )
group.add_argument(
"--recalibrate-weights" , action="store_true" , help=(
"recalibrate weight amaxes by taking the max of the weights."
" amaxes will be computed with the current quantization granularity (axis)."
) , )
def _lowerCAmelCase( __A ):
if args.calibrator == "max":
UpperCAmelCase = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("Specify --percentile when using percentile calibrator" )
UpperCAmelCase = "histogram"
elif args.calibrator == "mse":
UpperCAmelCase = "histogram"
else:
raise ValueError(F"Invalid calibrator {args.calibrator}" )
UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=__A )
UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(__A )
quant_nn.QuantLinear.set_default_quant_desc_weight(__A )
def _lowerCAmelCase( __A , __A , __A=False , __A=False ):
logger.info("Configuring Model for Quantization" )
logger.info(F"using quantization package {pytorch_quantization.__file__}" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(__A , ["embeddings"] , which="weight" , _disabled=__A )
if args.quant_disable:
set_quantizer_by_name(__A , [""] , _disabled=__A )
if args.quant_disable_keyword:
set_quantizer_by_name(__A , args.quant_disable_keyword , _disabled=__A )
if args.quant_disable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=__A )
if args.quant_enable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=__A )
if args.recalibrate_weights:
recalibrate_weights(__A )
if args.fuse_qkv:
fuse_qkv(__A , __A )
if args.clip_gelu:
clip_gelu(__A , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(__A )
def _lowerCAmelCase( __A ):
logger.info("Enabling Calibration" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F"{name:80}: {module}" )
def _lowerCAmelCase( __A , __A ):
logger.info("Loading calibrated amax" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax("percentile" , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(__A )
def _lowerCAmelCase( __A , __A ):
def fusea(__A , __A , __A ):
for mod in [qq, qk, qv]:
if not hasattr(__A , "_amax" ):
print(" WARNING: NO AMAX BUFFER" )
return
UpperCAmelCase = qq._amax.detach().item()
UpperCAmelCase = qk._amax.detach().item()
UpperCAmelCase = qv._amax.detach().item()
UpperCAmelCase = max(__A , __A , __A )
qq._amax.fill_(__A )
qk._amax.fill_(__A )
qv._amax.fill_(__A )
logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" )
for name, mod in model.named_modules():
if name.endswith(".attention.self" ):
logger.info(F"FUSE_QKV: {name:{name_width}}" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _lowerCAmelCase( __A , __A ):
for name, mod in model.named_modules():
if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ):
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=__A )
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None:
UpperCAmelCase = mod.weight.shape[0]
UpperCAmelCase = mod._weight_quantizer._amax.detach()
UpperCAmelCase = torch.ones(__A , dtype=amax.dtype , device=amax.device ) * amax
print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ):
if not hasattr(mod.weight_quantizer , "_amax" ):
print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set
UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__A , keepdims=__A ).detach()
logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" )
UpperCAmelCase = amax
def _lowerCAmelCase( __A , __A=25 , __A=180 , __A=None ):
if ignore is None:
UpperCAmelCase = []
elif not isinstance(__A , __A ):
UpperCAmelCase = [ignore]
UpperCAmelCase = 0
for name, mod in model.named_modules():
if not hasattr(__A , "weight" ):
continue
UpperCAmelCase = max(__A , len(__A ) )
for name, mod in model.named_modules():
UpperCAmelCase = getattr(__A , "_input_quantizer" , __A )
UpperCAmelCase = getattr(__A , "_weight_quantizer" , __A )
if not hasattr(__A , "weight" ):
continue
if type(__A ) in ignore:
continue
if [True for s in ignore if type(__A ) is str and s in name]:
continue
UpperCAmelCase = F"Act:{input_q.extra_repr()}"
UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}"
UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}"
if len(__A ) <= line_width:
logger.info(__A )
else:
logger.info(F"{name:{name_width}} {act_str}" )
logger.info(F"{' ':{name_width}} {wgt_str}" )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for name, mod in model.named_modules():
if isinstance(__A , pytorch_quantization.nn.TensorQuantizer ):
print(F"{name:80} {mod}" )
count += 1
print(F"{count} TensorQuantizers found in model" )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
UpperCAmelCase = getattr(__A , __A , __A )
if quantizer_mod is not None:
assert hasattr(__A , __A )
setattr(__A , __A , __A )
else:
logger.warning(F"{name} has no {quantizer}" )
def _lowerCAmelCase( __A , __A , __A="both" , **__A ):
UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
if which in ["input", "both"]:
set_quantizer(__A , __A , "_input_quantizer" , __A , __A )
if which in ["weight", "both"]:
set_quantizer(__A , __A , "_weight_quantizer" , __A , __A )
logger.info(__A )
def _lowerCAmelCase( __A , __A , **__A ):
for name, mod in model.named_modules():
if hasattr(__A , "_input_quantizer" ) or hasattr(__A , "_weight_quantizer" ):
for n in names:
if re.search(__A , __A ):
set_quantizers(__A , __A , **__A )
elif name.endswith("_quantizer" ):
for n in names:
if re.search(__A , __A ):
UpperCAmelCase = F"Warning: changing {name:{name_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
setattr(__A , __A , __A )
logger.info(__A )
| 1 | 0 |
import string
def _lowerCAmelCase( __A ):
for key in range(len(string.ascii_uppercase ) ):
UpperCAmelCase = ""
for symbol in message:
if symbol in string.ascii_uppercase:
UpperCAmelCase = string.ascii_uppercase.find(__A )
UpperCAmelCase = num - key
if num < 0:
UpperCAmelCase = num + len(string.ascii_uppercase )
UpperCAmelCase = translated + string.ascii_uppercase[num]
else:
UpperCAmelCase = translated + symbol
print(F"Decryption using Key #{key}: {translated}" )
def _lowerCAmelCase( ):
UpperCAmelCase = input("Encrypted message: " )
UpperCAmelCase = message.upper()
decrypt(__A )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 715 |
def _lowerCAmelCase( __A ):
assert column_title.isupper()
UpperCAmelCase = 0
UpperCAmelCase = len(__A ) - 1
UpperCAmelCase = 0
while index >= 0:
UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , __A )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 0 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __magic_name__ :
def __init__( self : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : Optional[int]=3_2 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : str=1_0 , lowerCAmelCase__ : Optional[Any]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase__ : List[str]=[1, 1, 2, 1] , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Optional[int]="relu" , lowerCAmelCase__ : str=3 , lowerCAmelCase__ : Optional[int]=None , ) -> Optional[Any]:
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = image_size
UpperCAmelCase = num_channels
UpperCAmelCase = embeddings_size
UpperCAmelCase = hidden_sizes
UpperCAmelCase = depths
UpperCAmelCase = is_training
UpperCAmelCase = use_labels
UpperCAmelCase = hidden_act
UpperCAmelCase = num_labels
UpperCAmelCase = scope
UpperCAmelCase = len(lowerCAmelCase__ )
def _UpperCamelCase ( self : Tuple ) -> List[str]:
UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def _UpperCamelCase ( self : Any ) -> Dict:
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] ) -> Optional[int]:
UpperCAmelCase = TFResNetModel(config=lowerCAmelCase__ )
UpperCAmelCase = model(lowerCAmelCase__ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> Optional[int]:
UpperCAmelCase = self.num_labels
UpperCAmelCase = TFResNetForImageClassification(lowerCAmelCase__ )
UpperCAmelCase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self : str ) -> Any:
UpperCAmelCase = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs
UpperCAmelCase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class __magic_name__ ( _snake_case , _snake_case , unittest.TestCase ):
UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
UpperCAmelCase = (
{"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification}
if is_tf_available()
else {}
)
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
def _UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase = TFResNetModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> Union[str, Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]:
return
@unittest.skip(reason="ResNet does not use inputs_embeds" )
def _UpperCamelCase ( self : int ) -> Any:
pass
@unittest.skip(reason="ResNet does not support input and output embeddings" )
def _UpperCamelCase ( self : str ) -> Dict:
pass
def _UpperCamelCase ( self : Dict ) -> int:
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase = model_class(lowerCAmelCase__ )
UpperCAmelCase = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase = [*signature.parameters.keys()]
UpperCAmelCase = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def _UpperCamelCase ( self : int ) -> str:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _UpperCamelCase ( self : Optional[Any] ) -> List[Any]:
def check_hidden_states_output(lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ):
UpperCAmelCase = model_class(lowerCAmelCase__ )
UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase = self.model_tester.num_stages
self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = ["basic", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
UpperCAmelCase = layer_type
UpperCAmelCase = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : Tuple ) -> Optional[Any]:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@slow
def _UpperCamelCase ( self : Union[str, Any] ) -> int:
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase = TFResNetModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def _lowerCAmelCase( ):
UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class __magic_name__ ( unittest.TestCase ):
@cached_property
def _UpperCamelCase ( self : Optional[Any] ) -> Any:
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def _UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
UpperCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
UpperCAmelCase = self.default_image_processor
UpperCAmelCase = prepare_img()
UpperCAmelCase = image_processor(images=lowerCAmelCase__ , return_tensors="tf" )
# forward pass
UpperCAmelCase = model(**lowerCAmelCase__ )
# verify the logits
UpperCAmelCase = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
UpperCAmelCase = tf.constant([-11.1_069, -9.7_877, -8.3_777] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCAmelCase__ , atol=1e-4 ) )
| 716 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
lowerCAmelCase__ = get_tests_dir("fixtures")
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
# A mock response for an HTTP head request to emulate server down
UpperCAmelCase = mock.Mock()
UpperCAmelCase = 5_0_0
UpperCAmelCase = {}
UpperCAmelCase = HTTPError
UpperCAmelCase = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request" , return_value=lowerCAmelCase__ ) as mock_head:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# This check we did call the fake head request
mock_head.assert_called()
def _UpperCamelCase ( self : List[Any] ) -> Dict:
# This test is for deprecated behavior and can be removed in v5
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" )
@is_staging_test
class __magic_name__ ( unittest.TestCase ):
@classmethod
def _UpperCamelCase ( cls : List[str] ) -> List[Any]:
UpperCAmelCase = TOKEN
HfFolder.save_token(lowerCAmelCase__ )
@classmethod
def _UpperCamelCase ( cls : Optional[int] ) -> Union[str, Any]:
try:
delete_repo(token=cls._token , repo_id="test-feature-extractor" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" )
except HTTPError:
pass
def _UpperCamelCase ( self : Any ) -> Any:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="test-feature-extractor" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : List[Any] ) -> Tuple:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Dict ) -> List[str]:
CustomFeatureExtractor.register_for_auto_class()
UpperCAmelCase = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , )
UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowerCAmelCase__ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
| 1 | 0 |
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
lowerCAmelCase__ = [
"cross_validation.py",
"gradient_accumulation.py",
"local_sgd.py",
"multi_process_metrics.py",
"memory.py",
"automatic_gradient_accumulation.py",
"fsdp_with_peak_mem_tracking.py",
"deepspeed_with_config_support.py",
"megatron_lm_gpt_pretraining.py",
]
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : bool , lowerCAmelCase__ : str = None , lowerCAmelCase__ : list = None ) -> List[Any]:
UpperCAmelCase = None
UpperCAmelCase = os.path.abspath(os.path.join("examples" , "by_feature" ) )
UpperCAmelCase = os.path.abspath("examples" )
for item in os.listdir(lowerCAmelCase__ ):
if item not in EXCLUDE_EXAMPLES:
UpperCAmelCase = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ) and ".py" in item_path:
with self.subTest(
tested_script=lowerCAmelCase__ , feature_script=lowerCAmelCase__ , tested_section="main()" if parser_only else "training_function()" , ):
UpperCAmelCase = compare_against_test(
os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = "\n".join(lowerCAmelCase__ )
if special_strings is not None:
for string in special_strings:
UpperCAmelCase = diff.replace(lowerCAmelCase__ , "" )
self.assertEqual(lowerCAmelCase__ , "" )
def _UpperCamelCase ( self : str ) -> Dict:
self.one_complete_example("complete_nlp_example.py" , lowerCAmelCase__ )
self.one_complete_example("complete_nlp_example.py" , lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] ) -> Optional[int]:
UpperCAmelCase = os.path.abspath(os.path.join("examples" , "cv_example.py" ) )
UpperCAmelCase = [
" " * 1_6 + "{\n\n",
" " * 2_0 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n",
" " * 2_0 + "\"f1\": eval_metric[\"f1\"],\n\n",
" " * 2_0 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n",
" " * 2_0 + "\"epoch\": epoch,\n\n",
" " * 1_6 + "},\n\n",
" " * 1_6 + "step=epoch,\n",
" " * 1_2,
" " * 8 + "for step, batch in enumerate(active_dataloader):\n",
]
self.one_complete_example("complete_cv_example.py" , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.one_complete_example("complete_cv_example.py" , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
@mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} )
class __magic_name__ ( _snake_case ):
UpperCAmelCase = False
@classmethod
def _UpperCamelCase ( cls : int ) -> Optional[Any]:
super().setUpClass()
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = os.path.join(cls._tmpdir , "default_config.yml" )
write_basic_config(save_location=cls.configPath )
UpperCAmelCase = ["accelerate", "launch", "--config_file", cls.configPath]
@classmethod
def _UpperCamelCase ( cls : Optional[Any] ) -> str:
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def _UpperCamelCase ( self : List[Any] ) -> Optional[Any]:
UpperCAmelCase = f"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) )
def _UpperCamelCase ( self : str ) -> Optional[int]:
UpperCAmelCase = f"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split()
UpperCAmelCase = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) )
def _UpperCamelCase ( self : str ) -> Optional[int]:
UpperCAmelCase = f"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split()
UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ )
self.assertNotIn("epoch 0:" , lowerCAmelCase__ )
self.assertIn("epoch 1:" , lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] ) -> Optional[int]:
UpperCAmelCase = f"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split()
UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ )
if torch.cuda.is_available():
UpperCAmelCase = torch.cuda.device_count()
else:
UpperCAmelCase = 1
if num_processes > 1:
self.assertNotIn("epoch 0:" , lowerCAmelCase__ )
self.assertIn("epoch 1:" , lowerCAmelCase__ )
else:
self.assertIn("epoch 0:" , lowerCAmelCase__ )
self.assertIn("epoch 1:" , lowerCAmelCase__ )
@slow
def _UpperCamelCase ( self : str ) -> Dict:
UpperCAmelCase = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split()
with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ):
UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ )
UpperCAmelCase = re.findall("({.+})" , lowerCAmelCase__ )
UpperCAmelCase = [r for r in results if "accuracy" in r][-1]
UpperCAmelCase = ast.literal_eval(lowerCAmelCase__ )
self.assertGreaterEqual(results["accuracy"] , 0.75 )
def _UpperCamelCase ( self : List[str] ) -> Any:
UpperCAmelCase = ["examples/by_feature/multi_process_metrics.py"]
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} )
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
with tempfile.TemporaryDirectory() as tmpdir:
UpperCAmelCase = f"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "tracking" ) ) )
def _UpperCamelCase ( self : Optional[Any] ) -> Tuple:
UpperCAmelCase = ["examples/by_feature/gradient_accumulation.py"]
run_command(self._launch_args + testargs )
def _UpperCamelCase ( self : List[Any] ) -> int:
UpperCAmelCase = ["examples/by_feature/local_sgd.py"]
run_command(self._launch_args + testargs )
| 717 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
lowerCAmelCase__ = "src/diffusers"
# Matches is_xxx_available()
lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
lowerCAmelCase__ = "\n{0} = None\n"
lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n"
lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
def _lowerCAmelCase( __A ):
UpperCAmelCase = _re_backend.findall(__A )
if len(__A ) == 0:
return None
return "_and_".join(__A )
def _lowerCAmelCase( ):
with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCAmelCase = 0
UpperCAmelCase = {}
# Go through the end of the file
while line_index < len(__A ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCAmelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("else:" ):
line_index += 1
line_index += 1
UpperCAmelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(__A ) and len(lines[line_index] ) > 1:
UpperCAmelCase = lines[line_index]
UpperCAmelCase = _re_single_line_import.search(__A )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__A ) > 0:
UpperCAmelCase = objects
else:
line_index += 1
return backend_specific_objects
def _lowerCAmelCase( __A , __A ):
if name.isupper():
return DUMMY_CONSTANT.format(__A )
elif name.islower():
return DUMMY_FUNCTION.format(__A , __A )
else:
return DUMMY_CLASS.format(__A , __A )
def _lowerCAmelCase( __A=None ):
if backend_specific_objects is None:
UpperCAmelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCAmelCase = {}
for backend, objects in backend_specific_objects.items():
UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]"
UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] )
UpperCAmelCase = dummy_file
return dummy_files
def _lowerCAmelCase( __A=False ):
UpperCAmelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCAmelCase = {"torch": "pt"}
# Locate actual dummy modules and read their content.
UpperCAmelCase = os.path.join(__A , "utils" )
UpperCAmelCase = {
backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" )
for backend in dummy_files.keys()
}
UpperCAmelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__A ):
with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.read()
else:
UpperCAmelCase = ""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main "
"__init__ has new objects." )
with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"The main __init__ has objects that are not present in "
F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` "
"to fix this." )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCAmelCase__ = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 | 0 |
import argparse
import torch
from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def _lowerCAmelCase( __A , __A , __A ):
# Construct model
if openai_config_file == "":
UpperCAmelCase = OpenAIGPTConfig()
else:
UpperCAmelCase = OpenAIGPTConfig.from_json_file(__A )
UpperCAmelCase = OpenAIGPTModel(__A )
# Load weights from numpy
load_tf_weights_in_openai_gpt(__A , __A , __A )
# Save pytorch-model
UpperCAmelCase = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
UpperCAmelCase = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(F"Save PyTorch model to {pytorch_weights_dump_path}" )
torch.save(model.state_dict() , __A )
print(F"Save configuration file to {pytorch_config_dump_path}" )
with open(__A , "w" , encoding="utf-8" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--openai_checkpoint_folder_path",
default=None,
type=str,
required=True,
help="Path to the TensorFlow checkpoint path.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--openai_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained OpenAI model. \n"
"This specifies the model architecture."
),
)
lowerCAmelCase__ = parser.parse_args()
convert_openai_checkpoint_to_pytorch(
args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path
)
| 718 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class __magic_name__ ( _snake_case , _snake_case ):
UpperCAmelCase = """convnextv2"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]:
super().__init__(**lowerCAmelCase__ )
UpperCAmelCase = num_channels
UpperCAmelCase = patch_size
UpperCAmelCase = num_stages
UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes
UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths
UpperCAmelCase = hidden_act
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = drop_path_rate
UpperCAmelCase = image_size
UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )]
UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
| 1 | 0 |
'''simple docstring'''
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class __magic_name__ ( _snake_case ):
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]=1_3 , lowerCAmelCase__ : List[Any]=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : List[str]=False , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : str=9_9 , lowerCAmelCase__ : int=3_2 , lowerCAmelCase__ : Optional[Any]=5 , lowerCAmelCase__ : Tuple=4 , lowerCAmelCase__ : Optional[int]=6_4 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Any=5_1_2 , lowerCAmelCase__ : Dict=1_6 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : Any=3 , lowerCAmelCase__ : Optional[int]=4 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Any=1 , ) -> List[str]:
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_input_mask
UpperCAmelCase = use_token_type_ids
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = type_sequence_label_size
UpperCAmelCase = initializer_range
UpperCAmelCase = num_labels
UpperCAmelCase = num_choices
UpperCAmelCase = scope
UpperCAmelCase = q_groups
UpperCAmelCase = k_groups
UpperCAmelCase = v_groups
UpperCAmelCase = post_attention_groups
UpperCAmelCase = intermediate_groups
UpperCAmelCase = output_groups
def _UpperCamelCase ( self : Optional[Any] ) -> str:
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = None
if self.use_input_mask:
UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self : str ) -> Optional[int]:
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Any ) -> Optional[Any]:
UpperCAmelCase = SqueezeBertModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict ) -> Optional[int]:
UpperCAmelCase = SqueezeBertForMaskedLM(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> int:
UpperCAmelCase = SqueezeBertForQuestionAnswering(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Any ) -> List[Any]:
UpperCAmelCase = self.num_labels
UpperCAmelCase = SqueezeBertForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase = self.num_labels
UpperCAmelCase = SqueezeBertForTokenClassification(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict ) -> Any:
UpperCAmelCase = self.num_choices
UpperCAmelCase = SqueezeBertForMultipleChoice(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _UpperCamelCase ( self : int ) -> Dict:
UpperCAmelCase = self.prepare_config_and_inputs()
((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) = config_and_inputs
UpperCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class __magic_name__ ( _snake_case , _snake_case , unittest.TestCase ):
UpperCAmelCase = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
UpperCAmelCase = (
{
"""feature-extraction""": SqueezeBertModel,
"""fill-mask""": SqueezeBertForMaskedLM,
"""question-answering""": SqueezeBertForQuestionAnswering,
"""text-classification""": SqueezeBertForSequenceClassification,
"""token-classification""": SqueezeBertForTokenClassification,
"""zero-shot""": SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCAmelCase = False
UpperCAmelCase = True
UpperCAmelCase = False
def _UpperCamelCase ( self : List[Any] ) -> Optional[Any]:
UpperCAmelCase = SqueezeBertModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase__ , dim=3_7 )
def _UpperCamelCase ( self : str ) -> Any:
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : Any ) -> Optional[int]:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*lowerCAmelCase__ )
def _UpperCamelCase ( self : Union[str, Any] ) -> int:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCAmelCase__ )
def _UpperCamelCase ( self : List[Any] ) -> Dict:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCAmelCase__ )
def _UpperCamelCase ( self : Optional[Any] ) -> List[str]:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] ) -> str:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCAmelCase__ )
def _UpperCamelCase ( self : List[Any] ) -> List[str]:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCAmelCase__ )
@slow
def _UpperCamelCase ( self : Dict ) -> Optional[int]:
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase = SqueezeBertModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@require_sentencepiece
@require_tokenizers
@require_torch
class __magic_name__ ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : Any ) -> Any:
UpperCAmelCase = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" )
UpperCAmelCase = torch.tensor([[1, 2_9_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 1_3, 1_5_8_8, 2]] )
UpperCAmelCase = model(lowerCAmelCase__ )[0]
UpperCAmelCase = torch.Size((1, 3) )
self.assertEqual(output.shape , lowerCAmelCase__ )
UpperCAmelCase = torch.tensor([[0.6_401, -0.0_349, -0.6_041]] )
self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-4 ) )
| 719 |
lowerCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCAmelCase__ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 1 | 0 |
lowerCAmelCase__ = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 720 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = KandinskyInpaintPipeline
UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
UpperCAmelCase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
UpperCAmelCase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCAmelCase = False
@property
def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
return 3_2
@property
def _UpperCamelCase ( self : int ) -> List[Any]:
return 3_2
@property
def _UpperCamelCase ( self : List[Any] ) -> List[Any]:
return self.time_input_dim
@property
def _UpperCamelCase ( self : Tuple ) -> Tuple:
return self.time_input_dim * 4
@property
def _UpperCamelCase ( self : Any ) -> Optional[int]:
return 1_0_0
@property
def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]:
UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" )
return tokenizer
@property
def _UpperCamelCase ( self : int ) -> Dict:
torch.manual_seed(0 )
UpperCAmelCase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , )
UpperCAmelCase = MultilingualCLIP(lowerCAmelCase__ )
UpperCAmelCase = text_encoder.eval()
return text_encoder
@property
def _UpperCamelCase ( self : Dict ) -> Optional[int]:
torch.manual_seed(0 )
UpperCAmelCase = {
"in_channels": 9,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase = UNetaDConditionModel(**lowerCAmelCase__ )
return model
@property
def _UpperCamelCase ( self : str ) -> Optional[Any]:
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _UpperCamelCase ( self : Dict ) -> List[Any]:
torch.manual_seed(0 )
UpperCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def _UpperCamelCase ( self : Tuple ) -> Any:
UpperCAmelCase = self.dummy_text_encoder
UpperCAmelCase = self.dummy_tokenizer
UpperCAmelCase = self.dummy_unet
UpperCAmelCase = self.dummy_movq
UpperCAmelCase = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , )
UpperCAmelCase = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0 ) -> str:
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ )
# create init_image
UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) )
# create mask
UpperCAmelCase = np.ones((6_4, 6_4) , dtype=np.floataa )
UpperCAmelCase = 0
if str(lowerCAmelCase__ ).startswith("mps" ):
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
else:
UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
UpperCAmelCase = {
"prompt": "horse",
"image": init_image,
"mask_image": mask,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 6_4,
"width": 6_4,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"output_type": "np",
}
return inputs
def _UpperCamelCase ( self : Dict ) -> List[str]:
UpperCAmelCase = "cpu"
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ )
UpperCAmelCase = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) )
UpperCAmelCase = output.images
UpperCAmelCase = pipe(
**self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0]
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
print(f"image.shape {image.shape}" )
assert image.shape == (1, 6_4, 6_4, 3)
UpperCAmelCase = np.array(
[0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def _UpperCamelCase ( self : str ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : str ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase ( self : Tuple ) -> int:
UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" )
UpperCAmelCase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa )
UpperCAmelCase = 0
UpperCAmelCase = "a hat"
UpperCAmelCase = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa )
pipe_prior.to(lowerCAmelCase__ )
UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa )
UpperCAmelCase = pipeline.to(lowerCAmelCase__ )
pipeline.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase , UpperCAmelCase = pipe_prior(
lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase = pipeline(
lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , )
UpperCAmelCase = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
| 1 | 0 |
import requests
from bsa import BeautifulSoup
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = BeautifulSoup(requests.get(__A , params=__A ).content , "html.parser" )
UpperCAmelCase = soup.find("div" , attrs={"class": "gs_ri"} )
UpperCAmelCase = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" )
return anchors[2].get_text()
if __name__ == "__main__":
lowerCAmelCase__ = {
"title": (
"Precisely geometry controlled microsupercapacitors for ultrahigh areal "
"capacitance, volumetric capacitance, and energy density"
),
"journal": "Chem. Mater.",
"volume": 30,
"pages": "3979-3990",
"year": 2018,
"hl": "en",
}
print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
| 721 |
def _lowerCAmelCase( __A , __A ):
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _lowerCAmelCase( __A , __A=0 ):
return sorted(__A , key=lambda __A : x[column] )
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(points_counts - 1 ):
for j in range(i + 1 , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(min(6 , points_counts - 1 ) , __A ):
for j in range(max(0 , i - 6 ) , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A ):
# base case
if points_counts <= 3:
return dis_between_closest_pair(__A , __A )
# recursion
UpperCAmelCase = points_counts // 2
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[:mid] , __A )
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[mid:] , points_counts - mid )
UpperCAmelCase = min(__A , __A )
UpperCAmelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(__A )
UpperCAmelCase = dis_between_closest_in_strip(
__A , len(__A ) , __A )
return min(__A , __A )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = column_based_sort(__A , column=0 )
UpperCAmelCase = column_based_sort(__A , column=1 )
return (
closest_pair_of_points_sqr(
__A , __A , __A )
) ** 0.5
if __name__ == "__main__":
lowerCAmelCase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
print("Distance:", closest_pair_of_points(points, len(points)))
| 1 | 0 |
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Tuple:
snake_case_ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"""module.blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""module.blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(f"""module.blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((f"""module.blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((f"""module.blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""module.blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((f"""module.blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((f"""module.blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((f"""module.blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""module.blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
("""module.cls_token""", """vit.embeddings.cls_token"""),
("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""module.pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""module.norm.weight""", """layernorm.weight"""),
("""module.norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
snake_case_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> int:
for i in range(config.num_hidden_layers ):
if base_model:
snake_case_ = """"""
else:
snake_case_ = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
snake_case_ = state_dict.pop(f"""module.blocks.{i}.attn.qkv.weight""" )
snake_case_ = state_dict.pop(f"""module.blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
snake_case_ = in_proj_weight[
: config.hidden_size, :
]
snake_case_ = in_proj_bias[: config.hidden_size]
snake_case_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case_ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
snake_case_ = in_proj_weight[
-config.hidden_size :, :
]
snake_case_ = in_proj_bias[-config.hidden_size :]
def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]:
snake_case_ = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]:
# projection head is used in the self-supervised pre-training in MSN,
# for downstream task it's not needed.
snake_case_ = [
"""module.fc.fc1.weight""",
"""module.fc.fc1.bias""",
"""module.fc.bn1.weight""",
"""module.fc.bn1.bias""",
"""module.fc.bn1.running_mean""",
"""module.fc.bn1.running_var""",
"""module.fc.bn1.num_batches_tracked""",
"""module.fc.fc2.weight""",
"""module.fc.fc2.bias""",
"""module.fc.bn2.weight""",
"""module.fc.bn2.bias""",
"""module.fc.bn2.running_mean""",
"""module.fc.bn2.running_var""",
"""module.fc.bn2.num_batches_tracked""",
"""module.fc.fc3.weight""",
"""module.fc.fc3.bias""",
]
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
snake_case_ = dct.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = val
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
snake_case_ = ViTMSNConfig()
snake_case_ = 1_000
snake_case_ = """datasets/huggingface/label-files"""
snake_case_ = """imagenet-1k-id2label.json"""
snake_case_ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , """r""" ) )
snake_case_ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
snake_case_ = idalabel
snake_case_ = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
snake_case_ = 384
snake_case_ = 1_536
snake_case_ = 6
elif "l16" in checkpoint_url:
snake_case_ = 1_024
snake_case_ = 4_096
snake_case_ = 24
snake_case_ = 16
snake_case_ = 0.1
elif "b4" in checkpoint_url:
snake_case_ = 4
elif "l7" in checkpoint_url:
snake_case_ = 7
snake_case_ = 1_024
snake_case_ = 4_096
snake_case_ = 24
snake_case_ = 16
snake_case_ = 0.1
snake_case_ = ViTMSNModel(_SCREAMING_SNAKE_CASE )
snake_case_ = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )["""target_encoder"""]
snake_case_ = ViTImageProcessor(size=config.image_size )
remove_projection_head(_SCREAMING_SNAKE_CASE )
snake_case_ = create_rename_keys(_SCREAMING_SNAKE_CASE , base_model=_SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , base_model=_SCREAMING_SNAKE_CASE )
model.load_state_dict(_SCREAMING_SNAKE_CASE )
model.eval()
snake_case_ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
snake_case_ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw )
snake_case_ = ViTImageProcessor(
size=config.image_size , image_mean=_SCREAMING_SNAKE_CASE , image_std=_SCREAMING_SNAKE_CASE )
snake_case_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
# forward pass
torch.manual_seed(2 )
snake_case_ = model(**_SCREAMING_SNAKE_CASE )
snake_case_ = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
snake_case_ = torch.tensor([[-1.0915, -1.4876, -1.1809]] )
elif "b16" in checkpoint_url:
snake_case_ = torch.tensor([[14.2889, -18.9045, 11.7281]] )
elif "l16" in checkpoint_url:
snake_case_ = torch.tensor([[41.5028, -22.8681, 45.6475]] )
elif "b4" in checkpoint_url:
snake_case_ = torch.tensor([[-4.3868, 5.2932, -0.4137]] )
else:
snake_case_ = torch.tensor([[-0.1792, -0.6465, 2.4263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar',
type=str,
help='URL of the checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
__SCREAMING_SNAKE_CASE : Any = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 2 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case__)
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True})
__lowercase: ClassVar[Features] = Features({"""audio""": Audio()})
__lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")})
__lowercase: str = "audio"
__lowercase: str = "transcription"
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(F"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , UpperCAmelCase_ ):
raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" )
snake_case_ = copy.deepcopy(self )
snake_case_ = self.input_schema.copy()
snake_case_ = features[self.audio_column]
snake_case_ = input_schema
return task_template
@property
def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]:
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 2 | 1 |
"""simple docstring"""
import logging
import os
from .state import PartialState
class __A (logging.LoggerAdapter):
'''simple docstring'''
@staticmethod
def lowerCAmelCase ( UpperCAmelCase_ : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int ) ->str:
"""simple docstring"""
if PartialState._shared_state == {}:
raise RuntimeError(
"""You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" )
snake_case_ = kwargs.pop("""main_process_only""" , UpperCAmelCase_ )
snake_case_ = kwargs.pop("""in_order""" , UpperCAmelCase_ )
if self.isEnabledFor(UpperCAmelCase_ ):
if self._should_log(UpperCAmelCase_ ):
snake_case_ , snake_case_ = self.process(UpperCAmelCase_ , UpperCAmelCase_ )
self.logger.log(UpperCAmelCase_ , UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ )
elif in_order:
snake_case_ = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
snake_case_ , snake_case_ = self.process(UpperCAmelCase_ , UpperCAmelCase_ )
self.logger.log(UpperCAmelCase_ , UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ )
state.wait_for_everyone()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Optional[Any]:
if log_level is None:
snake_case_ = os.environ.get("""ACCELERATE_LOG_LEVEL""" , _SCREAMING_SNAKE_CASE )
snake_case_ = logging.getLogger(_SCREAMING_SNAKE_CASE )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
| 2 |
"""simple docstring"""
from functools import reduce
__SCREAMING_SNAKE_CASE : Tuple = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def _a ( _SCREAMING_SNAKE_CASE = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) )
for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : int = {'configuration_mmbt': ['MMBTConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : List[Any] = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings']
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
__SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = """mctct"""
def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = num_attention_heads
snake_case_ = attention_head_dim
snake_case_ = max_position_embeddings
snake_case_ = layer_norm_eps
snake_case_ = layerdrop
snake_case_ = hidden_act
snake_case_ = initializer_range
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = pad_token_id
snake_case_ = bos_token_id
snake_case_ = eos_token_id
snake_case_ = conv_glu_dim
snake_case_ = conv_dropout
snake_case_ = num_conv_layers
snake_case_ = input_feat_per_channel
snake_case_ = input_channels
snake_case_ = conv_channels
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# prevents config testing fail with exporting to json
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 2 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : str = {
'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'LILT_PRETRAINED_MODEL_ARCHIVE_LIST',
'LiltForQuestionAnswering',
'LiltForSequenceClassification',
'LiltForTokenClassification',
'LiltModel',
'LiltPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lilt import (
LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
LiltPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 2 | 1 |
"""simple docstring"""
import pprint
import requests
__SCREAMING_SNAKE_CASE : Tuple = 'https://zenquotes.io/api'
def _a ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def _a ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Optional[int] = random_quotes()
pprint.pprint(response)
| 2 |
"""simple docstring"""
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = VQModel
__lowercase: Union[str, Any] = """sample"""
@property
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple:
"""simple docstring"""
snake_case_ = 4
snake_case_ = 3
snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ )
return {"sample": image}
@property
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
snake_case_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(UpperCAmelCase_ )
snake_case_ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" )
model.to(UpperCAmelCase_ ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
snake_case_ = image.to(UpperCAmelCase_ )
with torch.no_grad():
snake_case_ = model(UpperCAmelCase_ ).sample
snake_case_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if index == number_of_items:
return 0
snake_case_ = 0
snake_case_ = 0
snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 )
if weights[index] <= max_weight:
snake_case_ = values[index] + knapsack(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 )
return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = KandinskyVaaControlnetPipeline
__lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: Union[str, Any] = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
__lowercase: Tuple = False
@property
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return 100
@property
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_unet
snake_case_ = self.dummy_movq
snake_case_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create hint
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu"""
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**UpperCAmelCase_ )
snake_case_ = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
snake_case_ = output.images
snake_case_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0
snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case_ = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case_ = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A robot, 4k photo"""
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ , snake_case_ = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
# using dfs for finding eulerian path traversal
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Dict:
snake_case_ = (path or []) + [u]
for v in graph[u]:
if visited_edge[u][v] is False:
snake_case_ , snake_case_ = True, True
snake_case_ = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return path
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]:
snake_case_ = 0
snake_case_ = -1
for i in range(_SCREAMING_SNAKE_CASE ):
if i not in graph.keys():
continue
if len(graph[i] ) % 2 == 1:
odd_degree_nodes += 1
snake_case_ = i
if odd_degree_nodes == 0:
return 1, odd_node
if odd_degree_nodes == 2:
return 2, odd_node
return 3, odd_node
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
snake_case_ = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )]
snake_case_ , snake_case_ = check_circuit_or_path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if check == 3:
print("""graph is not Eulerian""" )
print("""no path""" )
return
snake_case_ = 1
if check == 2:
snake_case_ = odd_node
print("""graph has a Euler path""" )
if check == 1:
print("""graph has a Euler cycle""" )
snake_case_ = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(_SCREAMING_SNAKE_CASE )
def _a ( ) -> Any:
snake_case_ = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]}
snake_case_ = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]}
snake_case_ = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]}
snake_case_ = {1: [2, 3], 2: [1, 3], 3: [1, 2]}
snake_case_ = {
1: [],
2: []
# all degree is zero
}
snake_case_ = 10
check_euler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
check_euler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
check_euler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
check_euler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
check_euler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 2 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(UpperCAmelCase_ )
self.set_fail_transitions()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = 0
for character in keyword:
snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
snake_case_ = len(self.adlist ) - 1
else:
snake_case_ = next_state
self.adlist[current_state]["output"].append(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->None:
"""simple docstring"""
snake_case_ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = 0
while q:
snake_case_ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None
and state != 0
):
snake_case_ = self.adlist[state]["""fail_state"""]
snake_case_ = self.find_next_state(
UpperCAmelCase_ , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
snake_case_ = 0
snake_case_ = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]:
"""simple docstring"""
snake_case_ = {} # returns a dict with keywords and list of its occurrences
snake_case_ = 0
for i in range(len(UpperCAmelCase_ ) ):
while (
self.find_next_state(UpperCAmelCase_ , string[i] ) is None
and current_state != 0
):
snake_case_ = self.adlist[current_state]["""fail_state"""]
snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] )
if next_state is None:
snake_case_ = 0
else:
snake_case_ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
snake_case_ = []
result[key].append(i - len(UpperCAmelCase_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__SCREAMING_SNAKE_CASE : Optional[int] = {
'configuration_conditional_detr': [
'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ConditionalDetrConfig',
'ConditionalDetrOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Union[str, Any] = ['ConditionalDetrFeatureExtractor']
__SCREAMING_SNAKE_CASE : Dict = ['ConditionalDetrImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConditionalDetrForObjectDetection',
'ConditionalDetrForSegmentation',
'ConditionalDetrModel',
'ConditionalDetrPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = num_stages
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = initializer_range
snake_case_ = out_features
snake_case_ = out_indices
snake_case_ = scope
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case_ = None
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Union[str, Any] = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Any = False
__lowercase: Union[str, Any] = False
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase_ ),
*get_values(UpperCAmelCase_ ),
]:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = False
snake_case_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ):
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> str:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 | 1 |
"""simple docstring"""
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class __A (ctypes.Structure):
'''simple docstring'''
__lowercase: Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)]
def _a ( ) -> str:
if os.name == "nt":
snake_case_ = CursorInfo()
snake_case_ = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
snake_case_ = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25l""" )
sys.stdout.flush()
def _a ( ) -> List[Any]:
if os.name == "nt":
snake_case_ = CursorInfo()
snake_case_ = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
snake_case_ = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25h""" )
sys.stdout.flush()
@contextmanager
def _a ( ) -> List[str]:
try:
hide_cursor()
yield
finally:
show_cursor()
| 2 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights']
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "emb" in name:
snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
snake_case_ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
snake_case_ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
snake_case_ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
snake_case_ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]:
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case_ = 1_024
snake_case_ = 24
snake_case_ = 16
elif checkpoint == "medium":
snake_case_ = 1_536
snake_case_ = 48
snake_case_ = 24
elif checkpoint == "large":
snake_case_ = 2_048
snake_case_ = 48
snake_case_ = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case_ = MusicgenDecoderConfig(
hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , )
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple:
snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
_SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" )
snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" )
snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# set the appropriate bos/pad token ids
snake_case_ = 2_048
snake_case_ = 2_048
# set other default generation config params
snake_case_ = int(30 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 2 | 1 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
@dataclass
class __A (snake_case__):
'''simple docstring'''
__lowercase: torch.FloatTensor
class __A (snake_case__ , snake_case__):
'''simple docstring'''
@register_to_config
def __init__( self : Tuple , UpperCAmelCase_ : int = 65_536 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : str = "fourier" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase_ : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Tuple[int] = (32, 32, 64) , UpperCAmelCase_ : str = None , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = False , ) ->Dict:
"""simple docstring"""
super().__init__()
snake_case_ = sample_size
# time
if time_embedding_type == "fourier":
snake_case_ = GaussianFourierProjection(
embedding_size=8 , set_W_to_weight=UpperCAmelCase_ , log=UpperCAmelCase_ , flip_sin_to_cos=UpperCAmelCase_ )
snake_case_ = 2 * block_out_channels[0]
elif time_embedding_type == "positional":
snake_case_ = Timesteps(
block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase_ , downscale_freq_shift=UpperCAmelCase_ )
snake_case_ = block_out_channels[0]
if use_timestep_embedding:
snake_case_ = block_out_channels[0] * 4
snake_case_ = TimestepEmbedding(
in_channels=UpperCAmelCase_ , time_embed_dim=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , out_dim=block_out_channels[0] , )
snake_case_ = nn.ModuleList([] )
snake_case_ = None
snake_case_ = nn.ModuleList([] )
snake_case_ = None
# down
snake_case_ = in_channels
for i, down_block_type in enumerate(UpperCAmelCase_ ):
snake_case_ = output_channel
snake_case_ = block_out_channels[i]
if i == 0:
input_channel += extra_in_channels
snake_case_ = i == len(UpperCAmelCase_ ) - 1
snake_case_ = get_down_block(
UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , )
self.down_blocks.append(UpperCAmelCase_ )
# mid
snake_case_ = get_mid_block(
UpperCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase_ , add_downsample=UpperCAmelCase_ , )
# up
snake_case_ = list(reversed(UpperCAmelCase_ ) )
snake_case_ = reversed_block_out_channels[0]
if out_block_type is None:
snake_case_ = out_channels
else:
snake_case_ = block_out_channels[0]
for i, up_block_type in enumerate(UpperCAmelCase_ ):
snake_case_ = output_channel
snake_case_ = (
reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase_ ) - 1 else final_upsample_channels
)
snake_case_ = i == len(UpperCAmelCase_ ) - 1
snake_case_ = get_up_block(
UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , )
self.up_blocks.append(UpperCAmelCase_ )
snake_case_ = output_channel
# out
snake_case_ = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 )
snake_case_ = get_out_block(
out_block_type=UpperCAmelCase_ , num_groups_out=UpperCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Union[torch.Tensor, float, int] , UpperCAmelCase_ : bool = True , ) ->Union[UNetaDOutput, Tuple]:
"""simple docstring"""
snake_case_ = timestep
if not torch.is_tensor(UpperCAmelCase_ ):
snake_case_ = torch.tensor([timesteps] , dtype=torch.long , device=sample.device )
elif torch.is_tensor(UpperCAmelCase_ ) and len(timesteps.shape ) == 0:
snake_case_ = timesteps[None].to(sample.device )
snake_case_ = self.time_proj(UpperCAmelCase_ )
if self.config.use_timestep_embedding:
snake_case_ = self.time_mlp(UpperCAmelCase_ )
else:
snake_case_ = timestep_embed[..., None]
snake_case_ = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype )
snake_case_ = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) )
# 2. down
snake_case_ = ()
for downsample_block in self.down_blocks:
snake_case_ , snake_case_ = downsample_block(hidden_states=UpperCAmelCase_ , temb=UpperCAmelCase_ )
down_block_res_samples += res_samples
# 3. mid
if self.mid_block:
snake_case_ = self.mid_block(UpperCAmelCase_ , UpperCAmelCase_ )
# 4. up
for i, upsample_block in enumerate(self.up_blocks ):
snake_case_ = down_block_res_samples[-1:]
snake_case_ = down_block_res_samples[:-1]
snake_case_ = upsample_block(UpperCAmelCase_ , res_hidden_states_tuple=UpperCAmelCase_ , temb=UpperCAmelCase_ )
# 5. post-process
if self.out_block:
snake_case_ = self.out_block(UpperCAmelCase_ , UpperCAmelCase_ )
if not return_dict:
return (sample,)
return UNetaDOutput(sample=UpperCAmelCase_ )
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if index == number_of_items:
return 0
snake_case_ = 0
snake_case_ = 0
snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 )
if weights[index] <= max_weight:
snake_case_ = values[index] + knapsack(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 )
return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
__SCREAMING_SNAKE_CASE : List[str] = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n'
__SCREAMING_SNAKE_CASE : List[str] = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n'
__SCREAMING_SNAKE_CASE : Optional[Any] = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n'
__SCREAMING_SNAKE_CASE : int = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n'
__SCREAMING_SNAKE_CASE : List[str] = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class __A (datasets.Metric):
'''simple docstring'''
def lowerCAmelCase ( self : Any ) ->Any:
"""simple docstring"""
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=[1, 10, 100] , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Dict=3.0 ) ->Any:
"""simple docstring"""
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=UpperCAmelCase_ ) as executor:
snake_case_ = []
snake_case_ = Counter()
snake_case_ = 0
snake_case_ = defaultdict(UpperCAmelCase_ )
for task_id, (candidates, test_case) in enumerate(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ):
for candidate in candidates:
snake_case_ = candidate + """\n""" + test_case
snake_case_ = (test_program, timeout, task_id, completion_id[task_id])
snake_case_ = executor.submit(UpperCAmelCase_ , *UpperCAmelCase_ )
futures.append(UpperCAmelCase_ )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(UpperCAmelCase_ ):
snake_case_ = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
snake_case_ , snake_case_ = [], []
for result in results.values():
result.sort()
snake_case_ = [r[1]["""passed"""] for r in result]
total.append(len(UpperCAmelCase_ ) )
correct.append(sum(UpperCAmelCase_ ) )
snake_case_ = np.array(UpperCAmelCase_ )
snake_case_ = np.array(UpperCAmelCase_ )
snake_case_ = k
snake_case_ = {F"""pass@{k}""": estimate_pass_at_k(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
def estimator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = itertools.repeat(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) )
else:
assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )
snake_case_ = iter(_SCREAMING_SNAKE_CASE )
return np.array([estimator(int(_SCREAMING_SNAKE_CASE ) , int(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) for n, c in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] )
| 2 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int:
snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
snake_case_ = n // 2
return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 2 | 1 |
"""simple docstring"""
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
for param in module.parameters():
snake_case_ = False
def _a ( ) -> Any:
snake_case_ = """cuda""" if torch.cuda.is_available() else """cpu"""
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
snake_case_ = """mps"""
if device == "mps":
print(
"""WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"""
""" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"""
""" with generations.""" )
return device
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
snake_case_ = plt.imshow(_SCREAMING_SNAKE_CASE )
fig.axes.get_xaxis().set_visible(_SCREAMING_SNAKE_CASE )
fig.axes.get_yaxis().set_visible(_SCREAMING_SNAKE_CASE )
plt.show()
def _a ( ) -> Dict:
snake_case_ = datetime.now()
snake_case_ = current_time.strftime("""%H:%M:%S""" )
return timestamp
| 2 |
"""simple docstring"""
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str:
snake_case_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(_SCREAMING_SNAKE_CASE )
snake_case_ = i // 3
snake_case_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
snake_case_ = (
chars_incl
+ random(_SCREAMING_SNAKE_CASE , quotient + remainder )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
)
snake_case_ = list(_SCREAMING_SNAKE_CASE )
shuffle(_SCREAMING_SNAKE_CASE )
return "".join(_SCREAMING_SNAKE_CASE )
# random is a generalised function for letters, characters and numbers
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) < min_length:
# Your Password must be at least 8 characters long
return False
snake_case_ = any(char in ascii_uppercase for char in password )
snake_case_ = any(char in ascii_lowercase for char in password )
snake_case_ = any(char in digits for char in password )
snake_case_ = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _a ( ) -> str:
snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() )
snake_case_ = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 2 | 1 |
"""simple docstring"""
import re
import time
from typing import Optional
import IPython.display as disp
from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length
def _a ( _SCREAMING_SNAKE_CASE ) -> Any:
snake_case_ = int(_SCREAMING_SNAKE_CASE )
snake_case_ , snake_case_ , snake_case_ = t // 3_600, (t // 60) % 60, t % 60
return f"""{h}:{m:02d}:{s:02d}""" if h != 0 else f"""{m:02d}:{s:02d}"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=300 ) -> Any:
# docstyle-ignore
return f"""
<div>
{prefix}
<progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>
{label}
</div>
"""
def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple:
snake_case_ = """<table border=\"1\" class=\"dataframe\">\n"""
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
for i in items[0]:
html_code += f""" <th>{i}</th>\n"""
html_code += " </tr>\n </thead>\n <tbody>\n"
for line in items[1:]:
html_code += " <tr>\n"
for elt in line:
snake_case_ = f"""{elt:.6f}""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else str(_SCREAMING_SNAKE_CASE )
html_code += f""" <td>{elt}</td>\n"""
html_code += " </tr>\n"
html_code += " </tbody>\n</table><p>"
return html_code
class __A :
'''simple docstring'''
__lowercase: List[str] = 5
__lowercase: Union[str, Any] = 0.2
def __init__( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional["NotebookTrainingTracker"] = None , UpperCAmelCase_ : int = 300 , ) ->List[str]:
"""simple docstring"""
snake_case_ = total
snake_case_ = """""" if prefix is None else prefix
snake_case_ = leave
snake_case_ = parent
snake_case_ = width
snake_case_ = None
snake_case_ = None
snake_case_ = None
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : str = None ) ->Dict:
"""simple docstring"""
snake_case_ = value
if comment is not None:
snake_case_ = comment
if self.last_value is None:
snake_case_ = snake_case_ = time.time()
snake_case_ = snake_case_ = value
snake_case_ = snake_case_ = None
snake_case_ = self.warmup
snake_case_ = 1
self.update_bar(UpperCAmelCase_ )
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ):
if self.first_calls > 0:
self.first_calls -= 1
snake_case_ = time.time()
snake_case_ = current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
snake_case_ = self.elapsed_time / (value - self.start_value)
else:
snake_case_ = None
if value >= self.total:
snake_case_ = self.total
snake_case_ = None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
snake_case_ = self.average_time_per_item * (self.total - value)
self.update_bar(UpperCAmelCase_ )
snake_case_ = value
snake_case_ = current_time
if self.average_time_per_item is None:
snake_case_ = 1
else:
snake_case_ = max(int(self.update_every / self.average_time_per_item ) , 1 )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=None ) ->int:
"""simple docstring"""
snake_case_ = """ """ * (len(str(self.total ) ) - len(str(UpperCAmelCase_ ) )) + str(UpperCAmelCase_ )
if self.elapsed_time is None:
snake_case_ = F"""[{spaced_value}/{self.total} : < :"""
elif self.predicted_remaining is None:
snake_case_ = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}"""
else:
snake_case_ = (
F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <"""
F""" {format_time(self.predicted_remaining )}"""
)
self.label += F""", {1/self.average_time_per_item:.2f} it/s"""
self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]"""
self.display()
def lowerCAmelCase ( self : Any ) ->Optional[int]:
"""simple docstring"""
snake_case_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
snake_case_ = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase_ )
else:
self.output.update(disp.HTML(self.html_code ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
if self.parent is None and self.output is not None:
self.output.update(disp.HTML("""""" ) )
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any=None ) ->Tuple:
"""simple docstring"""
super().__init__(UpperCAmelCase_ )
snake_case_ = None if column_names is None else [column_names]
snake_case_ = None
def lowerCAmelCase ( self : List[str] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table )
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
snake_case_ = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase_ )
else:
self.output.update(disp.HTML(self.html_code ) )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Any ) ->int:
"""simple docstring"""
if self.inner_table is None:
snake_case_ = [list(values.keys() ), list(values.values() )]
else:
snake_case_ = self.inner_table[0]
if len(self.inner_table ) == 1:
# We give a chance to update the column names at the first iteration
for key in values.keys():
if key not in columns:
columns.append(UpperCAmelCase_ )
snake_case_ = columns
self.inner_table.append([values[c] for c in columns] )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[Any]=300 ) ->Tuple:
"""simple docstring"""
snake_case_ = NotebookProgressBar(UpperCAmelCase_ , prefix=UpperCAmelCase_ , parent=self , width=UpperCAmelCase_ )
return self.child_bar
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
snake_case_ = None
self.display()
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = None
snake_case_ = None
snake_case_ = False
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step"""
snake_case_ = 0
snake_case_ = 0
snake_case_ = [self.first_column] + ["""Training Loss"""]
if args.evaluation_strategy != IntervalStrategy.NO:
column_names.append("""Validation Loss""" )
snake_case_ = NotebookTrainingTracker(state.max_steps , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}"""
self.training_tracker.update(
state.global_step + 1 , comment=F"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , )
snake_case_ = False
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : Dict ) ->Optional[int]:
"""simple docstring"""
if not has_length(UpperCAmelCase_ ):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
snake_case_ = self.training_tracker.add_child(len(UpperCAmelCase_ ) )
else:
snake_case_ = NotebookProgressBar(len(UpperCAmelCase_ ) )
self.prediction_bar.update(1 )
else:
self.prediction_bar.update(self.prediction_bar.value + 1 )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
if self.prediction_bar is not None:
self.prediction_bar.close()
snake_case_ = None
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
snake_case_ = {"""Training Loss""": logs["""loss"""]}
# First column is necessarily Step sine we're not in epoch eval strategy
snake_case_ = state.global_step
self.training_tracker.write_line(UpperCAmelCase_ )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : Optional[Any] ) ->int:
"""simple docstring"""
if self.training_tracker is not None:
snake_case_ = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""}
for log in reversed(state.log_history ):
if "loss" in log:
snake_case_ = log["""loss"""]
break
if self.first_column == "Epoch":
snake_case_ = int(state.epoch )
else:
snake_case_ = state.global_step
snake_case_ = """eval"""
for k in metrics:
if k.endswith("""_loss""" ):
snake_case_ = re.sub(R"""\_loss$""" , """""" , UpperCAmelCase_ )
snake_case_ = metrics.pop("""total_flos""" , UpperCAmelCase_ )
snake_case_ = metrics.pop("""epoch""" , UpperCAmelCase_ )
snake_case_ = metrics.pop(F"""{metric_key_prefix}_runtime""" , UpperCAmelCase_ )
snake_case_ = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" , UpperCAmelCase_ )
snake_case_ = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" , UpperCAmelCase_ )
snake_case_ = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" , UpperCAmelCase_ )
for k, v in metrics.items():
if k == F"""{metric_key_prefix}_loss""":
snake_case_ = v
else:
snake_case_ = k.split("""_""" )
snake_case_ = """ """.join([part.capitalize() for part in splits[1:]] )
snake_case_ = v
self.training_tracker.write_line(UpperCAmelCase_ )
self.training_tracker.remove_child()
snake_case_ = None
# Evaluation takes a long time so we should force the next update.
snake_case_ = True
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[Any] ) ->Tuple:
"""simple docstring"""
self.training_tracker.update(
state.global_step , comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=UpperCAmelCase_ )
snake_case_ = None
| 2 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
snake_case_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" )
image_processor_first.to_json_file(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
pass
def _a ( ) -> str:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
snake_case_ = Image.open(dataset[4]["""file"""] )
snake_case_ = Image.open(dataset[5]["""file"""] )
snake_case_ = [imagea, imagea]
return images
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
snake_case_ = prepare_images()
# test non-batched
snake_case_ = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_024) )
snake_case_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ )
# test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_024) )
snake_case_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
| 2 | 1 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
__SCREAMING_SNAKE_CASE : int = logging.getLogger(__name__)
@dataclass
class __A :
'''simple docstring'''
__lowercase: str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""})
__lowercase: Optional[str] = field(
default=snake_case__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""})
__lowercase: Optional[str] = field(
default=snake_case__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""})
__lowercase: Optional[str] = field(
default=snake_case__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
__lowercase: bool = field(default=snake_case__ , metadata={"""help""": """Whether tp freeze the encoder."""})
__lowercase: bool = field(default=snake_case__ , metadata={"""help""": """Whether to freeze the embeddings."""})
@dataclass
class __A :
'''simple docstring'''
__lowercase: str = field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""})
__lowercase: Optional[str] = field(
default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , )
__lowercase: Optional[int] = field(
default=10_24 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__lowercase: Optional[int] = field(
default=1_28 , metadata={
"""help""": (
"""The maximum total sequence length for target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__lowercase: Optional[int] = field(
default=1_42 , metadata={
"""help""": (
"""The maximum total sequence length for validation target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded. """
"""This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """
"""during ``evaluate`` and ``predict``."""
)
} , )
__lowercase: Optional[int] = field(
default=1_42 , metadata={
"""help""": (
"""The maximum total sequence length for test target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__lowercase: Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""})
__lowercase: Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""})
__lowercase: Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""})
__lowercase: Optional[str] = field(default=snake_case__ , metadata={"""help""": """Source language id for translation."""})
__lowercase: Optional[str] = field(default=snake_case__ , metadata={"""help""": """Target language id for translation."""})
__lowercase: Optional[int] = field(default=snake_case__ , metadata={"""help""": """# num_beams to use for evaluation."""})
__lowercase: bool = field(
default=snake_case__ , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
logger.info(f"""***** {split} metrics *****""" )
for key in sorted(metrics.keys() ):
logger.info(f""" {key} = {metrics[key]}""" )
save_json(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , f"""{split}_results.json""" ) )
def _a ( ) -> Union[str, Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
snake_case_ , snake_case_ , snake_case_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses()
check_output_dir(_SCREAMING_SNAKE_CASE )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info("""Training/evaluation parameters %s""" , _SCREAMING_SNAKE_CASE )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case_ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""")
for p in extra_model_params:
if getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
assert hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute"""
setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
snake_case_ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(_SCREAMING_SNAKE_CASE , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
snake_case_ = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(_SCREAMING_SNAKE_CASE , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
snake_case_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(_SCREAMING_SNAKE_CASE )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
snake_case_ = SeqaSeqDataset
# Get datasets
snake_case_ = (
dataset_class(
_SCREAMING_SNAKE_CASE , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , )
if training_args.do_train
else None
)
snake_case_ = (
dataset_class(
_SCREAMING_SNAKE_CASE , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
snake_case_ = (
dataset_class(
_SCREAMING_SNAKE_CASE , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , )
if training_args.do_predict
else None
)
# Initialize our Trainer
snake_case_ = (
build_compute_metrics_fn(data_args.task , _SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate else None
)
snake_case_ = SeqaSeqTrainer(
model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , data_args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , data_collator=SeqaSeqDataCollator(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , )
snake_case_ = {}
# Training
if training_args.do_train:
logger.info("""*** Train ***""" )
snake_case_ = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
snake_case_ = train_result.metrics
snake_case_ = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics("""train""" , _SCREAMING_SNAKE_CASE , training_args.output_dir )
all_metrics.update(_SCREAMING_SNAKE_CASE )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
snake_case_ = trainer.evaluate(metric_key_prefix="""val""" )
snake_case_ = data_args.n_val
snake_case_ = round(metrics["""val_loss"""] , 4 )
if trainer.is_world_process_zero():
handle_metrics("""val""" , _SCREAMING_SNAKE_CASE , training_args.output_dir )
all_metrics.update(_SCREAMING_SNAKE_CASE )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
snake_case_ = trainer.predict(test_dataset=_SCREAMING_SNAKE_CASE , metric_key_prefix="""test""" )
snake_case_ = test_output.metrics
snake_case_ = data_args.n_test
if trainer.is_world_process_zero():
snake_case_ = round(metrics["""test_loss"""] , 4 )
handle_metrics("""test""" , _SCREAMING_SNAKE_CASE , training_args.output_dir )
all_metrics.update(_SCREAMING_SNAKE_CASE )
if training_args.predict_with_generate:
snake_case_ = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE )
snake_case_ = lmap(str.strip , _SCREAMING_SNAKE_CASE )
write_txt_file(_SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , """test_generations.txt""" ) )
if trainer.is_world_process_zero():
save_json(_SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , """all_results.json""" ) )
return all_metrics
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 2 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 1 |
"""simple docstring"""
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class __A (tf.keras.layers.Layer):
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int = None , UpperCAmelCase_ : int = None ) ->Dict:
"""simple docstring"""
super().__init__()
snake_case_ = pad_token_id
snake_case_ = max_length
snake_case_ = vocab
snake_case_ = merges
snake_case_ = BytePairTokenizer(UpperCAmelCase_ , UpperCAmelCase_ , sequence_length=UpperCAmelCase_ )
@classmethod
def lowerCAmelCase ( cls : Tuple , UpperCAmelCase_ : GPTaTokenizer , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = [""" """.join(UpperCAmelCase_ ) for m in tokenizer.bpe_ranks.keys()]
snake_case_ = tokenizer.get_vocab()
return cls(UpperCAmelCase_ , UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ )
@classmethod
def lowerCAmelCase ( cls : Union[str, Any] , UpperCAmelCase_ : Union[str, os.PathLike] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = GPTaTokenizer.from_pretrained(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ )
return cls.from_tokenizer(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ )
@classmethod
def lowerCAmelCase ( cls : List[str] , UpperCAmelCase_ : Union[str, Any] ) ->List[str]:
"""simple docstring"""
return cls(**UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict ) ->int:
"""simple docstring"""
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int = None ) ->Any:
"""simple docstring"""
snake_case_ = self.tf_tokenizer(UpperCAmelCase_ )
snake_case_ = tf.ones_like(UpperCAmelCase_ )
if self.pad_token_id is not None:
# pad the tokens up to max length
snake_case_ = max_length if max_length is not None else self.max_length
if max_length is not None:
snake_case_ , snake_case_ = pad_model_inputs(
UpperCAmelCase_ , max_seq_length=UpperCAmelCase_ , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 2 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 2 | 1 |
"""simple docstring"""
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
return getitem, k
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
return setitem, k, v
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
return delitem, k
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> Any:
try:
return fun(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ), None
except Exception as e:
return None, e
__SCREAMING_SNAKE_CASE : str = (
_set('key_a', 'val_a'),
_set('key_b', 'val_b'),
)
__SCREAMING_SNAKE_CASE : int = [
_set('key_a', 'val_a'),
_set('key_a', 'val_b'),
]
__SCREAMING_SNAKE_CASE : int = [
_set('key_a', 'val_a'),
_set('key_b', 'val_b'),
_del('key_a'),
_del('key_b'),
_set('key_a', 'val_a'),
_del('key_a'),
]
__SCREAMING_SNAKE_CASE : Union[str, Any] = [
_get('key_a'),
_del('key_a'),
_set('key_a', 'val_a'),
_del('key_a'),
_del('key_a'),
_get('key_a'),
]
__SCREAMING_SNAKE_CASE : int = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
__SCREAMING_SNAKE_CASE : List[str] = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set('key_a', 'val_b'),
]
@pytest.mark.parametrize(
"""operations""" , (
pytest.param(_add_items , id="""add items""" ),
pytest.param(_overwrite_items , id="""overwrite items""" ),
pytest.param(_delete_items , id="""delete items""" ),
pytest.param(_access_absent_items , id="""access absent items""" ),
pytest.param(_add_with_resize_up , id="""add with resize up""" ),
pytest.param(_add_with_resize_down , id="""add with resize down""" ),
) , )
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
snake_case_ = HashMap(initial_block_size=4 )
snake_case_ = {}
for _, (fun, *args) in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ , snake_case_ = _run_operation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )
snake_case_ , snake_case_ = _run_operation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE )
assert my_res == py_res
assert str(_SCREAMING_SNAKE_CASE ) == str(_SCREAMING_SNAKE_CASE )
assert set(_SCREAMING_SNAKE_CASE ) == set(_SCREAMING_SNAKE_CASE )
assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )
assert set(my.items() ) == set(py.items() )
def _a ( ) -> Dict:
def is_public(_SCREAMING_SNAKE_CASE ) -> bool:
return not name.startswith("""_""" )
snake_case_ = {name for name in dir({} ) if is_public(_SCREAMING_SNAKE_CASE )}
snake_case_ = {name for name in dir(HashMap() ) if is_public(_SCREAMING_SNAKE_CASE )}
assert dict_public_names > hash_public_names
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class __A (snake_case__):
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int=13 , UpperCAmelCase_ : List[str]=7 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : str=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : List[Any]=None , ) ->Any:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = num_choices
snake_case_ = scope
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = None
if self.use_input_mask:
snake_case_ = random_attention_mask([self.batch_size, self.seq_length] )
snake_case_ = None
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = ids_tensor([self.batch_size] , self.num_choices )
snake_case_ = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = DistilBertModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple ) ->int:
"""simple docstring"""
snake_case_ = DistilBertForMaskedLM(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = DistilBertForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = DistilBertForSequenceClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = DistilBertForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = self.num_choices
snake_case_ = DistilBertForMultipleChoice(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
snake_case_ = model(
UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
((snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_)) = config_and_inputs
snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
__lowercase: Tuple = (
{
"""feature-extraction""": DistilBertModel,
"""fill-mask""": DistilBertForMaskedLM,
"""question-answering""": DistilBertForQuestionAnswering,
"""text-classification""": DistilBertForSequenceClassification,
"""token-classification""": DistilBertForTokenClassification,
"""zero-shot""": DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: List[str] = True
__lowercase: Tuple = True
__lowercase: Dict = True
__lowercase: Union[str, Any] = True
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = DistilBertModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , dim=37 )
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Any ) ->Any:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : int ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Any ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase_ )
def lowerCAmelCase ( self : str ) ->Any:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->str:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : str ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = DistilBertModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@slow
@require_torch_gpu
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
snake_case_ = True
snake_case_ = model_class(config=UpperCAmelCase_ )
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = torch.jit.trace(
UpperCAmelCase_ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , """traced_model.pt""" ) )
snake_case_ = torch.jit.load(os.path.join(UpperCAmelCase_ , """traced_model.pt""" ) , map_location=UpperCAmelCase_ )
loaded(inputs_dict["""input_ids"""].to(UpperCAmelCase_ ) , inputs_dict["""attention_mask"""].to(UpperCAmelCase_ ) )
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = DistilBertModel.from_pretrained("""distilbert-base-uncased""" )
snake_case_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] )
snake_case_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0]
snake_case_ = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor(
[[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Tuple = {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json',
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: int = """xlnet"""
__lowercase: Optional[Any] = ["""mems"""]
__lowercase: List[Any] = {
"""n_token""": """vocab_size""", # Backward compatibility
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : int , UpperCAmelCase_ : Tuple=32_000 , UpperCAmelCase_ : str=1_024 , UpperCAmelCase_ : Union[str, Any]=24 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : int=4_096 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]="bi" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : str=1E-12 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=-1 , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Optional[Any]="last" , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Tuple="tanh" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : Optional[int]=5 , UpperCAmelCase_ : Optional[int]=5 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=2 , **UpperCAmelCase_ : int , ) ->List[str]:
"""simple docstring"""
snake_case_ = vocab_size
snake_case_ = d_model
snake_case_ = n_layer
snake_case_ = n_head
if d_model % n_head != 0:
raise ValueError(F"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" )
snake_case_ = d_model // n_head
snake_case_ = ff_activation
snake_case_ = d_inner
snake_case_ = untie_r
snake_case_ = attn_type
snake_case_ = initializer_range
snake_case_ = layer_norm_eps
snake_case_ = dropout
snake_case_ = mem_len
snake_case_ = reuse_len
snake_case_ = bi_data
snake_case_ = clamp_len
snake_case_ = same_length
snake_case_ = summary_type
snake_case_ = summary_use_proj
snake_case_ = summary_activation
snake_case_ = summary_last_dropout
snake_case_ = start_n_top
snake_case_ = end_n_top
snake_case_ = bos_token_id
snake_case_ = pad_token_id
snake_case_ = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
"""The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"""
""" instead.""" , UpperCAmelCase_ , )
snake_case_ = kwargs["""use_cache"""]
snake_case_ = use_mems_eval
snake_case_ = use_mems_train
super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->str:
"""simple docstring"""
raise NotImplementedError(
F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 2 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
__SCREAMING_SNAKE_CASE : List[str] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__SCREAMING_SNAKE_CASE : int = '▁'
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = VOCAB_FILES_NAMES
__lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None:
"""simple docstring"""
snake_case_ = (
AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
else mask_token
)
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
snake_case_ = remove_space
snake_case_ = keep_accents
snake_case_ = vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return len(self.sp_model )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str:
"""simple docstring"""
if self.remove_space:
snake_case_ = """ """.join(inputs.strip().split() )
else:
snake_case_ = inputs
snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
snake_case_ = outputs.lower()
return outputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.preprocess_text(UpperCAmelCase_ )
snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
snake_case_ = []
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ = cur_pieces[1:]
else:
snake_case_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = []
snake_case_ = """"""
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(UpperCAmelCase_ )
snake_case_ = False
out_string += self.sp_model.decode(UpperCAmelCase_ )
return out_string.strip()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 2 | 1 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int:
snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
snake_case_ = n // 2
return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 2 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 1 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
snake_case_ = len(_SCREAMING_SNAKE_CASE )
snake_case_ = len(matrix[0] )
snake_case_ = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for row in range(_SCREAMING_SNAKE_CASE ):
# Check if diagonal element is not zero
if matrix[row][row] != 0:
# Eliminate all the elements below the diagonal
for col in range(row + 1 , _SCREAMING_SNAKE_CASE ):
snake_case_ = matrix[col][row] / matrix[row][row]
for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
matrix[col][i] -= multiplier * matrix[row][i]
else:
# Find a non-zero diagonal element to swap rows
snake_case_ = True
for i in range(row + 1 , _SCREAMING_SNAKE_CASE ):
if matrix[i][row] != 0:
snake_case_ , snake_case_ = matrix[i], matrix[row]
snake_case_ = False
break
if reduce:
rank -= 1
for i in range(_SCREAMING_SNAKE_CASE ):
snake_case_ = matrix[i][rank]
# Reduce the row pointer by one to stay on the same row
row -= 1
return rank
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 1 |