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ABSTRACT

LLM-based agents have recently emerged as promising tools for solving chal-
lenging problems without the need for task-specific finetuned models that can be
expensive to procure. Currently, the design and implementation of such agents
is ad hoc, as the wide variety of tasks that LLM-based agents may be applied
to naturally means there can be no one-size-fits-all approach to agent design. In
this work we aim to alleviate the difficulty of designing and implementing new
agents by proposing a minimalistic, high-level generation framework that simpli-
fies the process of building agents. The framework we introduce allows the user to
specify desired agent behaviors in Linear Temporal Logic (LTL). The declarative
LTL specification is then used to construct a constrained decoder that guarantees
the LLM will produce an output exhibiting the desired behavior. By designing
our framework in this way, we obtain several benefits, including the ability to en-
force complex agent behavior, the ability to formally validate prompt examples,
and the ability to seamlessly incorporate content-focused logical constraints into
generation. In particular, our declarative approach, in which the desired behavior
is simply described without concern for how it should be implemented or en-
forced, enables rapid design, implementation and experimentation with different
LLM-based agents. We demonstrate how the proposed framework can be used to
implement recent LLM-based agents, and show how the guardrails our approach
provides can lead to improvements in agent performance. In addition, we release
our code for general use.

1 INTRODUCTION

Many recent works (e.g., Brohan et al. (2023); Shen et al. (2023); Yao et al. (2022); Shinn et al.
(2023)) have explored the use of large language models (LLMs) to drive the decision-making of in-
telligent, autonomous agents. Given a problem to solve, these LLM-based agents break the problem
down into a sequence of steps, where each step involves either generating text or executing a tool
(e.g., an API call Schick et al. (2023a)) which can supply new context to the agent. Importantly,
while the order of steps to take is dictated by a high-level, prespecified behavior implemented by the
user, the underlying LLM is still allowed a significant amount of flexibility in what it may produce.
At each individual step, the outputs (i.e., the specific text or tool) are entirely determined by the
LLM, thus allowing the agent to leverage the strong generative capabilities of LLMs while ensuring
there are some guardrails to prevent aberrant behavior. Figure 1 provides an example of the popular
ReACT Yao et al. (2022) framework, where an agent executes a loop that goes between generative
steps (i.e., Thought, Action, Action Input) and tool execution steps (i.e., Observation).

Agent-based frameworks confer a number of benefits. First, these agent-based systems are signifi-
cantly more performant than simpler systems utilizing standard prompting-based approaches (e.g.,
chain-of-thought Wei et al. (2022)). Second, because they allow the LLM to seamlessly integrate
with external tools and incorporate the tool outputs into its context, agent-based approaches can
address a much broader range of datasets and tasks (e.g., those involving web search Yang et al.
(2018)). Lastly, by allowing end users to define an agent’s behavior, the users are given more flexi-
bility in tailoring very large language models to their needs than they would have otherwise.
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(a) Text output by ReACT agent

(b) Diagram of ReACT agent architecture

Figure 1: ReACT agent Yao et al. (2022) that alternates between generative steps (e.g., Thought,
Action, Action Input) and tool execution steps (i.e., Observation)

Though LLM-based agents show much promise, there still remain challenges involved with their
practical application. For instance, as each agent has its own strengths and weaknesses, it can be
necessary to try a variety of different agents when approaching a problem. This can be a steep
barrier to entry, as the lack of a standard framework for defining agents means that the end user must
reimplement in code the exact behavior they wish for an agent to exhibit. In addition, even if a user
finds that a particular agent type is well suited to their target task, the surface-level integration of
current agent implementations with LLMs can mean running that agent will require several rounds of
costly reprompting Xu et al. (2023). To address the aforementioned challenges, inspired by previous
work on incorporating logic-based constraints into decoding Lu et al. (2021; 2022), we propose a
declarative framework for formally specifying the high-level behavior of an LLM-based agent. To
begin, our framework takes in an agent behavior specified in a simple fragment of linear temporal
logic (LTL). The LTL specification is then used to define a constrained decoder that ensures the
LLM-based agent executes steps in a way that conforms to the user’s expectation. The specification
thus serves as a type of contract for agent behavior, which provides straightforward opportunities
for optimizing the generation process.

Our contributions in this work are as follows: (a) we introduce a declarative framework for defining
LLM-based agents that is both lightweight and user-friendly, (b) we demonstrate the benefits of this
framework, which includes the ability to enforce complex agent behavior, perform formal validation
of prompt examples, and seamlessly incorporate content-focused logical constraints into generation,
and (c) provide an analysis using three standard datasets (Hotpot QA Yang et al. (2018), Fever
Thorne et al. (2018), and GSM8K Cobbe et al. (2021)) that demonstrates when the hard constraints
imposed on LLM generation improve performance.
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2 RELATED WORK

2.1 LLM-BASED AGENTS

The quest to develop agents that are capable of exhibiting intelligent behavior in real-world settings,
without human intervention, has been a constant objective across the evaluation of AI Wooldridge &
Jennings (1995); Weiss (1999). The recent advancement of LLMs unrolls new avenues of research
to achieve this goal, where agents are backed with LLMs to perform complex tasks.

Various LLM-based agents targeting different tasks have been proposed, such as - WebAgent Gur
et al. (2023) demonstrates the potential to create language-based agents capable of executing tasks
on actual websites by adhering to natural language commands; Generative Agents Park et al. (2023)
simulates believable human behavior; MetaGPT Hong et al. (2023) incorporates efficient human
workflows as a meta-programming approach into LLM-based multi-agent collaboration; SayCan
Ahn et al. (2022) illustrates the capability to use LLMs in a embodied agents. The success of
these task-specific agents ignites the initiative to start open-source projects such as - AutoGPT 1,
SuperAGI 2, and BabyAGI 3 that are focused on the objective of constructing self-sufficient agents
capable of fulfilling users’ requests.

2.2 TOOL AUGMENTED LLMS

In recent years, the development of large language models (LLMs) has made tremendous progress,
and continues to drive research in prompt-based learning Wei et al. (2022); Khot et al. (2022) and
instruction tuning Touvron et al. (2023); Gao et al. (2023b); Peng et al. (2023). While LLMs have
demonstrated impressive performance, they are constrained by inherent limitations, with one of the
primary drawbacks being their ability to utilize external tools. To address this limitation, there has
been an increasing focus on the exploration of incorporating external tools into LLMs or creating
tool-augmented LLMs.

Self-supervised or self-instructed learning is the leading methodology of augmenting tools into
LLMs and we have witnessed multiple works in this direction such as ToolFormer Schick et al.
(2023b); Gorilla Patil et al. (2023); TALM Parisi et al. (2022); etc. Through the integration of exter-
nal tools, these augmented LLMs can achieve precise mathematical reasoning Cobbe et al. (2021);
Thoppilan et al. (2022), access up-to-the-minute information with the assistance of web search en-
gines Nakano et al. (2021), and harness domain-specific knowledge from external resources Yu et al.
(2022). Additionally, some works use the Python interpreter to create complex programs, which
helps them perform logical reasoning tasks better by accessing powerful computational resources
Gao et al. (2023a); Chen et al. (2022).

2.3 CONSTRAINED DECODING

There has been a long line of constrained generation methods that modify the standard beam search
decoding procedure at inference time, to incorporate constraints in the output. Lu et al. (2021;
2022); Hokamp & Liu (2017); Post & Vilar (2018). Anderson et al. (2017) proposes a constrained
beam search algorithm that keeps track of constraints via a finite-state machine, and demonstrates
its benefits on several image captioning tasks. Their method forces the inclusion of selected tag
words in the output, and fixed, pre-trained word embeddings to facilitate vocabulary expansion to
previously unseen tag words. Lu et al. (2021) proposes NEUROLOGIC DECODING, which enforces
the satisfaction of lexical constraints (specified as any predicate logic formula having word inclusion
and exclusion constraints) via adding a penalty term for constraint violation in the beam search de-
coding algorithm. Lu et al. (2022) improves on this by incorporating the A∗-search algorithm using
lookahead heuristics at each decoding step. Bastan et al. (2023) builds on top of NEUROLOGIC DE-
CODING by incorporating structural constraints that capture dependency parsing information. They
demonstrate that the use of search algorithms, as well as structural constraints, improve performance
over NEUROLOGIC on a variety of tasks such as lexical constrained generation, summarization, and
machine translation.

1https://github.com/Significant-Gravitas/AutoGPT
2https://github.com/TransformerOptimus/SuperAGI
3https://github.com/yoheinakajima/babyagi
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Figure 2: Examples of truth assignments over time with various LTL operators

Despite the significant progress in improving text generation using inference-type constraints, there
remains a significant gap in the literature for improving generation from large-language models
during inference, particularly for constraining the thought and action sequences as specified, for
language models as agents. Thus, in this work we take the first step toward this by constraining
agents to follow specifications for example, in ReACT Yao et al. (2022), Reflexion Shinn et al.
(2023), chain-of-thought Wei et al. (2022) and chat-bot agents.

3 METHOD

In this section, we introduce our framework for designing and implementing autonomous agents that
can interact with the environment to solve problems expressed in natural language. Our framework
is intended to be lightweight (i.e., add as little additional overhead to LLM operation as is possible)
and declarative (i.e., the user specifies the desired high-level behavior in terms of constraints without
concern for how they should be implemented or enforced). To begin, we introduce linear temporal
logic, which underpins our agent specification framework. Then, we provide a more formal defini-
tion of agents and how they are specified in our framework. Last, we describe how the specification
framework is used to define a constrained decoder that controls what an agent can generate.

3.1 LINEAR TEMPORAL LOGIC

Here we provide a light overview of linear temporal logic (LTL), which is the key component to
our agent specification framework. LTL is a modal temporal logic originally introduced for formal
verification Pnueli (1977) that extends propositional logic with the temporal operators ⃝ (next) and
U (until). The two operators have intuitive definitions, with ⃝ (next) being a unary operator that
(informally) means a formula φ must hold in the next time step, and U (until) being a binary operator
that specifies a formula φi must be true until φj becomes true. LTL formulas are defined over a set
of atomic propositions P with their syntax given by

φ ::= true
∣∣ p

∣∣ ¬φ
∣∣ φ1 ∧ φ2

∣∣ ⃝ φ
∣∣ φ1 U φ2 where p ∈ P

An LTL formula is evaluated over an infinite sequence of observations, where each observation
is a truth assignment over symbols in P . Letting φ be a LTL formula and σ be the sequence of
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observations σ = ⟨σ1, σ2, . . .⟩, where each σi can be considered the subset of P that is true at time
i, then we write σ |= φ (satisfies) when

σ |= true

σ |= p iff p ∈ σ0

σ |= ¬φ iff σ ̸|= φ (i.e., σ |= φ does not hold)
σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2

σ |= ⃝φ iff σ[1 . . .] |= φ

σ |= φ1 U φ2 iff ∃j ≥ 0. σ[j . . .] |= φ2 and σ[i . . .] |= φ1, for all 0 ≤ i < j

where σ[i . . .] = ⟨σi, . . .⟩ is the remaining sequence of observations following time step i. From the
operators listed above, we can define additional propositional logic operators ∨ (disjunction), and
→ (implication) as well as temporal operators ♢ (eventually) and □ (always)

φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2)

φ1 → φ2 := ¬φ1 ∨ φ2

♢ φ := true U φ

□ φ := ¬ ♢ ¬φ
In addition, we also define a convenient shorthand notation for a chained sequence of next operators

⃝ ⟨φ1, φ2, φ3, . . .⟩ := φ1 ∧ (φ1 → ⃝(φ2 ∧ (φ2 → ⃝(φ3 ∧ (φ3 → ⃝(. . .))))))

with this having the straightforward informal interpretation of “φ1 then φ2 then φ3”. In Figure 2, we
provide a graphical depiction of the truth assignments over time for the above temporal operators.

In this work, we found that only allowing formulas to be those containing atomic propositions p, as
well as operators →, ⃝ , □ , and U (i.e., we do not allow formulas to include ¬, ∧, etc.) was sufficient
to represent the range of existing agent architectures. We leave extending the set of operators (e.g.,
to include ♢ , ∧, etc.) to future work. For more details regarding LTL and its numerous applications,
we direct the interested reader to Baier & Katoen (2008).

3.2 SPECIFYING AGENT BEHAVIOR

We model agents as generic transition systems, where a transition system is considered a tuple
⟨S, δ, s0, send⟩ consisting of a non-empty set of states S, a state transition function δ, an initial state
s0, and a final state send. At each time step, the agent will receive a string from either an LLM or the
environment 4, with the source of the string being determined by the particular state the agent is in.
To define an agent and its underlying transition system, the user provides a specification consisting
of 1) a list of states and their properties and 2) a desired behavior in the form of an LTL formula.

Figure 3 shows an example of a specification being provided in the format of a PDDL-style s-
expression. In the specification, the :states list contains all possible states for the agent. Each
state within the list must specify a prompt string (e.g., “Thought:” for the Thought state), which
will serve as both an initial prompt for when the agent is in that state and as a signal to detect when a
state transition occurs. By default it is assumed that the string received by an agent will be provided
by the LLM. A user may override this by indicating the environment as the intended provider instead
by using a special :env-input flag (e.g., shown in the Observation state).

The behavior of an agent is provided in the :behavior list. Referring back to the specification, we
see an LTL formulation of the ReACT architecture (shown in Figure 1). In the formula, LTL opera-
tors (i.e., next and until) maintain the expected semantics (i.e., next interpreted as ⃝ ⟨. . .⟩ and
until interpreted as U). The LTL specification provides a constraint on the state transition function
δ, where only transitions that abide by the LTL formula are allowed (e.g., from the Thought state,
the only possible transition is to the Action state). Lastly, unless otherwise specified, the initial
and final states (i.e., s0 and send, respectively) are always assumed to be the “first” and “last” states
to appear in the LTL formula (in this case being Thought and Answer). Beyond ReACT, we also
provide examples of how other prompting schemes are implemented in our framework, e.g., Shinn
et al. (2023); Wei et al. (2022), in the Appendix.

4Here we refer to the “environment” as any provider of text that is not the LLM (e.g., external tools)
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(define react-agent
(:states
(Thought (:text "Thought:"))
(Action (:text "Action:"))
(Action-Input (:text "Action Input:"))
(Observation (:text "Observation:") (:flags :env-input))
(Final-Thought (:text "Final Thought:"))
(Answer (:text "Answer:"))

)
(:behavior
(next
(until
(next Thought Action Action-Input Observation)
Final-Thought)

Answer)
)

)

Figure 3: Specification for ReACT agent for the ReACT architecture shown in Figure 1(b)

3.3 CONSTRAINING AGENT BEHAVIOR

An LLM-based agent begins generation similarly to any other prompting-based approach. First, the
input prompt, consisting of instructions and (optionally) a small number of examples, is concate-
nated with the text of the target problem and fed to the agent. Next, the agent is provided with the
prompt text associated with the initial state s0 (e.g., “Thought:” for the agent defined in Figure 3).
At this point, the agent is considered to be in state s0 and must now operate according to the behav-
ior specified by its associated LTL formula. For the remainder of generation, the agent alternates
between state transitions and text generation, with the agent terminating when it finishes generating
text while in the final state, send.

State transitions are signaled when the underlying LLM produces the prompt text associated with
any of its specification’s states. Consider an agent in state si where the next valid states are {sj , . . .}.
We will refer to the text generated at this state as ti, where ti may originate from either the LLM
or the environment (e.g., the output of an API call). If ti ends with a prompt string associated with
a valid state sj , the agent has followed the specification successfully. Thus, the state transition is
executed (i.e., the agent’s state is set to be sj) and the agent resumes generation from the next state.
Alternatively, if ti does not end with a prompt string associated with a valid state, the agent enacts
a state transition by picking a valid state sj arbitrarily and forcing its underlying LLM to decode to
its associated prompt string (this is done with a decoder-side mask). This is now the same situation
before, and so the state transition is executed and generation continues.

There are two nuances to consider for state transitions. First, when ti is produced by the envi-
ronment, we do not expect ti to end with a particular state’s prompt text, and thus the LLM is
immediately called upon to enact a state transition when the agent receives ti. Second, when ti
is generated by the LLM, it may end by decoding an invalid state’s prompt text (e.g., generating
“Thought:” when it should generate “Action:”). For these cases, the incorrect state’s prompt text is
removed from ti and a state transition to a valid state is forcibly executed.

Lastly, we remark that one advantage of our system is the ease in which content constraints can be
applied. In this work, we consider a content constraint to be a hard constraint on what the LLM
is allowed to output in a particular state. For instance, a restriction on the set of allowed outputs
in the tool-selection state to be only the names of valid tools (e.g., Action state in the ReACT
framework). By allowing a user to specify what strings are acceptable within a particular state, the
risk of certain types of hallucinations can be eliminated. Conveniently, the enforcement of a content
constraint uses the same mechanism that is used to constrain state transitions.
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(a) Example of text output by ablated ReACT agent. Text that the agent is forced to decode is highlighted in
green while text freely generated by the underlying LLM or the environment is highlighted in yellow

(define react-ablation-agent
(:states
(Thought (:text "Thought:"))
(Observation (:text "Observation:") (:flags :env-input))
(Final-Thought (:text "Final Thought:"))

)
(:behavior
(until
(next Thought Observation)
Final-Thought)

)
)

(b) Specification for ablated ReACT agent

Figure 4: ReACT agent with fewer constraints imposed on generation

4 EXPERIMENTS

We were interested to learn under what conditions the constraints imposed on generation were useful
for improving agent performance. To explore this, we ran evaluations using the well-known ReACT
Yao et al. (2022) architecture with a variety of different settings on three standard datasets: 1)
GSM8K Cobbe et al. (2021), a mathematical reasoning dataset that tests the ability of a system to
solve grade school math word problems, 2) HotpotQA Yang et al. (2018), a multi-hop question-
answering dataset that requires reasoning over passages from Wikipedia, and 3) Fever Thorne et al.
(2018), a claim verification dataset that requires assessing the validity of a claim against Wikipedia
and predicting a label of “SUPPORTS”, “REFUTES”, or “NOT ENOUGH INFO”.

Like Yao et al. (2022), we do not use the annotated Wikipedia passages and instead have the agent
choose what terms to search in Wikipedia. Given the compute cost involved with running such a
large number of experiments with large models and the number of questions involved in each dataset,
for HotpotQA and Fever we selected a random subset of 500 questions from the development set for
evaluation (however, for GSM8K we kept the full test set for evaluation). In addition, to control the
generation size, we limited the number of ReACT loops to a maximum of 3 across all experiments.

4.1 SETUP

We hypothesized that the additional structure provided by a specification would be most useful for
weaker LLMs. To determine if this was the case, we evaluated against an ablated version of the
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Model Few-Shot k HotpotQA Acc. (%) Fever Acc. (%) GSM8K Acc. (%)

ReACT Abl. ReACT ReACT Abl. ReACT ReACT Abl. ReACT

MPT-7b 0 0.2 1.6 10.2 29.8 2.6 3.9
MPT-7b 1 2.8 10.0 44.8 45.0 5.6 6.4
MPT-7b 2 5.8 8.8 53.4 53.0 5.1 6.1
MPT-7b 3 7.8 12.4 44.2 43.4 3.5 6.6

MPT-30b 0 3.8 7.2 34.0 36.4 12.1 14.4
MPT-30b 1 12.0 13.8 48.4 49.2 19.0 24.2
MPT-30b 2 14.4 15.2 45.0 45.2 23.4 28.1
MPT-30b 3 15.4 16.8 49.8 50.8 25.5 29.9

SOTA ♣ – 67.5 89.5 97.0
ReACT♢ – 27.4 60.9 N/A

Table 1: HotpotQA Yang et al. (2018), Fever Thorne et al. (2018), and GSM8K Cobbe et al. (2021)
results. “ReACT Abl.” and “ReACT” refer to the partially and fully constrained agents. For Hot-
potQA and Fever, evaluation was performed on 500 question subsets of the development sets, while
GSM8K evaluation was performed on the complete test set. For reference, we also provide the re-
sults for the supervised state-of-the-art ♣ (Zhu et al. (2021); Lewis et al. (2020); Zhou et al. (2023))
on all three datasets, and the results from the original ReACT ♢ which utilized PaLM-540B Chowd-
hery et al. (2022) as its underlying LLM

ReACT framework in experiments where we varied two hyperparameters of our system: 1) the
number of examples k provided in our few-shot prompts, which ranged from 0 to 3, and 2) the size
of the underlying LLM in terms of number of parameters, where the model was an MPT instruction
fine-tuned model Team (2023) with either 7 billion or 30 billion parameters.

Our implementation for both agents was built for the Huggingface Wolf et al. (2019) library, with
state transitions being monitored and executed by a layer of code that lies on top of the built-in
transformer models. Both systems had access to the same tools: 1) Calculator for GSM8K,
which executes the formula provided as input and returns a number, 2) Search for HotpotQA and
Fever, which returns the first 5 sentences from the Wikipedia page for the entity if it exists, or returns
the 5 most similar entities with Wikipedia pages, 3) Lookup for HotpotQA and Fever, which returns
the next sentence containing the input string in the last Wikipedia page searched for. To assess the
utility of content constraints, we restricted the Action state to only output valid tools.

Our comparison system was a partially constrained agent (shown in Figure 4) without explicit state
definitions for Action, Action-Input, and Answer. When the ablated specification was used,
the agent was not forced to output the text associated with each of those states (i.e., in the Thought
state, it was not forced to next output actions and their inputs). Instead, the only signal that those
keywords should be part of the LLM output would come from the prompts given to the agent. For
both the fully constrained and partially constrained agents, we took the final answer to be the text
output after “Answer:”, which should be found in the Answer and Final-Thought states for the
standard and ablated agents, respectively. In the Appendix, we provide all prompts used to initialize
both models (the prompts were the same for both agents).

5 RESULTS

In Table 1 we provide the results for all three datasets. The “ReACT Abl.” and “ReACT” columns
show results for the partially and fully constrained agents. In the tables, we see that the results
largely follow our predictions, with the weakest models (i.e., the smaller models with fewer prompt
examples) exhibiting the most significant differences between the normal and ablated agents. No-
tably, with only a few exceptions (i.e., k ∈ {1, 2} for Fever), the ablated agent was always worse,
which indicates the value of providing constraints during agent generation.

For both datasets, the most pronounced differences were observed in the zero-shot case (i.e., when
the agent was given only the instructions for how to solve a problem with no examples). The 7b
models had the widest gap on Fever, with the standard agent exhibiting a near 20% improvement
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Figure 5: Example of an output where the ablated agent does not conform to the desired behavior

over the ablated agent. We attribute this to the smaller model’s inability to follow instructions
without an example, as the ablated agent made no prediction at all for 60% of all questions (i.e., did
not predict one of the three possible labels for Fever). However, this appeared to only be an issue
for the zero-shot case, as the ablated agent made predictions for all of Fever when a single prompt
example was added.

The relative differences in performance between the two agents were more significant and more
consistent for both HotpotQA and GSM8K than for Fever. We attribute this to Fever being a much
simpler dataset, where the answer is only one of three possible options. Thus, whether the model
got distracted or not, as long as it predicted one of the three answers it would have a good chance
of answering correctly. In contrast, in both HotpotQA and GSM8K, the set of possible answers are
almost entirely unconstrained. This helps to explain why the ablated agent marginally outperformed
the unablated agent for k ∈ {1, 2} for Fever.

Lastly, the number of parameters had a clear effect on the utility of constrained decoding. As
evidenced by their performances in the zero-shot case, the 30b models were much more capable
of following instructions. Still, that the 30b model in the ablated agent was outperformed uniformly
by the main agent across all three datasets demonstrates that the use of constrained decoding may
still be of some benefit as the datasets and instructions get more complex.

In Figure 5, we provide an example where the ablated agent does not follow the desired behav-
ior (i.e., the behavior exemplified in the prompts given to the agent). As can be seen, the agent
repeatedly skips the Action-Input step, which means the action (Search or Lookup) is
executed with null inputs. In addition, the model terminates decoding after outputting for the
Final-Thought state, which means there is no predicted answer.

6 CONCLUSION

In this work, we introduced a framework for defining agents using LTL in a task-agnostic, domain
general fashion. The LTL formulation of an agent can be used to construct a constrained decoder,
which controls the high-level behavior of an agent at runtime. We demonstrated the utility of our
framework with experiments on three datasets, where we found that the hard constraints imposed on
generation by our approach can lead to an increase in agent performance.

We discussed the several benefits and advantages of our approach. First and foremost, the introduc-
tion of a standard format for defining agents makes the process of implementing alternative agent
types extremely straightforward. Second, because the LTL specification is provided prior to gen-
eration, it is straightforward to implement the monitor on top of the LLM generation code. Thus,
many decoder-side optimizations are possible that can reduce the amount of redundant computation
observed by prior works Xu et al. (2023); Wang et al. (2023). In addition, the logic-based approach
makes it trivial to incorporate content constraints into decoding (as in Lu et al. (2021)).
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A APPENDIX

A.1 HYPERPARAMETERS AND HARDWARE

There were not many hyperparameters to our approach beyond those listed in the experiments sec-
tion, as our LLMs were only used for inference. The decoding strategy for our LLMs was set to
greedy. In terms of hardware, our experimental setup utilized a HPC cluster with CPU and GPU
machines running Red Hat Enterprise Linux release 8.7 (Ootpa). The GPU machines had 2 CPU
cores and 100GB of RAM, and ran an NVIDIA A100 Tensor Core GPU with 80GB of GPU memory.

A.2 AGENT PROMPTS

A.3 AGENT DEFINITIONS

13
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Determine if there is an observation that SUPPORTS or REFUTES
a Claim, or if there is NOT ENOUGH INFORMATION. You have
access to the following tools:
{{tool descriptions}}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of {{tool labels}}
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat
N times)
Final Thought: this is the last thought
Answer: this should be one of [SUPPORTS, REFUTES, NOT ENOUGH
INFORMATION]

Here are some examples.

Claim: Nikolaj Coster-Waldau worked with the Fox
Broadcasting Company.
Thought: I need to look up Nikolaj Coster-Waldau and find if
he has worked with the Fox Broadcasting Company.
Action: Lookup
Action Input: Nikolaj Coster-Waldau
Observation: Cannot use Lookup without using Search first!
Thought: I need to search instead.
Action: Search
Action Input: Nikolaj Coster-Waldau
Observation: Nikolaj William Coster-Waldau (born 27 July
1970) is a Danish actor and producer. He graduated from
the Danish National School of Performing Arts in Copenhagen
in 1993,[1] and had his breakthrough role in Denmark with
the film Nightwatch (1994). He played Jaime Lannister in
the HBO fantasy drama series Game of Thrones, for which he
received two Primetime Emmy Award nominations for Outstanding
Supporting Actor in a Drama Series.. Coster-Waldau has
appeared in numerous films in his native Denmark and
Scandinavia, including Headhunters (2011) and A Thousand
Times Good Night (2013). In the U.S, his debut film role
was in the war film Black Hawk Down (2001), playing Medal of
Honor recipient Gary Gordon.[2] He then played a detective in
the short-lived Fox television series New Amsterdam (2008),
and appeared in the 2009 Fox television film Virtuality,
originally intended as a pilot. Final Thought: Because
he äppeared in the 2009 Fox television film Virtuality,̈ he
should have worked with the Fox Broadcasting Company.
Answer: SUPPORTS

Claim:

Figure 6: Fever Thorne et al. (2018) ReACT prompt with k = 1 few-shot examples
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Answer the following questions as best you can. You have
access to the following tools:
{{tool descriptions}}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of {{tool labels}}
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat
N times)
Final Thought: this is the last thought
Answer: this should be one of [SUPPORTS, REFUTES, NOT ENOUGH
INFORMATION]

Here are some examples.

Question: What is the elevation range for the area that the
eastern sector of the Colorado orogeny extends into?
Thought: I need to lookup Colorado orogeny, find the area
that the eastern sector of the Colorado orogeny extends into,
then find the elevation range of the area.
Action: Lookup
Action Input: Colorado orogeny
Observation: Cannot use Lookup without using Search first!
Thought: I need to search instead.
Action: Search
Action Input: Colorado orogeny
Observation: The Colorado orogeny was an episode of mountain
building (an orogeny) in Colorado and surrounding areas.
Thought: It does not mention the eastern sector. So I need
to look up eastern sector.
Action: Lookup
Action Input: eastern sector
Observation: (Result 1 / 1) The eastern sector extends into
the High Plains and is called the Central Plains orogeny.
Thought: The eastern sector of Colorado orogeny extends into
the High Plains. So I need to search High Plains and find
its elevation range.
Action: Search
Action Input: High Plains
Observation: High Plains refers to one of two distinct land
regions:
Thought: I need to instead search High Plains (United
States).
Action: Search
Action Input: High Plains (United States)
Observation: The High Plains are a subregion of the Great
Plains. From east to west, the High Plains rise in elevation
from around 1,800 to 7,000 ft (550 to 2,130 m).[3]
Final Thought: High Plains rise in elevation from around
1,800 to 7,000 ft, so the answer is 1,800 to 7,000 ft.
Answer: 1,800 to 7,000 ft

Question:

Figure 7: HotpotQA Yang et al. (2018) ReACT prompt with k = 1 few-shot examples
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Answer the following questions as best you can. You have
access to the following tools:
{{tool descriptions}}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of {{tool labels}}
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat
N times)
Final Thought: this is the last thought
Answer: this should be one of [SUPPORTS, REFUTES, NOT ENOUGH
INFORMATION]

Here are some examples.

Question: Natalia sold clips to 48 of her friends in April,
and then she sold half as many clips in May. How many clips
did Natalia sell altogether in April and May?
Thought: I need to use the number of clips in April to
determine the number of clips sold in May. In May, Natalia
sold half of the amount of clips that she did in April.
Action: Calculator
Action Input: 48 / 2
Observation: 24
Thought: Now I need to add the number of clips I calculated
for May with the number of clips she sold in April
Action: Calculator
Action Input: 24 + 48
Observation: 72
Final Thought: So Natalia sold 72 clips altogether in April
and May.
Answer: 72

Question:

Figure 8: GSM8K Cobbe et al. (2021) ReACT prompt with k = 1 few-shot examples
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(define react-agent
(:states
(Thought (:text "Thought:"))
(Action (:text "Action:"))
(Action-Input (:text "Action Input:"))
(Observation (:text "Observation:") (:flags :env-input))
(Final-Thought (:text "Final Thought:"))
(Answer (:text "Answer:"))

)
(:behavior
(next
(until
(next Thought Action Action-Input Observation)
Final-Thought)

Answer)
)

)

Figure 9: Specification for ReACT agent

(define chain-of-thought-agent
(:states
(Thought (:text "Let’s think step by step."))
(Answer (:text "Answer:"))

)
(:behavior
(next Thought Answer)

)
)

Figure 10: Specification for Chain-of-Thought agent
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(define reflexion-agent
(:states
(Thought (:text "Thought:"))
(Action (:text "Action:"))
(Action-Input (:text "Action Input:"))
(Observation (:text "Observation:") (:flags :env-input))
(Final-Thought (:text "Final Thought:"))
(Answer (:text "Answer:"))
(Evaluator (:text "Evaluation:") (:flags :env-input))
(Reflection (:text "Reflection:"))
(Finish (:text "Generation complete!"))

)
(:behavior
(until
(next
(until
(next Thought Action Action-Input Observation)
Final-Thought)

Answer
Evaluator
Reflection)

Finish)
)

)

Figure 11: Specification for Reflexion agent

(define chat-bot-agent
(:states
(Chat-Bot (:text "Chat Bot:"))
(User (:text "User:") (:flags :env-input))

)
(:behavior
(always
(next Chat-Bot User)

)
)

)

Figure 12: Specification for Chat-bot agent
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