File size: 11,798 Bytes
1c4becd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import os
import sys
import string
import random
import numpy as np
import math
import json
from torch.utils.data import DataLoader
import torch

import utils
from modules import audio

sys.path.append('../..')
from utils import load_wav


class BaseDataset(torch.utils.data.Dataset):

    def __init__(self, hparams, fileid_list_path):
        self.hparams = hparams
        self.fileid_list = self.get_fileid_list(fileid_list_path)
        random.seed(hparams.train.seed)
        random.shuffle(self.fileid_list)
        if (hparams.data.n_speakers > 0):
            self.spk2id = hparams.spk

    def get_fileid_list(self, fileid_list_path):
        fileid_list = []
        with open(fileid_list_path, 'r') as f:
            for line in f.readlines():
                fileid_list.append(line.strip())

        return fileid_list

    def __len__(self):
        return len(self.fileid_list)


class SingDataset(BaseDataset):
    def __init__(self, hparams, data_dir, fileid_list_path):
        BaseDataset.__init__(self, hparams, fileid_list_path)
        self.hps = hparams
        self.data_dir = data_dir
        # self.__filter__()

    def __filter__(self):
        new_fileid_list= []
        for wav_path in self.fileid_list:
            # mel_path = wav_path + ".mel.npy"
            # mel = np.load(mel_path)
            # if mel.shape[0] < 60:
            #     print("skip short audio:", wav_path)
            #     continue
            # if mel.shape[0] > 800:
            #     print("skip long audio:", wav_path)
            #     continue
            # assert mel.shape[1] == 80
            new_fileid_list.append(wav_path)
        print("original length:", len(self.fileid_list))
        print("filtered length:", len(new_fileid_list))
        self.fileid_list = new_fileid_list

    def interpolate_f0(self, data):
        '''
        对F0进行插值处理
        '''
        data = np.reshape(data, (data.size, 1))

        vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
        vuv_vector[data > 0.0] = 1.0
        vuv_vector[data <= 0.0] = 0.0

        ip_data = data

        frame_number = data.size
        last_value = 0.0
        for i in range(frame_number):
            if data[i] <= 0.0:
                j = i + 1
                for j in range(i + 1, frame_number):
                    if data[j] > 0.0:
                        break
                if j < frame_number - 1:
                    if last_value > 0.0:
                        step = (data[j] - data[i - 1]) / float(j - i)
                        for k in range(i, j):
                            ip_data[k] = data[i - 1] + step * (k - i + 1)
                    else:
                        for k in range(i, j):
                            ip_data[k] = data[j]
                else:
                    for k in range(i, frame_number):
                        ip_data[k] = last_value
            else:
                ip_data[i] = data[i]
                last_value = data[i]

        return ip_data, vuv_vector

    def parse_label(self, pho, pitchid, dur, slur, gtdur):
        phos = []
        pitchs = []
        durs = []
        slurs = []
        gtdurs = []

        for index in range(len(pho.split())):
            phos.append(npu.symbol_converter.ttsing_phone_to_int[pho.strip().split()[index]])
            pitchs.append(0)
            durs.append(0)
            slurs.append(0)
            gtdurs.append(float(gtdur.strip().split()[index]))

        phos = np.asarray(phos, dtype=np.int32)
        pitchs = np.asarray(pitchs, dtype=np.int32)
        durs = np.asarray(durs, dtype=np.float32)
        slurs = np.asarray(slurs, dtype=np.int32)
        gtdurs = np.asarray(gtdurs, dtype=np.float32)

        acc_duration = np.cumsum(gtdurs)
        acc_duration = np.pad(acc_duration, (1, 0), 'constant', constant_values=(0,))
        acc_duration_frames = np.ceil(acc_duration / (self.hps.data.hop_length / self.hps.data.sampling_rate))
        gtdurs = acc_duration_frames[1:] - acc_duration_frames[:-1]

        # new_phos = []
        # new_gtdurs=[]
        # for ph, dur in zip(phos, gtdurs):
        #     for i in range(int(dur)):
        #         new_phos.append(ph)
        #         new_gtdurs.append(1)

        phos = torch.LongTensor(phos)
        pitchs = torch.LongTensor(pitchs)
        durs = torch.FloatTensor(durs)
        slurs = torch.LongTensor(slurs)
        gtdurs = torch.LongTensor(gtdurs)
        return phos, pitchs, durs, slurs, gtdurs

    def __getitem__(self, index):
        wav_path = self.fileid_list[index]

        spk = wav_path.split('/')[-2]
        spkid = self.spk2id[spk]

        wav = load_wav(wav_path,
                       raw_sr=self.hparams.data.sampling_rate,
                       target_sr=self.hparams.data.sampling_rate,
                       win_size=self.hparams.data.win_size,
                       hop_size=self.hparams.data.hop_length)

        mel_path = wav_path + ".mel.npy"
        if not os.path.exists(mel_path):
            mel = audio.melspectrogram(wav, self.hparams.data).astype(np.float32).T
            np.save(mel_path, mel)
        else:
            mel = np.load(mel_path)

        if mel.shape[0] < 30:
            print("skip short audio:", self.fileid_list[index])
            return None
        assert mel.shape[1] == 80
        mel = torch.FloatTensor(mel).transpose(0, 1)

        f0_path = wav_path + ".f0.npy"
        f0 = np.load(f0_path)
        assert abs(f0.shape[0]-mel.shape[1]) < 2, (f0.shape ,mel.shape)
        sum_dur = min(f0.shape[0], mel.shape[1])
        f0 = f0[:sum_dur]
        mel = mel[:, :sum_dur]

        f0, uv = self.interpolate_f0(f0)
        f0 = f0.reshape([-1])
        f0 = torch.FloatTensor(f0).reshape([1, -1])

        uv = uv.reshape([-1])
        uv = torch.FloatTensor(uv).reshape([1, -1])

        wav = wav.reshape(-1)
        if (wav.shape[0] != sum_dur * self.hparams.data.hop_length):
            if (abs(wav.shape[0] - sum_dur * self.hparams.data.hop_length) > 3 * self.hparams.data.hop_length):
                print("dataset error wav : ", wav.shape, sum_dur)
                return None
            if (wav.shape[0] > sum_dur * self.hparams.data.hop_length):
                wav = wav[:sum_dur * self.hparams.data.hop_length]
            else:
                wav = np.concatenate([wav, np.zeros([sum_dur * self.hparams.data.hop_length - wav.shape[0]])], axis=0)
        wav = torch.FloatTensor(wav).reshape([1, -1])

        c_path = wav_path + ".soft.pt"
        c = torch.load(c_path)
        c = utils.repeat_expand_2d(c.squeeze(0), sum_dur)

        assert f0.shape[1] == mel.shape[1]

        if mel.shape[1] > 800:
            start = random.randint(0, mel.shape[1]-800)
            end = start + 790
            mel = mel[:, start:end]
            f0 = f0[:, start:end]
            uv = uv[:, start:end]
            c = c[:, start:end]
            wav = wav[:, start*self.hparams.data.hop_length:end*self.hparams.data.hop_length]
        return c, mel, f0, wav, spkid, uv


class SingCollate():

    def __init__(self, hparams):
        self.hparams = hparams
        self.mel_dim = self.hparams.data.acoustic_dim

    def __call__(self, batch):
        batch = [b for b in batch if b is not None]

        input_lengths, ids_sorted_decreasing = torch.sort(
            torch.LongTensor([len(x[0]) for x in batch]),
            dim=0, descending=True)

        max_c_len = max([x[0].size(1) for x in batch])
        max_mel_len = max([x[1].size(1) for x in batch])
        max_f0_len = max([x[2].size(1) for x in batch])
        max_wav_len = max([x[3].size(1) for x in batch])

        c_lengths = torch.LongTensor(len(batch))
        mel_lengths = torch.LongTensor(len(batch))
        f0_lengths = torch.LongTensor(len(batch))
        wav_lengths = torch.LongTensor(len(batch))

        c_padded = torch.FloatTensor(len(batch), self.hparams.data.c_dim, max_mel_len)
        mel_padded = torch.FloatTensor(len(batch), self.hparams.data.acoustic_dim, max_mel_len)
        f0_padded = torch.FloatTensor(len(batch), 1, max_f0_len)
        uv_padded = torch.FloatTensor(len(batch), 1, max_f0_len)
        wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
        spkids = torch.LongTensor(len(batch))

        c_padded.zero_()
        mel_padded.zero_()
        f0_padded.zero_()
        uv_padded.zero_()
        wav_padded.zero_()

        for i in range(len(ids_sorted_decreasing)):
            row = batch[ids_sorted_decreasing[i]]

            c = row[0]
            c_padded[i, :, :c.size(1)] = c
            c_lengths[i] = c.size(1)

            mel = row[1]
            mel_padded[i, :, :mel.size(1)] = mel
            mel_lengths[i] = mel.size(1)

            f0 = row[2]
            f0_padded[i, :, :f0.size(1)] = f0
            f0_lengths[i] = f0.size(1)

            wav = row[3]
            wav_padded[i, :, :wav.size(1)] = wav
            wav_lengths[i] = wav.size(1)

            spkids[i] = row[4]

            uv = row[5]
            uv_padded[i, :, :uv.size(1)] = uv


        data_dict = {}

        data_dict["c"] = c_padded
        data_dict["mel"] = mel_padded
        data_dict["f0"] = f0_padded
        data_dict["uv"] = uv_padded
        data_dict["wav"] = wav_padded

        data_dict["c_lengths"] = c_lengths
        data_dict["mel_lengths"] = mel_lengths
        data_dict["f0_lengths"] = f0_lengths
        data_dict["wav_lengths"] = wav_lengths
        data_dict["spkid"] = spkids

        return data_dict


class DatasetConstructor():

    def __init__(self, hparams, num_replicas=1, rank=1):
        self.hparams = hparams
        self.num_replicas = num_replicas
        self.rank = rank
        self.dataset_function = {"SingDataset": SingDataset}
        self.collate_function = {"SingCollate": SingCollate}
        self._get_components()

    def _get_components(self):
        self._init_datasets()
        self._init_collate()
        self._init_data_loaders()

    def _init_datasets(self):
        self._train_dataset = self.dataset_function[self.hparams.data.dataset_type](self.hparams,
                                                                                    self.hparams.data.data_dir,
                                                                                    self.hparams.data.training_filelist)
        self._valid_dataset = self.dataset_function[self.hparams.data.dataset_type](self.hparams,
                                                                                    self.hparams.data.data_dir,
                                                                                    self.hparams.data.validation_filelist)

    def _init_collate(self):
        self._collate_fn = self.collate_function[self.hparams.data.collate_type](self.hparams)

    def _init_data_loaders(self):
        train_sampler = torch.utils.data.distributed.DistributedSampler(self._train_dataset,
                                                                        num_replicas=self.num_replicas, rank=self.rank,
                                                                        shuffle=True)

        self.train_loader = DataLoader(self._train_dataset, num_workers=4, shuffle=False,
                                       batch_size=self.hparams.train.batch_size, pin_memory=True,
                                       drop_last=True, collate_fn=self._collate_fn, sampler=train_sampler)

        self.valid_loader = DataLoader(self._valid_dataset, num_workers=1, shuffle=False,
                                       batch_size=1, pin_memory=True,
                                       drop_last=True, collate_fn=self._collate_fn)

    def get_train_loader(self):
        return self.train_loader

    def get_valid_loader(self):
        return self.valid_loader