|
import torch |
|
from torchaudio.models.wav2vec2.utils import import_fairseq_model |
|
from fairseq import checkpoint_utils |
|
from onnxexport.model_onnx import SynthesizerTrn |
|
import utils |
|
|
|
def get_hubert_model(): |
|
vec_path = "hubert/checkpoint_best_legacy_500.pt" |
|
print("load model(s) from {}".format(vec_path)) |
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( |
|
[vec_path], |
|
suffix="", |
|
) |
|
model = models[0] |
|
model.eval() |
|
return model |
|
|
|
|
|
def main(HubertExport, NetExport): |
|
path = "SoVits4.0" |
|
|
|
'''if HubertExport: |
|
device = torch.device("cpu") |
|
vec_path = "hubert/checkpoint_best_legacy_500.pt" |
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( |
|
[vec_path], |
|
suffix="", |
|
) |
|
original = models[0] |
|
original.eval() |
|
model = original |
|
test_input = torch.rand(1, 1, 16000) |
|
model(test_input) |
|
torch.onnx.export(model, |
|
test_input, |
|
"hubert4.0.onnx", |
|
export_params=True, |
|
opset_version=16, |
|
do_constant_folding=True, |
|
input_names=['source'], |
|
output_names=['embed'], |
|
dynamic_axes={ |
|
'source': |
|
{ |
|
2: "sample_length" |
|
}, |
|
} |
|
)''' |
|
if NetExport: |
|
device = torch.device("cpu") |
|
hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json") |
|
SVCVITS = SynthesizerTrn( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
**hps.model) |
|
_ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", SVCVITS, None) |
|
_ = SVCVITS.eval().to(device) |
|
for i in SVCVITS.parameters(): |
|
i.requires_grad = False |
|
test_hidden_unit = torch.rand(1, 10, 256) |
|
test_pitch = torch.rand(1, 10) |
|
test_mel2ph = torch.LongTensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).unsqueeze(0) |
|
test_uv = torch.ones(1, 10, dtype=torch.float32) |
|
test_noise = torch.randn(1, 192, 10) |
|
test_sid = torch.LongTensor([0]) |
|
input_names = ["c", "f0", "mel2ph", "uv", "noise", "sid"] |
|
output_names = ["audio", ] |
|
SVCVITS.eval() |
|
torch.onnx.export(SVCVITS, |
|
( |
|
test_hidden_unit.to(device), |
|
test_pitch.to(device), |
|
test_mel2ph.to(device), |
|
test_uv.to(device), |
|
test_noise.to(device), |
|
test_sid.to(device) |
|
), |
|
f"checkpoints/{path}/model.onnx", |
|
dynamic_axes={ |
|
"c": [0, 1], |
|
"f0": [1], |
|
"mel2ph": [1], |
|
"uv": [1], |
|
"noise": [2], |
|
}, |
|
do_constant_folding=False, |
|
opset_version=16, |
|
verbose=False, |
|
input_names=input_names, |
|
output_names=output_names) |
|
|
|
|
|
if __name__ == '__main__': |
|
main(False, True) |
|
|