Datasets:
irds
/

Languages:
English
ArXiv:
dpr-w100 / dpr-w100.py
Sean MacAvaney
commit files to HF hub
4a8d29d
raw
history blame
1.83 kB
"""
""" # TODO
try:
import ir_datasets
except ImportError as e:
raise ImportError('ir-datasets package missing; `pip install ir-datasets`')
import datasets
IRDS_ID = 'dpr-w100'
IRDS_ENTITY_TYPES = {'docs': {'doc_id': 'string', 'text': 'string', 'title': 'string'}}
_CITATION = '@misc{Karpukhin2020Dpr,\n title={Dense Passage Retrieval for Open-Domain Question Answering},\n author={Vladimir Karpukhin and Barlas Oğuz and Sewon Min and Patrick Lewis and Ledell Wu and Sergey Edunov and Danqi Chen and Wen-tau Yih},\n year={2020},\n eprint={2004.04906},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}'
_DESCRIPTION = "" # TODO
class dpr_w100(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [datasets.BuilderConfig(name=e) for e in IRDS_ENTITY_TYPES]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({k: datasets.Value(v) for k, v in IRDS_ENTITY_TYPES[self.config.name].items()}),
homepage=f"https://ir-datasets.com/dpr-w100#dpr-w100",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
return [datasets.SplitGenerator(name=self.config.name)]
def _generate_examples(self):
dataset = ir_datasets.load(IRDS_ID)
for i, item in enumerate(getattr(dataset, self.config.name)):
key = i
if self.config.name == 'docs':
key = item.doc_id
elif self.config.name == 'queries':
key = item.query_id
yield key, item._asdict()
def as_dataset(self, split=None, *args, **kwargs):
split = self.config.name # always return split corresponding with this config to avid returning a redundant DatasetDict layer
return super().as_dataset(split, *args, **kwargs)