""" """ # TODO try: import ir_datasets except ImportError as e: raise ImportError('ir-datasets package missing; `pip install ir-datasets`') import datasets IRDS_ID = 'mmarco/fr/train' IRDS_ENTITY_TYPES = {'queries': {'query_id': 'string', 'text': 'string'}, 'qrels': {'query_id': 'string', 'doc_id': 'string', 'relevance': 'int64', 'iteration': 'string'}, 'docpairs': {'query_id': 'string', 'doc_id_a': 'string', 'doc_id_b': 'string'}} _CITATION = '@article{Bonifacio2021MMarco,\n title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},\n author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},\n year={2021},\n journal={arXiv:2108.13897}\n}' _DESCRIPTION = "" # TODO class mmarco_fr_train(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [datasets.BuilderConfig(name=e) for e in IRDS_ENTITY_TYPES] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({k: datasets.Value(v) for k, v in IRDS_ENTITY_TYPES[self.config.name].items()}), homepage=f"https://ir-datasets.com/mmarco#mmarco/fr/train", citation=_CITATION, ) def _split_generators(self, dl_manager): return [datasets.SplitGenerator(name=self.config.name)] def _generate_examples(self): dataset = ir_datasets.load(IRDS_ID) for i, item in enumerate(getattr(dataset, self.config.name)): key = i if self.config.name == 'docs': key = item.doc_id elif self.config.name == 'queries': key = item.query_id yield key, item._asdict() def as_dataset(self, split=None, *args, **kwargs): split = self.config.name # always return split corresponding with this config to avid returning a redundant DatasetDict layer return super().as_dataset(split, *args, **kwargs)