Sean MacAvaney
commited on
Commit
•
34faf26
1
Parent(s):
7a35d65
commit files to HF hub
Browse files- README.md +49 -0
- wikir_en1k.py +43 -0
README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pretty_name: '`wikir/en1k`'
|
3 |
+
viewer: false
|
4 |
+
source_datasets: []
|
5 |
+
task_categories:
|
6 |
+
- text-retrieval
|
7 |
+
---
|
8 |
+
|
9 |
+
# Dataset Card for `wikir/en1k`
|
10 |
+
|
11 |
+
The `wikir/en1k` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
|
12 |
+
For more information about the dataset, see the [documentation](https://ir-datasets.com/wikir#wikir/en1k).
|
13 |
+
|
14 |
+
# Data
|
15 |
+
|
16 |
+
This dataset provides:
|
17 |
+
- `docs` (documents, i.e., the corpus); count=369,721
|
18 |
+
|
19 |
+
|
20 |
+
## Usage
|
21 |
+
|
22 |
+
```python
|
23 |
+
from datasets import load_dataset
|
24 |
+
|
25 |
+
docs = load_dataset('irds/wikir_en1k', 'docs')
|
26 |
+
for record in docs:
|
27 |
+
record # {'doc_id': ..., 'text': ...}
|
28 |
+
|
29 |
+
```
|
30 |
+
|
31 |
+
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
|
32 |
+
data in 🤗 Dataset format.
|
33 |
+
|
34 |
+
## Citation Information
|
35 |
+
|
36 |
+
```
|
37 |
+
@inproceedings{Frej2020Wikir,
|
38 |
+
title={WIKIR: A Python toolkit for building a large-scale Wikipedia-based English Information Retrieval Dataset},
|
39 |
+
author={Jibril Frej and Didier Schwab and Jean-Pierre Chevallet},
|
40 |
+
booktitle={LREC},
|
41 |
+
year={2020}
|
42 |
+
}
|
43 |
+
@inproceedings{Frej2020MlWikir,
|
44 |
+
title={MLWIKIR: A Python Toolkit for Building Large-scale Wikipedia-based Information Retrieval Datasets in Chinese, English, French, Italian, Japanese, Spanish and More},
|
45 |
+
author={Jibril Frej and Didier Schwab and Jean-Pierre Chevallet},
|
46 |
+
booktitle={CIRCLE},
|
47 |
+
year={2020}
|
48 |
+
}
|
49 |
+
```
|
wikir_en1k.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""
|
3 |
+
""" # TODO
|
4 |
+
try:
|
5 |
+
import ir_datasets
|
6 |
+
except ImportError as e:
|
7 |
+
raise ImportError('ir-datasets package missing; `pip install ir-datasets`')
|
8 |
+
import datasets
|
9 |
+
|
10 |
+
IRDS_ID = 'wikir/en1k'
|
11 |
+
IRDS_ENTITY_TYPES = {'docs': {'doc_id': 'string', 'text': 'string'}}
|
12 |
+
|
13 |
+
_CITATION = '@inproceedings{Frej2020Wikir,\n title={WIKIR: A Python toolkit for building a large-scale Wikipedia-based English Information Retrieval Dataset},\n author={Jibril Frej and Didier Schwab and Jean-Pierre Chevallet},\n booktitle={LREC},\n year={2020}\n}\n@inproceedings{Frej2020MlWikir,\n title={MLWIKIR: A Python Toolkit for Building Large-scale Wikipedia-based Information Retrieval Datasets in Chinese, English, French, Italian, Japanese, Spanish and More},\n author={Jibril Frej and Didier Schwab and Jean-Pierre Chevallet},\n booktitle={CIRCLE},\n year={2020}\n}'
|
14 |
+
|
15 |
+
_DESCRIPTION = "" # TODO
|
16 |
+
|
17 |
+
class wikir_en1k(datasets.GeneratorBasedBuilder):
|
18 |
+
BUILDER_CONFIGS = [datasets.BuilderConfig(name=e) for e in IRDS_ENTITY_TYPES]
|
19 |
+
|
20 |
+
def _info(self):
|
21 |
+
return datasets.DatasetInfo(
|
22 |
+
description=_DESCRIPTION,
|
23 |
+
features=datasets.Features({k: datasets.Value(v) for k, v in IRDS_ENTITY_TYPES[self.config.name].items()}),
|
24 |
+
homepage=f"https://ir-datasets.com/wikir#wikir/en1k",
|
25 |
+
citation=_CITATION,
|
26 |
+
)
|
27 |
+
|
28 |
+
def _split_generators(self, dl_manager):
|
29 |
+
return [datasets.SplitGenerator(name=self.config.name)]
|
30 |
+
|
31 |
+
def _generate_examples(self):
|
32 |
+
dataset = ir_datasets.load(IRDS_ID)
|
33 |
+
for i, item in enumerate(getattr(dataset, self.config.name)):
|
34 |
+
key = i
|
35 |
+
if self.config.name == 'docs':
|
36 |
+
key = item.doc_id
|
37 |
+
elif self.config.name == 'queries':
|
38 |
+
key = item.query_id
|
39 |
+
yield key, item._asdict()
|
40 |
+
|
41 |
+
def as_dataset(self, split=None, *args, **kwargs):
|
42 |
+
split = self.config.name # always return split corresponding with this config to avid returning a redundant DatasetDict layer
|
43 |
+
return super().as_dataset(split, *args, **kwargs)
|