horoscop_neti / horoscop_neti.py
iulik-pisik's picture
ultima incercare (sper)
32fdeb4 verified
raw
history blame
3.13 kB
from datasets import GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split, Features, Value, Audio,SplitGenerator, Split
import os
import json
import csv
import datasets
from datasets.utils.py_utils import size_str
from tqdm import tqdm
_BASE_URL = "https://huggingface.co/datasets/iulik-pisik/horoscop_neti/resolve/main/"
_AUDIO_URL = _BASE_URL + "audio/{split}.tar"
_TRANSCRIPT_URL = _BASE_URL + "transcript/{split}.tsv"
class HoroscopNeti(GeneratorBasedBuilder):
def _info(self):
return DatasetInfo(
description="Descrierea datasetului tău.",
features=Features({
"path": Value("string"),
"audio": Audio(sampling_rate=16000),
"sentence": Value("string"),
}),
supervised_keys=("audio", "transcript"),
homepage="https://huggingface.co/datasets/iulik-pisik/horoscop_neti",
citation="Referința de citare a datasetului",
)
def _split_generators(self, dl_manager):
audio_urls = {
"train_audio": _AUDIO_URL.format(split="train"),
"test_audio": _AUDIO_URL.format(split="test"),
"validation_audio": _AUDIO_URL.format(split="validation"),
}
tsv_urls = {
"train_tsv": _TRANSCRIPT_URL.format(split="train"),
"test_tsv": _TRANSCRIPT_URL.format(split="test"),
"validation_tsv": _TRANSCRIPT_URL.format(split="validation"),
}
downloaded_audio_files = dl_manager.download_and_extract(audio_urls)
downloaded_tsv_files = dl_manager.download(tsv_urls)
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
"archive_path": downloaded_audio_files["train_audio"],
"tsv_path": downloaded_tsv_files["train_tsv"],
},
),
SplitGenerator(
name=Split.TEST,
gen_kwargs={
"archive_path": downloaded_audio_files["test_audio"],
"tsv_path": downloaded_tsv_files["test_tsv"],
},
),
SplitGenerator(
name=Split.VALIDATION,
gen_kwargs={
"archive_path": downloaded_audio_files["validation_audio"],
"tsv_path": downloaded_tsv_files["validation_tsv"],
},
),
]
def _generate_examples(self, archive_path, tsv_path):
with open(tsv_path, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in tqdm(reader, desc="Se citesc datele..."):
audio_file_name = row["path"]
audio_path = os.path.join(archive_path, audio_file_name)
if not os.path.isfile(audio_path):
continue
yield audio_file_name, {
"path": audio_path,
"audio": audio_path,
"sentence": row["sentence"],
}