from datasets import GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split, Features, Value, Audio,SplitGenerator, Split import os import json import csv import datasets from datasets.utils.py_utils import size_str from tqdm import tqdm _BASE_URL = "https://huggingface.co/datasets/iulik-pisik/horoscop_urania/resolve/main/" _AUDIO_URL = _BASE_URL + "audio.tar" _TRANSCRIPT_URL = _BASE_URL + "transcript.tsv" class HoroscopUrania(GeneratorBasedBuilder): def _info(self): return DatasetInfo( description="Descrierea datasetului tău.", features=Features({ "path": Value("string"), "audio": Audio(sampling_rate=16000), "sentence": Value("string"), }), supervised_keys=("audio", "transcript"), homepage="https://huggingface.co/datasets/iulik-pisik/horoscop_urania", citation="Referința de citare a datasetului", ) def _split_generators(self, dl_manager): downloaded_audio_files = dl_manager.download_and_extract(_AUDIO_URL) downloaded_tsv_files = dl_manager.download(_TRANSCRIPT_URL) return [ SplitGenerator( name=Split.DATA, gen_kwargs={ "archive_path": downloaded_audio_files, "tsv_path": downloaded_tsv_files, }, ), ] def _generate_examples(self, archive_path, tsv_path): with open(tsv_path, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) for row in tqdm(reader, desc="Se citesc datele..."): audio_file_name = row["path"] audio_path = os.path.join(archive_path, audio_file_name) if not os.path.isfile(audio_path): continue yield audio_file_name, { "path": audio_path, "audio": audio_path, "sentence": row["sentence"], }