Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
Indonesian
Size:
10K - 100K
License:
File size: 2,754 Bytes
3836b3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""Poem Tweets: Indonesian Poem Tweets Generation Dataset."""
import csv
import json
import os
import datasets
_DESCRIPTION = """\
This dataset is built for text generation task in context of poem tweets in Bahasa.
"""
_HOMEPAGE = "https://github.com/jakartaresearch"
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_TRAIN_URL = "https://media.githubusercontent.com/media/jakartaresearch/hf-datasets/main/poem-tweets/poem-tweets/train.csv"
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class Indonews(datasets.GeneratorBasedBuilder):
"""Poem Tweets: Indonesian Poem Tweets Generation Dataset."""
VERSION = datasets.Version("1.0.0")
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("int64"),
"screen_name": datasets.Value("string"),
"text": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE
)
def _split_generators(self, dl_manager):
train_path = dl_manager.download_and_extract(_TRAIN_URL)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath):
"""Generate examples."""
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(csv_file, delimiter=",")
next(csv_reader)
for id_, row in enumerate(csv_reader):
id_tweet, screen_name, text = row
yield id_, {"id": id_tweet, "screen_name": screen_name, "text": text} |