File size: 2,754 Bytes
3836b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""Poem Tweets: Indonesian Poem Tweets Generation Dataset."""


import csv
import json
import os

import datasets

_DESCRIPTION = """\
This dataset is built for text generation task in context of poem tweets in Bahasa.
"""

_HOMEPAGE = "https://github.com/jakartaresearch"

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_TRAIN_URL = "https://media.githubusercontent.com/media/jakartaresearch/hf-datasets/main/poem-tweets/poem-tweets/train.csv"


# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class Indonews(datasets.GeneratorBasedBuilder):
    """Poem Tweets: Indonesian Poem Tweets Generation Dataset."""

    VERSION = datasets.Version("1.0.0")

    def _info(self):
        
        features = datasets.Features(
            {
                "id": datasets.Value("int64"),
                "screen_name": datasets.Value("string"),
                "text": datasets.Value("string"),
            }
        )
        
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE
        )

    def _split_generators(self, dl_manager):

        train_path = dl_manager.download_and_extract(_TRAIN_URL)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath):
        """Generate examples."""
        with open(filepath, encoding="utf-8") as csv_file:
            csv_reader = csv.reader(csv_file, delimiter=",")
            next(csv_reader)
            for id_, row in enumerate(csv_reader):
                id_tweet, screen_name, text = row
                yield id_, {"id": id_tweet, "screen_name": screen_name, "text": text}