|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Script for reading 'Object Detection for Chess Pieces' dataset.""" |
|
|
|
|
|
import os |
|
import datasets |
|
|
|
from PIL import Image |
|
from glob import glob |
|
|
|
_CITATION = "" |
|
|
|
_DESCRIPTION = """\ |
|
The "Object Detection for Chess Pieces" dataset is a toy dataset created (as suggested by the name!) to introduce object detection in a beginner friendly way. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/faizankshaikh/chessDetection" |
|
|
|
_LICENSE = "CC-BY-SA:2.0" |
|
|
|
_REPO = "data" |
|
_URLS = {"train": f"{_REPO}/train.zip", "valid": f"{_REPO}/valid.zip"} |
|
|
|
_CATEGORIES = ["blackKing", "whiteKing", "blackQueen", "whiteQueen"] |
|
|
|
|
|
class DetectChessPieces(datasets.GeneratorBasedBuilder): |
|
"""Object Detection for Chess Pieces dataset""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"objects": datasets.Sequence({ |
|
"label": datasets.ClassLabel(names=_CATEGORIES), |
|
"bbox": datasets.Sequence(datasets.Value("int32"), length=4) |
|
}), |
|
} |
|
), |
|
supervised_keys=None, |
|
description=_DESCRIPTION, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URLS) |
|
print(data_dir["train"]) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"split": "train", "data_dir": data_dir["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"split": "valid", "data_dir": data_dir["valid"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, split, data_dir): |
|
image_dir = os.path.join(data_dir, "images") |
|
label_dir = os.path.join(data_dir, "labels") |
|
|
|
image_paths = sorted(glob(image_dir + "/*/*.png")) |
|
label_paths = sorted(glob(label_dir + "/*/*.txt")) |
|
|
|
for idx, (image_path, label_path) in enumerate(zip(image_paths, label_paths)): |
|
im = Image.open(image_path) |
|
width, height = im.size |
|
|
|
with open(label_path, "r") as f: |
|
lines = f.readlines() |
|
|
|
objects = [] |
|
for line in lines: |
|
line = line.strip().split() |
|
try: |
|
bbox_class = int(line[0]) |
|
bbox_xcenter = int(float(line[1]) * width) |
|
bbox_ycenter = int(float(line[2]) * height) |
|
bbox_width = int(float(line[3]) * width) |
|
bbox_height = int(float(line[4]) * height) |
|
except: |
|
print(f"Check file {f.name} for errors") |
|
|
|
objects.append({ |
|
"label": bbox_class, |
|
"bbox": [bbox_xcenter, bbox_ycenter, bbox_width, bbox_height] |
|
}) |
|
|
|
yield idx, {"image": image_path, "objects": objects} |