Datasets:

Modalities:
Text
Formats:
csv
Languages:
Korean
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 2,348 Bytes
1424fb9
df940a1
 
 
 
 
 
 
 
 
 
 
4e9794d
df940a1
 
 
 
 
1424fb9
 
df940a1
 
1424fb9
 
e66f813
1424fb9
e66f813
e82a23e
e66f813
e33b562
 
 
 
1424fb9
e66f813
1424fb9
e66f813
1424fb9
e66f813
1424fb9
e66f813
1424fb9
 
 
 
 
 
1c269f6
1424fb9
 
 
1c269f6
1424fb9
 
 
 
 
 
 
 
 
 
 
1c269f6
1424fb9
 
 
 
 
 
e66f813
1424fb9
 
1865aa2
 
e33a9ba
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
annotations_creators:
- crowdsourced
- crowd-generated
language_creators:
- found
languages:
- ko
licenses:
- cc-by-sa-4.0
multilinguality:
- monolingual
paperswithcode_id: apeach
pretty_name: 'APEACH'
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- binary-classification
---
# Dataset for project: kor_hate_eval

## Dataset Descritpion

Korean Hate Speech Evaluation Datasets : trained with [BEEP!](https://huggingface.co/datasets/kor_hate) and evaluate with [APEACH](https://github.com/jason9693/APEACH)

- **Repository: [Korean HateSpeech Evaluation Dataset](https://github.com/jason9693/APEACH)**
- **Paper: [APEACH: Attacking Pejorative Expressions with Analysis on Crowd-Generated Hate Speech Evaluation Datasets](https://arxiv.org/abs/2202.12459)**
- **Point of Contact: [Kichang Yang](ykcha9@gmail.com)**

### Languages

ko-KR

## Dataset Structure

### Data Instances

A sample from this dataset looks as follows:

```json
[
  {
    "text": "(\ud604\uc7ac \ud638\ud154\uc8fc\uc778 \uc2ec\uc815) \uc54418 \ub09c \ub9c8\ub978\ud558\ub298\uc5d0 \ub0a0\ubcbc\ub77d\ub9de\uace0 \ud638\ud154\ub9dd\ud558\uac8c\uc0dd\uacbc\ub294\ub370 \ub204\uad70 \uacc4\uc18d \ucd94\ubaa8\ubc1b\ub124....",
    "class": 1
  },
  {
    "text": "....\ud55c\uad6d\uc801\uc778 \ubbf8\uc778\uc758 \ub300\ud45c\uc801\uc778 \ubd84...\ub108\ubb34\ub098 \uacf1\uace0\uc544\ub984\ub2e4\uc6b4\ubaa8\uc2b5...\uadf8\ubaa8\uc2b5\ub4a4\uc758 \uc2ac\ud514\uc744 \ubbf8\ucc98 \uc54c\uc9c0\ubabb\ud588\ub124\uc694\u3160",
    "class": 0
  }
]
```

### Dataset Fields

The dataset has the following fields (also called "features"):

```json
{
  "text": "Value(dtype='string', id=None)",
  "class": "ClassLabel(num_classes=2, names=['Default', 'Spoiled'], id=None)"
}
```

### Dataset Splits

This dataset is split into a train and validation split. The split sizes are as follow:

| Split name   | Num samples         |
| ------------ | ------------------- |
| train (binarized BEEP!)        | 7896 |
| valid  (APEACH)       | 3770 |

## Citation
```
@article{yang2022apeach,
  title={APEACH: Attacking Pejorative Expressions with Analysis on Crowd-Generated Hate Speech Evaluation Datasets},
  author={Yang, Kichang and Jang, Wonjun and Cho, Won Ik},
  journal={arXiv preprint arXiv:2202.12459},
  year={2022}
}
```