Datasets:

Modalities:
Text
Formats:
csv
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 1,590 Bytes
c4b7f05
 
 
 
 
 
 
 
 
 
 
 
 
ed44fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: mit
task_categories:
- text-classification
language:
- en
tags:
- Skill Extraction
pretty_name: Skill Extraction - HOUSE
size_categories:
- n<1K
---
# Skill Extraction with ESCO skills - HOUSE subset

## Dataset Description

- **Paper:** https://arxiv.org/abs/2209.05987
- **Point of Contact:** jensjoris@techwolf.ai

## Dataset Summary

This dataset contains an extension of the `HOUSE` subset form the [SkillSpan](https://arxiv.org/abs/2204.12811) dataset, in which spans of skill mentions in sentences have been labeled with corresponding [ESCO](https://esco.ec.europa.eu/en/classification/skill_main) skills (ESCO v1.1.0).

### Citation Information

If you use this dataset, please include the following reference:

```
@inproceedings{decorte2022design,
  articleno    = {{4}},
  author       = {{Decorte, Jens-Joris and Van Hautte, Jeroen and Deleu, Johannes and Develder, Chris and Demeester, Thomas}},
  booktitle    = {{Proceedings of the 2nd Workshop on Recommender Systems for Human Resources (RecSys-in-HR 2022)}},
  editor       = {{Kaya, Mesut and Bogers, Toine and Graus, David and Mesbah, Sepideh and Johnson, Chris and Gutiérrez, Francisco}},
  isbn         = {{9781450398565}},
  issn         = {{1613-0073}},
  language     = {{eng}},
  location     = {{Seatle, USA}},
  pages        = {{7}},
  publisher    = {{CEUR}},
  title        = {{Design of negative sampling strategies for distantly supervised skill extraction}},
  url          = {{https://ceur-ws.org/Vol-3218/RecSysHR2022-paper_4.pdf}},
  volume       = {{3218}},
  year         = {{2022}},
}
```