Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 5,815 Bytes
355e19b
 
 
 
 
113edc8
355e19b
113edc8
002d459
355e19b
 
 
 
 
 
 
 
2d418d1
fcc12ec
2d375c5
d59171b
fcc12ec
 
02323d8
 
 
 
 
 
 
 
 
 
9e947fd
 
 
02323d8
 
355e19b
 
 
 
 
 
 
2d375c5
355e19b
 
 
2d375c5
 
355e19b
 
 
 
 
 
 
 
 
 
 
 
 
e3d5711
355e19b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3d5711
 
 
fcc12ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
- other-language-learner
size_categories:
- 1K<n<10K
source_datasets:
- extended|other-GUG-grammaticality-judgements
task_categories:
- text2text-generation
task_ids: []
paperswithcode_id: jfleg
pretty_name: JHU FLuency-Extended GUG corpus
tags:
- grammatical-error-correction
dataset_info:
  features:
  - name: sentence
    dtype: string
  - name: corrections
    sequence: string
  splits:
  - name: validation
    num_bytes: 379991
    num_examples: 755
  - name: test
    num_bytes: 379711
    num_examples: 748
  download_size: 731111
  dataset_size: 759702
---

# Dataset Card for JFLEG

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Github](https://github.com/keisks/jfleg)
- **Repository:** [Github](https://github.com/keisks/jfleg)
- **Paper:** [Napoles et al., 2020](https://www.aclweb.org/anthology/E17-2037/)
- **Leaderboard:** [Leaderboard](https://github.com/keisks/jfleg#leader-board-published-results)
- **Point of Contact:** Courtney Napoles, Keisuke Sakaguchi

### Dataset Summary
JFLEG (JHU FLuency-Extended GUG) is an English grammatical error correction (GEC) corpus. It is a gold standard benchmark for developing and evaluating GEC systems with respect to fluency (extent to which a text is native-sounding) as well as grammaticality. For each source document, there are four human-written corrections.

### Supported Tasks and Leaderboards
Grammatical error correction.

### Languages
English (native as well as L2 writers)

## Dataset Structure

### Data Instances
Each instance contains a source sentence and four corrections. For example:
```python
{
  'sentence': "They are moved by solar energy ."
  'corrections': [
    "They are moving by solar energy .",
    "They are moved by solar energy .",
    "They are moved by solar energy .",
    "They are propelled by solar energy ." 
  ]
}
 ```

### Data Fields
- sentence: original sentence written by an English learner
- corrections: corrected versions by human annotators. The order of the annotations are consistent (eg first sentence will always be written by annotator "ref0").

### Data Splits
- This dataset contains 1511 examples in total and comprise a dev and test split. 
- There are 754 and 747 source sentences for dev and test, respectively. 
- Each sentence has 4 corresponding corrected versions. 

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information
This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/).

### Citation Information
This benchmark was proposed by [Napoles et al., 2020](https://www.aclweb.org/anthology/E17-2037/).

```
@InProceedings{napoles-sakaguchi-tetreault:2017:EACLshort,
  author    = {Napoles, Courtney  and  Sakaguchi, Keisuke  and  Tetreault, Joel},
  title     = {JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction},
  booktitle = {Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers},
  month     = {April},
  year      = {2017},
  address   = {Valencia, Spain},
  publisher = {Association for Computational Linguistics},
  pages     = {229--234},
  url       = {http://www.aclweb.org/anthology/E17-2037}
}

@InProceedings{heilman-EtAl:2014:P14-2,
  author    = {Heilman, Michael  and  Cahill, Aoife  and  Madnani, Nitin  and  Lopez, Melissa  and  Mulholland, Matthew  and  Tetreault, Joel},
  title     = {Predicting Grammaticality on an Ordinal Scale},
  booktitle = {Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)},
  month     = {June},
  year      = {2014},
  address   = {Baltimore, Maryland},
  publisher = {Association for Computational Linguistics},
  pages     = {174--180},
  url       = {http://www.aclweb.org/anthology/P14-2029}
}
```

### Contributions

Thanks to [@j-chim](https://github.com/j-chim) for adding this dataset.