Datasets:
Tasks:
Text Classification
Sub-tasks:
natural-language-inference
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
File size: 5,224 Bytes
a6404e4 bedff50 a6404e4 6be40aa a6404e4 6be40aa a6404e4 bedff50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Heuristic Analysis for NLI Systems"""
import datasets
_CITATION = """\
@article{DBLP:journals/corr/abs-1902-01007,
author = {R. Thomas McCoy and
Ellie Pavlick and
Tal Linzen},
title = {Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural
Language Inference},
journal = {CoRR},
volume = {abs/1902.01007},
year = {2019},
url = {http://arxiv.org/abs/1902.01007},
archivePrefix = {arXiv},
eprint = {1902.01007},
timestamp = {Tue, 21 May 2019 18:03:36 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1902-01007.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """\
The HANS dataset is an NLI evaluation set that tests specific hypotheses about invalid heuristics that NLI models are likely to learn.
"""
class HansConfig(datasets.BuilderConfig):
"""BuilderConfig for HANS."""
def __init__(self, **kwargs):
"""BuilderConfig for HANS.
Args:
.
**kwargs: keyword arguments forwarded to super.
"""
super(HansConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
class Hans(datasets.GeneratorBasedBuilder):
"""Hans: Heuristic Analysis for NLI Systems."""
BUILDER_CONFIGS = [
HansConfig(
name="plain_text",
description="Plain text",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
"label": datasets.features.ClassLabel(names=["entailment", "non-entailment"]),
"parse_premise": datasets.Value("string"),
"parse_hypothesis": datasets.Value("string"),
"binary_parse_premise": datasets.Value("string"),
"binary_parse_hypothesis": datasets.Value("string"),
"heuristic": datasets.Value("string"),
"subcase": datasets.Value("string"),
"template": datasets.Value("string"),
}
),
# No default supervised_keys (as we have to pass both premise
# and hypothesis as input).
supervised_keys=None,
homepage="https://github.com/tommccoy1/hans",
citation=_CITATION,
)
def _vocab_text_gen(self, filepath):
for _, ex in self._generate_examples(filepath):
yield " ".join([ex["premise"], ex["hypothesis"]])
def _split_generators(self, dl_manager):
train_path = dl_manager.download_and_extract(
"https://raw.githubusercontent.com/tommccoy1/hans/master/heuristics_train_set.txt"
)
valid_path = dl_manager.download_and_extract(
"https://raw.githubusercontent.com/tommccoy1/hans/master/heuristics_evaluation_set.txt"
)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}),
]
def _generate_examples(self, filepath):
"""Generate hans examples.
Args:
filepath: a string
Yields:
dictionaries containing "premise", "hypothesis" and "label" strings
"""
for idx, line in enumerate(open(filepath, "r", encoding="utf-8")):
if idx == 0:
continue # skip header
line = line.strip()
split_line = line.split("\t")
# Examples not marked with a three out of five consensus are marked with
# "-" and should not be used in standard evaluations.
if split_line[0] == "-":
continue
# Works for both splits even though dev has some extra human labels.
yield idx, {
"premise": split_line[5],
"hypothesis": split_line[6],
"label": split_line[0],
"binary_parse_premise": split_line[1],
"binary_parse_hypothesis": split_line[2],
"parse_premise": split_line[3],
"parse_hypothesis": split_line[4],
"heuristic": split_line[8],
"subcase": split_line[9],
"template": split_line[10],
}
|