Datasets:

Languages:
English
ArXiv:
License:
File size: 5,224 Bytes
a6404e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bedff50
 
 
 
 
 
 
a6404e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6be40aa
a6404e4
 
6be40aa
a6404e4
 
 
 
 
 
bedff50
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Heuristic Analysis for NLI Systems"""


import datasets


_CITATION = """\
@article{DBLP:journals/corr/abs-1902-01007,
  author    = {R. Thomas McCoy and
               Ellie Pavlick and
               Tal Linzen},
  title     = {Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural
               Language Inference},
  journal   = {CoRR},
  volume    = {abs/1902.01007},
  year      = {2019},
  url       = {http://arxiv.org/abs/1902.01007},
  archivePrefix = {arXiv},
  eprint    = {1902.01007},
  timestamp = {Tue, 21 May 2019 18:03:36 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1902-01007.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

_DESCRIPTION = """\
The HANS dataset is an NLI evaluation set that tests specific hypotheses about invalid heuristics that NLI models are likely to learn.
"""


class HansConfig(datasets.BuilderConfig):
    """BuilderConfig for HANS."""

    def __init__(self, **kwargs):
        """BuilderConfig for HANS.

            Args:
        .
              **kwargs: keyword arguments forwarded to super.
        """
        super(HansConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)


class Hans(datasets.GeneratorBasedBuilder):
    """Hans: Heuristic Analysis for NLI Systems."""

    BUILDER_CONFIGS = [
        HansConfig(
            name="plain_text",
            description="Plain text",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "premise": datasets.Value("string"),
                    "hypothesis": datasets.Value("string"),
                    "label": datasets.features.ClassLabel(names=["entailment", "non-entailment"]),
                    "parse_premise": datasets.Value("string"),
                    "parse_hypothesis": datasets.Value("string"),
                    "binary_parse_premise": datasets.Value("string"),
                    "binary_parse_hypothesis": datasets.Value("string"),
                    "heuristic": datasets.Value("string"),
                    "subcase": datasets.Value("string"),
                    "template": datasets.Value("string"),
                }
            ),
            # No default supervised_keys (as we have to pass both premise
            # and hypothesis as input).
            supervised_keys=None,
            homepage="https://github.com/tommccoy1/hans",
            citation=_CITATION,
        )

    def _vocab_text_gen(self, filepath):
        for _, ex in self._generate_examples(filepath):
            yield " ".join([ex["premise"], ex["hypothesis"]])

    def _split_generators(self, dl_manager):

        train_path = dl_manager.download_and_extract(
            "https://raw.githubusercontent.com/tommccoy1/hans/master/heuristics_train_set.txt"
        )
        valid_path = dl_manager.download_and_extract(
            "https://raw.githubusercontent.com/tommccoy1/hans/master/heuristics_evaluation_set.txt"
        )

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}),
        ]

    def _generate_examples(self, filepath):
        """Generate hans examples.

        Args:
          filepath: a string

        Yields:
          dictionaries containing "premise", "hypothesis" and "label" strings
        """
        for idx, line in enumerate(open(filepath, "r", encoding="utf-8")):
            if idx == 0:
                continue  # skip header
            line = line.strip()
            split_line = line.split("\t")
            # Examples not marked with a three out of five consensus are marked with
            # "-" and should not be used in standard evaluations.
            if split_line[0] == "-":
                continue
            # Works for both splits even though dev has some extra human labels.
            yield idx, {
                "premise": split_line[5],
                "hypothesis": split_line[6],
                "label": split_line[0],
                "binary_parse_premise": split_line[1],
                "binary_parse_hypothesis": split_line[2],
                "parse_premise": split_line[3],
                "parse_hypothesis": split_line[4],
                "heuristic": split_line[8],
                "subcase": split_line[9],
                "template": split_line[10],
            }