Yelp Sentiment Classification https://github.com/weakrules/Denoise-multi-weak-sources/tree/master/rules-noisy-labels/Yelp # Labels "0": "Negative", "1": "Positive" # Labeling functions lfs = [ textblob_lf, keyword_recommend, keyword_general, keyword_mood, keyword_service, keyword_price, keyword_environment, keyword_food, ] # lf - textblob_lf @preprocessor(memoize=True) def textblob_sentiment(x): scores = TextBlob(x.text) x.polarity = scores.sentiment.polarity x.subjectivity = scores.sentiment.subjectivity return x @labeling_function(pre=[textblob_sentiment]) def textblob_lf(x): if x.polarity < -0.5: return NEG if x.polarity > 0.5: return POS return ABSTAIN # lf - keyword_recommend keyword_recommend = make_keyword_lf(name="keyword_recommend", keywords_pos=["recommend"], keywords_neg=[]) # lf - keyword_general keyword_general = make_keyword_lf(name="keyword_general", keywords_pos=["outstanding", "perfect", "great", "good", "nice", "best", "excellent", "worthy", "awesome", "enjoy", "positive", "pleasant", "wonderful", "amazing"], keywords_neg=["bad", "worst", "horrible", "awful", "terrible", "nasty", "shit", "distasteful", "dreadful", "negative"]) # lf - keyword_mood keyword_mood = make_keyword_lf(name="keyword_mood", keywords_pos=["happy", "pleased", "delighted", "contented", "glad", "thankful", "satisfied"], keywords_neg=["sad", "annoy", "disappointed", "frustrated", "upset", "irritated", "harassed", "angry", "pissed"]) # lf - keyword_service keyword_service = make_keyword_lf(name="keyword_service", keywords_pos=["friendly", "patient", "considerate", "enthusiastic", "attentive", "thoughtful", "kind", "caring", "helpful", "polite", "efficient", "prompt"], keywords_neg=["slow", "offended", "rude", "indifferent", "arrogant"]) # lf - keyword_price keyword_price = make_keyword_lf(name="keyword_price", keywords_pos=["cheap", "reasonable", "inexpensive", "economical"], keywords_neg=["overpriced", "expensive", "costly", "high-priced"]) # lf - keyword_environment keyword_environment = make_keyword_lf(name="keyword_environment", keywords_pos=["clean", "neat", "quiet", "comfortable", "convenien", "tidy", "orderly", "cosy", "homely"], keywords_neg=["noisy", "mess", "chaos", "dirty", "foul"]) # lf - keyword_food keyword_food = make_keyword_lf(name="keyword_food", keywords_pos=["tasty", "yummy", "delicious", "appetizing", "good-tasting", "delectable", "savoury", "luscious", "palatable"], keywords_neg=["disgusting", "gross", "insipid"])