jmercat commited on
Commit
f8409c6
·
1 Parent(s): 1629c3a

Upload risk_biased_dataset.py

Browse files
Files changed (1) hide show
  1. risk_biased_dataset.py +54 -46
risk_biased_dataset.py CHANGED
@@ -20,70 +20,78 @@ _CITATION = """\
20
  }
21
  """
22
 
 
23
 
24
- class RAPConfig(datasets.BuilderConfig):
25
- """BuilderConfig for RiskBiasedDataset."""
26
-
27
- def __init__(self, **kwargs):
28
- """BuilderConfig for RiskBiasedDataset.
29
- Args:
30
- **kwargs: keyword arguments forwarded to super.
31
- """
32
- super(RAPConfig, self).__init__(version=datasets.Version("0.0.0", ""), **kwargs)
33
-
34
-
35
-
36
- class RiskBiasedDataset(datasets.Dataset):
37
  """Dataset of pre-processed samples from a portion of the
38
  Waymo Open Motion Data for the risk-biased prediction task."""
39
 
 
 
40
  BUILDER_CONFIGS = [
41
- RAPConfig(
42
- name="json_lists",
43
- description="JSON lists sample format"
44
- )
45
  ]
46
 
 
 
47
  def _info(self):
48
  return datasets.DatasetInfo(
49
  description= _DESCRIPTION,
50
  features=datasets.Features(
51
- {"x": datasets.Sequence(datasets.Value("float32")),
52
- "mask_x": datasets.Sequence(datasets.Value("bool")),
53
- "y": datasets.Sequence(datasets.Value("float32")),
54
- "mask_y": datasets.Sequence(datasets.Value("bool")),
55
- "mask_loss": datasets.Sequence(datasets.Value("bool")),
56
- "map_data": datasets.Sequence(datasets.Value("float32")),
57
- "mask_map": datasets.Sequence(datasets.Value("bool")),
58
- "offset": datasets.Sequence(datasets.Value("float32")),
59
- "x_ego": datasets.Sequence(datasets.Value("float32")),
60
- "y_ego": datasets.Sequence(datasets.Value("float32")),
61
  }
62
  ),
63
  supervised_keys=None,
64
- homepage="https://sites.google.com/d/1cwohIm9fzTZEPAo7b_Di4h9iNgMiKHRo/p/1nPdTBSee6E40dmUXNyqxzUtb4_NnkI_6/edit",
65
  citation=_CITATION,
66
  )
67
 
68
- def _generate_examples(self, filepath):
 
 
 
 
 
 
69
  """Yields examples."""
 
70
  with open(filepath, "r") as f:
71
  data = json.load(f)
72
 
73
- x = torch.from_numpy(numpy.array(data["x"]).astype(numpy.float32))
74
- mask_x = torch.from_numpy(numpy.array(data["mask_x"]).astype(numpy.bool8))
75
- y = torch.from_numpy(numpy.array(data["y"]).astype(numpy.float32))
76
- mask_y = torch.from_numpy(numpy.array(data["mask_y"]).astype(numpy.bool8))
77
- mask_loss = torch.from_numpy( numpy.array(data["mask_loss"]).astype(numpy.bool8))
78
- map_data = torch.from_numpy(numpy.array(data["map_data"]).astype(numpy.float32))
79
- mask_map = torch.from_numpy(numpy.array(data["mask_map"]).astype(numpy.bool8))
80
- offset = torch.from_numpy(numpy.array(data["offset"]).astype(numpy.float32))
81
- x_ego = torch.from_numpy(numpy.array(data["x_ego"]).astype(numpy.float32))
82
- y_ego = torch.from_numpy(numpy.array(data["y_ego"]).astype(numpy.float32))
83
-
84
- batch_size = x.shape[0]
85
-
86
- for i in range(batch_size):
87
- yield x, mask_x, y, mask_y, mask_loss, map_data, mask_map, offset, x_ego, y_ego
88
-
89
-
 
 
 
 
 
 
 
 
 
 
 
 
20
  }
21
  """
22
 
23
+ _URL = "/home/jeanmercat/Codes/risk_biased_dataset/data.json"
24
 
25
+ class RiskBiasedDataset(datasets.GeneratorBasedBuilder):
 
 
 
 
 
 
 
 
 
 
 
 
26
  """Dataset of pre-processed samples from a portion of the
27
  Waymo Open Motion Data for the risk-biased prediction task."""
28
 
29
+ VERSION = datasets.Version("0.0.0")
30
+
31
  BUILDER_CONFIGS = [
32
+ datasets.BuilderConfig(name="risk_biased_dataset", version=VERSION, description="Dataset of pre-processed samples from a portion of the Waymo Open Motion Data for the risk-biased prediction task."),
 
 
 
33
  ]
34
 
35
+ DEFAULT_CONFIG_NAME = "risk_biased_dataset"
36
+
37
  def _info(self):
38
  return datasets.DatasetInfo(
39
  description= _DESCRIPTION,
40
  features=datasets.Features(
41
+ {"x": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))),
42
+ "mask_x": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("bool")))),
43
+ "y": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))),
44
+ "mask_y": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("bool")))),
45
+ "mask_loss": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("bool")))),
46
+ "map_data": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))),
47
+ "mask_map": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("bool")))),
48
+ "offset": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32")))),
49
+ "x_ego": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))),
50
+ "y_ego": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))),
51
  }
52
  ),
53
  supervised_keys=None,
54
+ homepage="https://sites.google.com/view/corl-risk/home",
55
  citation=_CITATION,
56
  )
57
 
58
+ def _split_generators(self, dl_manager):
59
+ urls_to_download = _URL
60
+ downloaded_file = dl_manager.download(urls_to_download)
61
+
62
+ return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_file, "split": "test"}),]
63
+
64
+ def _generate_examples(self, filepath, split):
65
  """Yields examples."""
66
+ assert split == "test"
67
  with open(filepath, "r") as f:
68
  data = json.load(f)
69
 
70
+ x = torch.from_numpy(numpy.array(data["x"]).astype(numpy.float32))
71
+ mask_x = torch.from_numpy(numpy.array(data["mask_x"]).astype(numpy.bool8))
72
+ y = torch.from_numpy(numpy.array(data["y"]).astype(numpy.float32))
73
+ mask_y = torch.from_numpy(numpy.array(data["mask_y"]).astype(numpy.bool8))
74
+ mask_loss = torch.from_numpy( numpy.array(data["mask_loss"]).astype(numpy.bool8))
75
+ map_data = torch.from_numpy(numpy.array(data["map_data"]).astype(numpy.float32))
76
+ mask_map = torch.from_numpy(numpy.array(data["mask_map"]).astype(numpy.bool8))
77
+ offset = torch.from_numpy(numpy.array(data["offset"]).astype(numpy.float32))
78
+ x_ego = torch.from_numpy(numpy.array(data["x_ego"]).astype(numpy.float32))
79
+ y_ego = torch.from_numpy(numpy.array(data["y_ego"]).astype(numpy.float32))
80
+
81
+ batch_size = x.shape[0]
82
+
83
+ for i in range(batch_size):
84
+ # yield i, {"x": x[i], "mask_x": mask_x[i],
85
+ # "y": y[i], "mask_y": mask_y[i], "mask_loss": mask_loss[i],
86
+ # "map_data": map_data[i], "mask_map": mask_map[i],
87
+ # "offset": offset[i],
88
+ # "x_ego": x_ego[i],
89
+ # "y_ego": y_ego[i]}
90
+ yield i, {"x": x[i:i+1], "mask_x": mask_x[i:i+1],
91
+ "y": y[i:i+1], "mask_y": mask_y[i:i+1], "mask_loss": mask_loss[i:i+1],
92
+ "map_data": map_data[i:i+1], "mask_map": mask_map[i:i+1],
93
+ "offset": offset[i:i+1],
94
+ "x_ego": x_ego[i:i+1],
95
+ "y_ego": y_ego[i:i+1]}
96
+
97
+