Upload risk_biased_dataset.py
Browse files- risk_biased_dataset.py +54 -46
risk_biased_dataset.py
CHANGED
@@ -20,70 +20,78 @@ _CITATION = """\
|
|
20 |
}
|
21 |
"""
|
22 |
|
|
|
23 |
|
24 |
-
class
|
25 |
-
"""BuilderConfig for RiskBiasedDataset."""
|
26 |
-
|
27 |
-
def __init__(self, **kwargs):
|
28 |
-
"""BuilderConfig for RiskBiasedDataset.
|
29 |
-
Args:
|
30 |
-
**kwargs: keyword arguments forwarded to super.
|
31 |
-
"""
|
32 |
-
super(RAPConfig, self).__init__(version=datasets.Version("0.0.0", ""), **kwargs)
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
class RiskBiasedDataset(datasets.Dataset):
|
37 |
"""Dataset of pre-processed samples from a portion of the
|
38 |
Waymo Open Motion Data for the risk-biased prediction task."""
|
39 |
|
|
|
|
|
40 |
BUILDER_CONFIGS = [
|
41 |
-
|
42 |
-
name="json_lists",
|
43 |
-
description="JSON lists sample format"
|
44 |
-
)
|
45 |
]
|
46 |
|
|
|
|
|
47 |
def _info(self):
|
48 |
return datasets.DatasetInfo(
|
49 |
description= _DESCRIPTION,
|
50 |
features=datasets.Features(
|
51 |
-
{"x": datasets.Sequence(datasets.Value("float32")),
|
52 |
-
"mask_x": datasets.Sequence(datasets.Value("bool")),
|
53 |
-
"y": datasets.Sequence(datasets.Value("float32")),
|
54 |
-
"mask_y": datasets.Sequence(datasets.Value("bool")),
|
55 |
-
"mask_loss": datasets.Sequence(datasets.Value("bool")),
|
56 |
-
"map_data": datasets.Sequence(datasets.Value("float32")),
|
57 |
-
"mask_map": datasets.Sequence(datasets.Value("bool")),
|
58 |
-
"offset": datasets.Sequence(datasets.Value("float32")),
|
59 |
-
"x_ego": datasets.Sequence(datasets.Value("float32")),
|
60 |
-
"y_ego": datasets.Sequence(datasets.Value("float32")),
|
61 |
}
|
62 |
),
|
63 |
supervised_keys=None,
|
64 |
-
homepage="https://sites.google.com/
|
65 |
citation=_CITATION,
|
66 |
)
|
67 |
|
68 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
"""Yields examples."""
|
|
|
70 |
with open(filepath, "r") as f:
|
71 |
data = json.load(f)
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
}
|
21 |
"""
|
22 |
|
23 |
+
_URL = "/home/jeanmercat/Codes/risk_biased_dataset/data.json"
|
24 |
|
25 |
+
class RiskBiasedDataset(datasets.GeneratorBasedBuilder):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
"""Dataset of pre-processed samples from a portion of the
|
27 |
Waymo Open Motion Data for the risk-biased prediction task."""
|
28 |
|
29 |
+
VERSION = datasets.Version("0.0.0")
|
30 |
+
|
31 |
BUILDER_CONFIGS = [
|
32 |
+
datasets.BuilderConfig(name="risk_biased_dataset", version=VERSION, description="Dataset of pre-processed samples from a portion of the Waymo Open Motion Data for the risk-biased prediction task."),
|
|
|
|
|
|
|
33 |
]
|
34 |
|
35 |
+
DEFAULT_CONFIG_NAME = "risk_biased_dataset"
|
36 |
+
|
37 |
def _info(self):
|
38 |
return datasets.DatasetInfo(
|
39 |
description= _DESCRIPTION,
|
40 |
features=datasets.Features(
|
41 |
+
{"x": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))),
|
42 |
+
"mask_x": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("bool")))),
|
43 |
+
"y": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))),
|
44 |
+
"mask_y": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("bool")))),
|
45 |
+
"mask_loss": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("bool")))),
|
46 |
+
"map_data": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))),
|
47 |
+
"mask_map": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("bool")))),
|
48 |
+
"offset": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32")))),
|
49 |
+
"x_ego": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))),
|
50 |
+
"y_ego": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))),
|
51 |
}
|
52 |
),
|
53 |
supervised_keys=None,
|
54 |
+
homepage="https://sites.google.com/view/corl-risk/home",
|
55 |
citation=_CITATION,
|
56 |
)
|
57 |
|
58 |
+
def _split_generators(self, dl_manager):
|
59 |
+
urls_to_download = _URL
|
60 |
+
downloaded_file = dl_manager.download(urls_to_download)
|
61 |
+
|
62 |
+
return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_file, "split": "test"}),]
|
63 |
+
|
64 |
+
def _generate_examples(self, filepath, split):
|
65 |
"""Yields examples."""
|
66 |
+
assert split == "test"
|
67 |
with open(filepath, "r") as f:
|
68 |
data = json.load(f)
|
69 |
|
70 |
+
x = torch.from_numpy(numpy.array(data["x"]).astype(numpy.float32))
|
71 |
+
mask_x = torch.from_numpy(numpy.array(data["mask_x"]).astype(numpy.bool8))
|
72 |
+
y = torch.from_numpy(numpy.array(data["y"]).astype(numpy.float32))
|
73 |
+
mask_y = torch.from_numpy(numpy.array(data["mask_y"]).astype(numpy.bool8))
|
74 |
+
mask_loss = torch.from_numpy( numpy.array(data["mask_loss"]).astype(numpy.bool8))
|
75 |
+
map_data = torch.from_numpy(numpy.array(data["map_data"]).astype(numpy.float32))
|
76 |
+
mask_map = torch.from_numpy(numpy.array(data["mask_map"]).astype(numpy.bool8))
|
77 |
+
offset = torch.from_numpy(numpy.array(data["offset"]).astype(numpy.float32))
|
78 |
+
x_ego = torch.from_numpy(numpy.array(data["x_ego"]).astype(numpy.float32))
|
79 |
+
y_ego = torch.from_numpy(numpy.array(data["y_ego"]).astype(numpy.float32))
|
80 |
+
|
81 |
+
batch_size = x.shape[0]
|
82 |
+
|
83 |
+
for i in range(batch_size):
|
84 |
+
# yield i, {"x": x[i], "mask_x": mask_x[i],
|
85 |
+
# "y": y[i], "mask_y": mask_y[i], "mask_loss": mask_loss[i],
|
86 |
+
# "map_data": map_data[i], "mask_map": mask_map[i],
|
87 |
+
# "offset": offset[i],
|
88 |
+
# "x_ego": x_ego[i],
|
89 |
+
# "y_ego": y_ego[i]}
|
90 |
+
yield i, {"x": x[i:i+1], "mask_x": mask_x[i:i+1],
|
91 |
+
"y": y[i:i+1], "mask_y": mask_y[i:i+1], "mask_loss": mask_loss[i:i+1],
|
92 |
+
"map_data": map_data[i:i+1], "mask_map": mask_map[i:i+1],
|
93 |
+
"offset": offset[i:i+1],
|
94 |
+
"x_ego": x_ego[i:i+1],
|
95 |
+
"y_ego": y_ego[i:i+1]}
|
96 |
+
|
97 |
+
|