Datasets:
Tasks:
Question Answering
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
DOI:
License:
import argparse | |
import json | |
import itertools | |
from collections import defaultdict | |
import bert_score | |
from bert_score import score | |
from rouge_score import rouge_scorer | |
def get_best_scores(candidates, score_list): | |
per_pair_scores = defaultdict(list) | |
for cand, score in zip(candidates, score_list): | |
per_pair_scores[cand].append(score) | |
best_match_scores = {cand: max(scores) for cand, scores in per_pair_scores.items()} | |
return best_match_scores | |
def run_snippet_eval(pred_snippets, gold_snippets, debug): | |
bert_scores = {} | |
rouge_scores = {"rouge1": {}, "rouge2": {}, "rougel": {}} | |
rscorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True) | |
for claim_id in pred_snippets: | |
if claim_id not in gold_snippets: | |
print(f"Warning: Claim ID {claim_id} not found in gold data - skipping!") | |
continue | |
if not gold_snippets[claim_id]: | |
print(f"Warning: Claim ID {claim_id} has no associated evidence snippets - skipping!") | |
continue | |
# Generate all possible combinations of gold x predicted snippets for overlap computation | |
eval_pairs = itertools.product(pred_snippets[claim_id], gold_snippets[claim_id]) | |
candidates, references = zip(*list(eval_pairs)) | |
# Compute BERT scores for all gold x predicted snippets and retain best match score per prediction | |
P, R, F1 = score(candidates, references, lang='en', verbose=True) | |
best_scores = get_best_scores(candidates, F1.numpy().tolist()) | |
mean_bert_score = sum(best_scores.values()) / len(pred_snippets[claim_id]) | |
bert_scores[claim_id] = mean_bert_score | |
# Similarly compute ROUGE-1,2,L scores | |
r1_list, r2_list, rl_list = [], [], [] | |
for cand, ref in zip(candidates, references): | |
score_output = rscorer.score(ref, cand) | |
r1_list.append(score_output['rouge1'].fmeasure) | |
r2_list.append(score_output['rouge2'].fmeasure) | |
rl_list.append(score_output['rougeL'].fmeasure) | |
best_rouge1 = get_best_scores(candidates, r1_list) | |
best_rouge2 = get_best_scores(candidates, r2_list) | |
best_rougel = get_best_scores(candidates, rl_list) | |
rouge_scores["rouge1"][claim_id] = sum(best_rouge1.values()) / len(pred_snippets[claim_id]) | |
rouge_scores["rouge2"][claim_id] = sum(best_rouge2.values()) / len(pred_snippets[claim_id]) | |
rouge_scores["rougel"][claim_id] = sum(best_rougel.values()) / len(pred_snippets[claim_id]) | |
# Print final score report | |
final_bert_score = sum(bert_scores.values()) / len(gold_snippets) | |
print(f"BERT Score: {final_bert_score}") | |
final_rouge1_score = sum(rouge_scores["rouge1"].values()) / len(gold_snippets) | |
print(f"ROUGE-1 Score: {final_rouge1_score}") | |
final_rouge2_score = sum(rouge_scores["rouge2"].values()) / len(gold_snippets) | |
print(f"ROUGE-2 Score: {final_rouge2_score}") | |
final_rougel_score = sum(rouge_scores["rougel"].values()) / len(gold_snippets) | |
print(f"ROUGE-L Score: {final_rougel_score}") | |
# TODO: Allow dumping of per-prediction scores for analysis? | |
if debug: | |
json.dump(bert_scores, open("task2_bertscores.json", "w")) | |
json.dump(rouge_scores, open("task2_rougescores.json", "w")) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--pred_file", type=str, required=True, help="Path to prediction file") | |
parser.add_argument("--gold_file", type=str, required=True, help="Path to gold data file") | |
parser.add_argument("--debug", type=bool, default=False, help="Dump per-prediction scores for debuggin/analysis") | |
args = parser.parse_args() | |
gold_data = json.loads(open(args.gold_file).read()) | |
gold_snippets = {x["id"]: x["context"] for x in gold_data} | |
pred_data = json.loads(open(args.pred_file).read()) | |
pred_snippets = {x["id"]: x["context"] for x in pred_data} | |
# Run ROUGE and BERTScore evaluation for grounding snippets | |
run_snippet_eval(pred_snippets, gold_snippets, args.debug) | |