import argparse import json import csv import math import os def compute_dcg(pred_docs, gold_docs): dcg_score = 0.0 for i, doc in enumerate(pred_docs): position = i + 1 discount = 1.0 / math.log2(position + 1) relevance = 0.0 if doc in gold_docs: # If predicted image is present in gold list, set relevance to 1.0 relevance = 1.0 else: for gdoc in gold_docs: # If predicted image is a sub-image or parent image of an image in gold list, # we set relevance to 0.5 to provide partial credit if doc in gdoc or gdoc in doc: relevance = 0.5 break dcg_score += (discount * relevance) return dcg_score def compute_idcg(relevance_ranking, rank): sorted_relevance_ranking = list(sorted(relevance_ranking.items(), key=lambda x: x[1], reverse=True)) # Only consider top k relevant items for IDCG@k sorted_relevance_ranking = sorted_relevance_ranking[:min(len(sorted_relevance_ranking), rank)] idcg_score = sum([ (1.0 / (math.log2(i + 2))) * x[1] for i, x in enumerate(sorted_relevance_ranking)]) return idcg_score def run_eval(pred_labels, gold_labels, parse_folder, claim_citekeys, debug): ranks_to_eval = [5, 10] ndcg_scores = {n: {} for n in ranks_to_eval} non_empty_samples = 0 for claim_id in pred_labels: if claim_id not in gold_labels: print(f"Warning: Claim ID {claim_id} not found in gold data - skipping!") continue if not gold_labels[claim_id]: print(f"Warning: Claim ID {claim_id} has no associated evidence figures/tables - skipping!") continue non_empty_samples += 1 for rank in ranks_to_eval: # If #predictions < rank in predicted ranking, include all for evaluation pred_images = pred_labels[claim_id][:min(len(pred_labels[claim_id]), rank)] gold_images = gold_labels[claim_id] # Compute DCG score dcg_score = compute_dcg(pred_images, gold_images) # Compute ideal DCG score # First need to get relevance scores for all possible images # Images in gold list get relevance score of 1.0 relevance_ranking = {x: 1.0 for x in gold_images} for file in os.listdir(os.path.join(parse_folder, claim_citekeys[claim_id])): if 'CAPTION' in file: continue image_id = file.split('.png')[0] if image_id not in gold_images: relevance_ranking[image_id] = 0.0 # All images that are parent/sub-images of a gold image get relevance of 0.5 for gold_image in gold_images: if image_id in gold_image or gold_image in image_id: relevance_ranking[image_id] = 0.5 break idcg_score = compute_idcg(relevance_ranking, rank) # Finally compute and store NDCG score@k ndcg_score = dcg_score / idcg_score ndcg_scores[rank][claim_id] = ndcg_score # Display final evaluation scores for rank in ranks_to_eval: final_ndcg = sum(list(ndcg_scores[rank].values())) / len(gold_labels) print(f'NDCG@{rank}: {final_ndcg}') if debug: json.dump(ndcg_scores, open("task1_scores.json", "w")) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pred_file", type=str, required=True, help="Path to prediction file") parser.add_argument("--gold_file", type=str, required=True, help="Path to gold data file") parser.add_argument("--parse_folder", type=str, required=True, help="Path to folder containing parsed images/tables") parser.add_argument("--debug", type=bool, default=False, help="Dump per-prediction scores for debuggin/analysis") args = parser.parse_args() gold_data = json.loads(open(args.gold_file).read()) gold_labels = {x["id"]: x["findings"] for x in gold_data} claim_citekeys = {x["id"]: x["citekey"] for x in gold_data} reader = csv.reader(open(args.pred_file)) next(reader, None) pred_labels = {} for row in reader: pred_labels[row[0]] = row[1].split(',') run_eval(pred_labels, gold_labels, args.parse_folder, claim_citekeys, args.debug)