import argparse import json import itertools from collections import defaultdict import bert_score from bert_score import score from rouge_score import rouge_scorer def get_best_scores(candidates, score_list): per_pair_scores = defaultdict(list) for cand, score in zip(candidates, score_list): per_pair_scores[cand].append(score) best_match_scores = {cand: max(scores) for cand, scores in per_pair_scores.items()} return best_match_scores def run_snippet_eval(pred_snippets, gold_snippets, debug): bert_scores = {} rouge_scores = {"rouge1": {}, "rouge2": {}, "rougel": {}} rscorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True) for claim_id in pred_snippets: if claim_id not in gold_snippets: print(f"Warning: Claim ID {claim_id} not found in gold data - skipping!") continue if not gold_snippets[claim_id]: print(f"Warning: Claim ID {claim_id} has no associated evidence snippets - skipping!") continue # Generate all possible combinations of gold x predicted snippets for overlap computation eval_pairs = itertools.product(pred_snippets[claim_id], gold_snippets[claim_id]) candidates, references = zip(*list(eval_pairs)) # Compute BERT scores for all gold x predicted snippets and retain best match score per prediction P, R, F1 = score(candidates, references, lang='en', verbose=True) best_scores = get_best_scores(candidates, F1.numpy().tolist()) mean_bert_score = sum(best_scores.values()) / len(pred_snippets[claim_id]) bert_scores[claim_id] = mean_bert_score # Similarly compute ROUGE-1,2,L scores r1_list, r2_list, rl_list = [], [], [] for cand, ref in zip(candidates, references): score_output = rscorer.score(ref, cand) r1_list.append(score_output['rouge1'].fmeasure) r2_list.append(score_output['rouge2'].fmeasure) rl_list.append(score_output['rougeL'].fmeasure) best_rouge1 = get_best_scores(candidates, r1_list) best_rouge2 = get_best_scores(candidates, r2_list) best_rougel = get_best_scores(candidates, rl_list) rouge_scores["rouge1"][claim_id] = sum(best_rouge1.values()) / len(pred_snippets[claim_id]) rouge_scores["rouge2"][claim_id] = sum(best_rouge2.values()) / len(pred_snippets[claim_id]) rouge_scores["rougel"][claim_id] = sum(best_rougel.values()) / len(pred_snippets[claim_id]) # Print final score report final_bert_score = sum(bert_scores.values()) / len(gold_snippets) print(f"BERT Score: {final_bert_score}") final_rouge1_score = sum(rouge_scores["rouge1"].values()) / len(gold_snippets) print(f"ROUGE-1 Score: {final_rouge1_score}") final_rouge2_score = sum(rouge_scores["rouge2"].values()) / len(gold_snippets) print(f"ROUGE-2 Score: {final_rouge2_score}") final_rougel_score = sum(rouge_scores["rougel"].values()) / len(gold_snippets) print(f"ROUGE-L Score: {final_rougel_score}") # TODO: Allow dumping of per-prediction scores for analysis? if debug: json.dump(bert_scores, open("task2_bertscores.json", "w")) json.dump(rouge_scores, open("task2_rougescores.json", "w")) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pred_file", type=str, required=True, help="Path to prediction file") parser.add_argument("--gold_file", type=str, required=True, help="Path to gold data file") parser.add_argument("--debug", type=bool, default=False, help="Dump per-prediction scores for debuggin/analysis") args = parser.parse_args() gold_data = json.loads(open(args.gold_file).read()) gold_snippets = {x["id"]: x["context"] for x in gold_data} pred_data = json.loads(open(args.pred_file).read()) pred_snippets = {x["id"]: x["context"] for x in pred_data} # Run ROUGE and BERTScore evaluation for grounding snippets run_snippet_eval(pred_snippets, gold_snippets, args.debug)