jonathanli commited on
Commit
baa2e9a
1 Parent(s): 03a8789

Update info

Browse files
Files changed (1) hide show
  1. README.md +17 -19
README.md CHANGED
@@ -4,38 +4,36 @@ task_categories:
4
  language:
5
  - en
6
  tags:
7
- - reddit
8
  - law
9
- pretty_name: Legal Advice Reddit
10
  ---
11
 
12
- # Dataset Card for Legal Advice Reddit Dataset
13
 
14
  ## Dataset Description
15
 
16
- - **Paper: [Parameter-Efficient Legal Domain Adaptation](https://arxiv.org/abs/2210.13712)**
17
  - **Point of Contact: jxl@queensu.ca**
18
 
19
  ### Dataset Summary
20
 
21
- We introduce a new dataset from the Legal Advice Reddit community (known as "/r/legaldvice"), sourcing the Reddit posts from the Pushshift
22
- Reddit dataset. The dataset maps the text and title of each legal question posted into one of eleven classes, based on the original Reddit
23
- post's "flair" (i.e., tag). Questions are typically informal and use non-legal-specific language. Per the Legal Advice Reddit rules, posts
24
- must be about actual personal circumstances or situations. We limit the number of labels to the top eleven classes and remove the other
25
- samples from the dataset.
26
-
27
 
28
  ### Citation Information
29
 
30
  ```
31
- @misc{https://doi.org/10.48550/arxiv.2210.13712,
32
- doi = {10.48550/ARXIV.2210.13712},
33
- url = {https://arxiv.org/abs/2210.13712},
34
- author = {Li, Jonathan and Bhambhoria, Rohan and Zhu, Xiaodan},
35
- keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
36
- title = {Parameter-Efficient Legal Domain Adaptation},
37
- publisher = {arXiv},
38
- year = {2022},
39
- copyright = {arXiv.org perpetual, non-exclusive license}
 
 
 
40
  }
41
  ```
 
4
  language:
5
  - en
6
  tags:
7
+ - stackexchange
8
  - law
9
+ pretty_name: Law Stack Exchange
10
  ---
11
 
12
+ # Dataset Card for Law Stack Exchange Dataset
13
 
14
  ## Dataset Description
15
 
16
+ - **Paper: [Parameter-Efficient Legal Domain Adaptation](https://aclanthology.org/2022.nllp-1.10/)**
17
  - **Point of Contact: jxl@queensu.ca**
18
 
19
  ### Dataset Summary
20
 
21
+ Dataset from the Law Stack Exchange, as used in "Parameter-Efficient Legal Domain Adaptation".
 
 
 
 
 
22
 
23
  ### Citation Information
24
 
25
  ```
26
+ @inproceedings{li-etal-2022-parameter,
27
+ title = "Parameter-Efficient Legal Domain Adaptation",
28
+ author = "Li, Jonathan and
29
+ Bhambhoria, Rohan and
30
+ Zhu, Xiaodan",
31
+ booktitle = "Proceedings of the Natural Legal Language Processing Workshop 2022",
32
+ month = dec,
33
+ year = "2022",
34
+ address = "Abu Dhabi, United Arab Emirates (Hybrid)",
35
+ publisher = "Association for Computational Linguistics",
36
+ url = "https://aclanthology.org/2022.nllp-1.10",
37
+ pages = "119--129",
38
  }
39
  ```