Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
File size: 1,211 Bytes
6350e2c 968eb67 6350e2c 968eb67 6350e2c 7d63135 6350e2c 45cefd1 6350e2c 1a4a09b 136577d 1a4a09b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
paperswithcode_id: reactiongif
---
## ReactionGIF
> From https://github.com/bshmueli/ReactionGIF
![gif](https://huggingface.co/datasets/julien-c/reactiongif/resolve/main/hug.gif)
___
## Excerpt from original repo readme
ReactionGIF is a unique, first-of-its-kind dataset of 30K sarcastic tweets and their GIF reactions.
To find out more about ReactionGIF,
check out our ACL 2021 paper:
* Shmueli, Ray and Ku, [Happy Dance, Slow Clap: Using Reaction GIFs to Predict Induced Affect on Twitter](https://arxiv.org/abs/2105.09967)
## Citation
If you use our dataset, kindly cite the paper using the following BibTex entry:
```bibtex
@misc{shmueli2021happy,
title={Happy Dance, Slow Clap: Using Reaction {GIFs} to Predict Induced Affect on {Twitter}},
author={Boaz Shmueli and Soumya Ray and Lun-Wei Ku},
year={2021},
eprint={2105.09967},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|