File size: 1,211 Bytes
6350e2c
 
 
 
 
968eb67
6350e2c
968eb67
6350e2c
 
 
 
7d63135
6350e2c
 
 
 
 
 
45cefd1
6350e2c
 
 
1a4a09b
 
 
 
136577d
1a4a09b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
paperswithcode_id: reactiongif
---


## ReactionGIF

> From https://github.com/bshmueli/ReactionGIF

![gif](https://huggingface.co/datasets/julien-c/reactiongif/resolve/main/hug.gif)


___

## Excerpt from original repo readme

ReactionGIF is a unique, first-of-its-kind dataset of 30K sarcastic tweets and their GIF reactions. 

To find out more about ReactionGIF, 
check out our ACL 2021 paper:

* Shmueli, Ray and Ku, [Happy Dance, Slow Clap: Using Reaction GIFs to Predict Induced Affect on Twitter](https://arxiv.org/abs/2105.09967)


## Citation

If you use our dataset, kindly cite the paper using the following BibTex entry:

```bibtex
@misc{shmueli2021happy,
      title={Happy Dance, Slow Clap: Using Reaction {GIFs} to Predict Induced Affect on {Twitter}}, 
      author={Boaz Shmueli and Soumya Ray and Lun-Wei Ku},
      year={2021},
      eprint={2105.09967},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```