|
import json |
|
import math |
|
import zipfile |
|
|
|
import bs4 |
|
import datasets |
|
import dateutil.parser |
|
import pandas as pd |
|
from tqdm import tqdm |
|
|
|
|
|
def yield_file_contents(zip_path, train_df, val_df): |
|
with (zipfile.ZipFile(zip_path, 'r') as zip_file): |
|
for file_info in zip_file.infolist(): |
|
with zip_file.open(file_info, 'r') as file: |
|
content = file.read() |
|
soup = bs4.BeautifulSoup(content, 'xml') |
|
|
|
id_blk = soup.find('idno', type="titelcode") |
|
text_id = id_blk.text.strip() if id_blk is not None else file_info.filename.replace('.xml', '') |
|
ti_id = '_'.join(text_id.split('_')[:-1]) |
|
|
|
train_row = train_df[train_df['ti_id'] == ti_id] |
|
val_row = val_df[val_df['ti_id'] == ti_id] |
|
is_train = len(train_row) > 0 |
|
is_val = len(val_row) > 0 |
|
if is_train: |
|
meta = train_row.iloc[0].to_dict() |
|
split = 'train' |
|
elif is_val: |
|
meta = val_row.iloc[0].to_dict() |
|
split = 'validation' |
|
else: |
|
print(f'Did not find meta for {text_id}!') |
|
|
|
for key, value in list(meta.items()): |
|
if isinstance(value, float) and math.isnan(value): |
|
meta[key] = '' |
|
|
|
edition_blk = soup.find('edition') |
|
edition = edition_blk.text.strip() if edition_blk is not None else None |
|
|
|
lang_blk = soup.find('language') |
|
language = lang_blk.get('id').strip() if lang_blk is not None else None |
|
|
|
date_blk = soup.find('revisionDesc') |
|
if date_blk is not None: |
|
date_blk = date_blk.find('date') |
|
if date_blk is not None: |
|
try: |
|
date = dateutil.parser.parse( |
|
date_blk.text.strip(), |
|
yearfirst=True, |
|
dayfirst=True |
|
).isoformat() if date_blk is not None else None |
|
except Exception: |
|
date = None |
|
else: |
|
date = None |
|
|
|
meta['revision_date'] = date |
|
meta['edition'] = edition |
|
meta['language'] = language |
|
|
|
for chap_idx, chapter in enumerate(soup.find_all('div', type='chapter')): |
|
meta['chapter'] = chap_idx + 1 |
|
for sec_idx, section in enumerate(chapter.find_all('div', type='section')): |
|
meta['section'] = sec_idx + 1 |
|
text = section.text.strip() |
|
yield {'meta': meta, 'text': text, 'id': f"{text_id}_{chap_idx}_{sec_idx}"}, split |
|
|
|
|
|
if __name__ == '__main__': |
|
train_fraction = 0.90 |
|
metadata_path = '../origin/titels_pd.csv' |
|
meta_df = pd.read_csv(metadata_path, header=1, sep='|') |
|
|
|
meta_df = meta_df.sample(frac=1, random_state=0) |
|
|
|
num_train = round(train_fraction*len(meta_df)) |
|
train_df = meta_df.iloc[:num_train] |
|
val_df = meta_df.iloc[num_train:] |
|
|
|
with open('tmp/train.jsonl', 'w') as train_file: |
|
with open('tmp/val.jsonl', 'w') as val_file: |
|
for item, split in tqdm(yield_file_contents('../origin/xml_pd.zip', train_df, val_df)): |
|
if split == 'train': |
|
train_file.write('{}\n'.format(json.dumps(item))) |
|
if split == 'validation': |
|
val_file.write('{}\n'.format(json.dumps(item))) |
|
|
|
datasets.Dataset.from_json('tmp/train.jsonl', split='train').to_parquet('../data/train.parquet') |
|
datasets.Dataset.from_json('tmp/val.jsonl', split='validation').to_parquet('../data/validation.parquet') |
|
|