Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
Portuguese
Size:
1K - 10K
License:
Adding prompt and supporting text for Source A
Browse files- aes_enem_dataset.py +51 -6
aes_enem_dataset.py
CHANGED
@@ -71,6 +71,8 @@ ESSAY_TO_IGNORE = [
|
|
71 |
CSV_HEADER = [
|
72 |
"id",
|
73 |
"id_prompt",
|
|
|
|
|
74 |
"title",
|
75 |
"essay",
|
76 |
"grades",
|
@@ -138,6 +140,8 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
138 |
{
|
139 |
"id": datasets.Value("string"),
|
140 |
"id_prompt": datasets.Value("string"),
|
|
|
|
|
141 |
"essay_title": datasets.Value("string"),
|
142 |
"essay_text": datasets.Value("string"),
|
143 |
"grades": datasets.Sequence(datasets.Value("int16")),
|
@@ -341,13 +345,13 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
341 |
if self.config.name == "sourceAWithGraders":
|
342 |
grader_a, grader_b = self._parse_graders_data(dirname)
|
343 |
grader_a_data = pd.merge(
|
344 |
-
train_df[["id", "id_prompt","essay"]],
|
345 |
grader_a.drop(columns=['essay']),
|
346 |
on=["id", "id_prompt"],
|
347 |
how="inner",
|
348 |
)
|
349 |
grader_b_data = pd.merge(
|
350 |
-
train_df[["id", "id_prompt","essay"]],
|
351 |
grader_b.drop(columns=['essay']),
|
352 |
on=["id", "id_prompt"],
|
353 |
how="inner",
|
@@ -356,13 +360,13 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
356 |
train_df = pd.concat([train_df, grader_b_data])
|
357 |
|
358 |
grader_a_data = pd.merge(
|
359 |
-
val_df[["id", "id_prompt","essay"]],
|
360 |
grader_a.drop(columns=['essay']),
|
361 |
on=["id", "id_prompt"],
|
362 |
how="inner",
|
363 |
)
|
364 |
grader_b_data = pd.merge(
|
365 |
-
val_df[["id", "id_prompt","essay"]],
|
366 |
grader_b.drop(columns=['essay']),
|
367 |
on=["id", "id_prompt"],
|
368 |
how="inner",
|
@@ -371,13 +375,13 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
371 |
val_df = pd.concat([val_df, grader_b_data])
|
372 |
|
373 |
grader_a_data = pd.merge(
|
374 |
-
test_df[["id", "id_prompt","essay"]],
|
375 |
grader_a.drop(columns=['essay']),
|
376 |
on=["id", "id_prompt"],
|
377 |
how="inner",
|
378 |
)
|
379 |
grader_b_data = pd.merge(
|
380 |
-
test_df[["id", "id_prompt","essay"]],
|
381 |
grader_b.drop(columns=['essay']),
|
382 |
on=["id", "id_prompt"],
|
383 |
how="inner",
|
@@ -413,6 +417,8 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
413 |
yield i, {
|
414 |
"id": row["id"],
|
415 |
"id_prompt": row["id_prompt"],
|
|
|
|
|
416 |
"essay_title": row["title"],
|
417 |
"essay_text": row["essay"],
|
418 |
"grades": grades,
|
@@ -633,6 +639,37 @@ class HTMLParser:
|
|
633 |
new_list.append(phrase)
|
634 |
return new_list
|
635 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
636 |
def parse(self, config_name):
|
637 |
for key, filepath in self.paths_dict.items():
|
638 |
if key != config_name:
|
@@ -670,6 +707,12 @@ class HTMLParser:
|
|
670 |
essay_year = self._get_essay_year(
|
671 |
self.apply_soup(prompt, "Prompt.html")
|
672 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
673 |
for essay in prompt_essays:
|
674 |
soup_text = self.apply_soup(prompt, essay)
|
675 |
if essay == "Prompt.html":
|
@@ -685,6 +728,8 @@ class HTMLParser:
|
|
685 |
[
|
686 |
essay,
|
687 |
prompt_folder,
|
|
|
|
|
688 |
essay_title,
|
689 |
essay_text,
|
690 |
essay_grades,
|
|
|
71 |
CSV_HEADER = [
|
72 |
"id",
|
73 |
"id_prompt",
|
74 |
+
"prompt",
|
75 |
+
"supporting_text",
|
76 |
"title",
|
77 |
"essay",
|
78 |
"grades",
|
|
|
140 |
{
|
141 |
"id": datasets.Value("string"),
|
142 |
"id_prompt": datasets.Value("string"),
|
143 |
+
"prompt": datasets.Value("string"),
|
144 |
+
"supporting_text": datasets.Value("string"),
|
145 |
"essay_title": datasets.Value("string"),
|
146 |
"essay_text": datasets.Value("string"),
|
147 |
"grades": datasets.Sequence(datasets.Value("int16")),
|
|
|
345 |
if self.config.name == "sourceAWithGraders":
|
346 |
grader_a, grader_b = self._parse_graders_data(dirname)
|
347 |
grader_a_data = pd.merge(
|
348 |
+
train_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
|
349 |
grader_a.drop(columns=['essay']),
|
350 |
on=["id", "id_prompt"],
|
351 |
how="inner",
|
352 |
)
|
353 |
grader_b_data = pd.merge(
|
354 |
+
train_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
|
355 |
grader_b.drop(columns=['essay']),
|
356 |
on=["id", "id_prompt"],
|
357 |
how="inner",
|
|
|
360 |
train_df = pd.concat([train_df, grader_b_data])
|
361 |
|
362 |
grader_a_data = pd.merge(
|
363 |
+
val_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
|
364 |
grader_a.drop(columns=['essay']),
|
365 |
on=["id", "id_prompt"],
|
366 |
how="inner",
|
367 |
)
|
368 |
grader_b_data = pd.merge(
|
369 |
+
val_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
|
370 |
grader_b.drop(columns=['essay']),
|
371 |
on=["id", "id_prompt"],
|
372 |
how="inner",
|
|
|
375 |
val_df = pd.concat([val_df, grader_b_data])
|
376 |
|
377 |
grader_a_data = pd.merge(
|
378 |
+
test_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
|
379 |
grader_a.drop(columns=['essay']),
|
380 |
on=["id", "id_prompt"],
|
381 |
how="inner",
|
382 |
)
|
383 |
grader_b_data = pd.merge(
|
384 |
+
test_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
|
385 |
grader_b.drop(columns=['essay']),
|
386 |
on=["id", "id_prompt"],
|
387 |
how="inner",
|
|
|
417 |
yield i, {
|
418 |
"id": row["id"],
|
419 |
"id_prompt": row["id_prompt"],
|
420 |
+
"prompt": row['prompt'],
|
421 |
+
"supporting_text": row["supporting_text"],
|
422 |
"essay_title": row["title"],
|
423 |
"essay_text": row["essay"],
|
424 |
"grades": grades,
|
|
|
639 |
new_list.append(phrase)
|
640 |
return new_list
|
641 |
|
642 |
+
def _clean_string(self, sentence):
|
643 |
+
sentence = sentence.replace("\xa0","").replace("\u200b","")
|
644 |
+
sentence = sentence.replace(".",". ").replace("?","? ").replace("!", "! ").replace(")",") ").replace(":",": ").replace("”", "” ")
|
645 |
+
sentence = sentence.replace(" ", " ").replace(". . . ", "...")
|
646 |
+
sentence = sentence.replace("(editado)", "").replace("(Editado)","")
|
647 |
+
sentence = sentence.replace("(editado e adaptado)", "").replace("(Editado e adaptado)", "")
|
648 |
+
sentence = sentence.replace(". com. br", ".com.br")
|
649 |
+
sentence = sentence.replace("[Veja o texto completo aqui]", "")
|
650 |
+
return sentence
|
651 |
+
|
652 |
+
def _get_supporting_text(self, soup):
|
653 |
+
if self.sourceA:
|
654 |
+
textos = soup.find_all("ul", class_="article-wording-item")
|
655 |
+
resposta = []
|
656 |
+
for t in textos[:-1]:
|
657 |
+
resposta.append(t.find("h3", class_="item-titulo").get_text().replace("\xa0",""))
|
658 |
+
resposta.append(self._clean_string(t.find("div", class_="item-descricao").get_text()))
|
659 |
+
return resposta
|
660 |
+
else:
|
661 |
+
return ""
|
662 |
+
|
663 |
+
def _get_prompt(self, soup):
|
664 |
+
if self.sourceA:
|
665 |
+
prompt = soup.find("div", class_="text").find_all("p")
|
666 |
+
if len(prompt[0].get_text()) < 2:
|
667 |
+
return [prompt[1].get_text().replace("\xa0","")]
|
668 |
+
else:
|
669 |
+
return [prompt[0].get_text().replace("\xa0","")]
|
670 |
+
else:
|
671 |
+
return ""
|
672 |
+
|
673 |
def parse(self, config_name):
|
674 |
for key, filepath in self.paths_dict.items():
|
675 |
if key != config_name:
|
|
|
707 |
essay_year = self._get_essay_year(
|
708 |
self.apply_soup(prompt, "Prompt.html")
|
709 |
)
|
710 |
+
essay_supporting_text = "\n".join(self._get_supporting_text(
|
711 |
+
self.apply_soup(prompt, "Prompt.html")
|
712 |
+
))
|
713 |
+
essay_prompt = "\n".join(self._get_prompt(
|
714 |
+
self.apply_soup(prompt, "Prompt.html")
|
715 |
+
))
|
716 |
for essay in prompt_essays:
|
717 |
soup_text = self.apply_soup(prompt, essay)
|
718 |
if essay == "Prompt.html":
|
|
|
728 |
[
|
729 |
essay,
|
730 |
prompt_folder,
|
731 |
+
essay_prompt,
|
732 |
+
essay_supporting_text,
|
733 |
essay_title,
|
734 |
essay_text,
|
735 |
essay_grades,
|