Commit
•
695b114
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/1.0.0/dummy_data.zip +3 -0
- tiny_shakespeare.py +111 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "40,000 lines of Shakespeare from a variety of Shakespeare's plays. Featured in Andrej Karpathy's blog post 'The Unreasonable Effectiveness of Recurrent Neural Networks': http://karpathy.github.io/2015/05/21/rnn-effectiveness/.\n\nTo use for e.g. character modelling:\n\n```\nd = datasets.load_dataset(name='tiny_shakespeare')['train']\nd = d.map(lambda x: datasets.Value('strings').unicode_split(x['text'], 'UTF-8'))\n# train split includes vocabulary for other splits\nvocabulary = sorted(set(next(iter(d)).numpy()))\nd = d.map(lambda x: {'cur_char': x[:-1], 'next_char': x[1:]})\nd = d.unbatch()\nseq_len = 100\nbatch_size = 2\nd = d.batch(seq_len)\nd = d.batch(batch_size)\n```\n", "citation": "@misc{\n author={Karpathy, Andrej},\n title={char-rnn},\n year={2015},\n howpublished={\\url{https://github.com/karpathy/char-rnn}}\n}", "homepage": "https://github.com/karpathy/char-rnn/blob/master/data/tinyshakespeare/input.txt", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "tiny_shakespeare", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 55780, "num_examples": 1, "dataset_name": "tiny_shakespeare"}, "train": {"name": "train", "num_bytes": 1003864, "num_examples": 1, "dataset_name": "tiny_shakespeare"}, "validation": {"name": "validation", "num_bytes": 55780, "num_examples": 1, "dataset_name": "tiny_shakespeare"}}, "download_checksums": {"https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt": {"num_bytes": 1115394, "checksum": "86c4e6aa9db7c042ec79f339dcb96d42b0075e16b8fc2e86bf0ca57e2dc565ed"}}, "download_size": 1115394, "dataset_size": 1115424, "size_in_bytes": 2230818}}
|
dummy/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3d585d0db30e951e733421dc97a99df93647090d39b890f84c0481dad7b10eb
|
3 |
+
size 401
|
tiny_shakespeare.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""Tiny Shakespeare dataset."""
|
18 |
+
|
19 |
+
from __future__ import absolute_import, division, print_function
|
20 |
+
|
21 |
+
import os
|
22 |
+
|
23 |
+
import datasets
|
24 |
+
|
25 |
+
|
26 |
+
_CITATION = """\
|
27 |
+
@misc{
|
28 |
+
author={Karpathy, Andrej},
|
29 |
+
title={char-rnn},
|
30 |
+
year={2015},
|
31 |
+
howpublished={\\url{https://github.com/karpathy/char-rnn}}
|
32 |
+
}"""
|
33 |
+
|
34 |
+
_DESCRIPTION = """\
|
35 |
+
40,000 lines of Shakespeare from a variety of Shakespeare's plays. \
|
36 |
+
Featured in Andrej Karpathy's blog post 'The Unreasonable Effectiveness of \
|
37 |
+
Recurrent Neural Networks': \
|
38 |
+
http://karpathy.github.io/2015/05/21/rnn-effectiveness/.
|
39 |
+
|
40 |
+
To use for e.g. character modelling:
|
41 |
+
|
42 |
+
```
|
43 |
+
d = datasets.load_dataset(name='tiny_shakespeare')['train']
|
44 |
+
d = d.map(lambda x: datasets.Value('strings').unicode_split(x['text'], 'UTF-8'))
|
45 |
+
# train split includes vocabulary for other splits
|
46 |
+
vocabulary = sorted(set(next(iter(d)).numpy()))
|
47 |
+
d = d.map(lambda x: {'cur_char': x[:-1], 'next_char': x[1:]})
|
48 |
+
d = d.unbatch()
|
49 |
+
seq_len = 100
|
50 |
+
batch_size = 2
|
51 |
+
d = d.batch(seq_len)
|
52 |
+
d = d.batch(batch_size)
|
53 |
+
```
|
54 |
+
"""
|
55 |
+
|
56 |
+
|
57 |
+
class TinyShakespeare(datasets.GeneratorBasedBuilder):
|
58 |
+
"""Tiny Shakespeare dataset builder."""
|
59 |
+
|
60 |
+
VERSION = datasets.Version("1.0.0")
|
61 |
+
|
62 |
+
def _info(self):
|
63 |
+
return datasets.DatasetInfo(
|
64 |
+
description=_DESCRIPTION,
|
65 |
+
features=datasets.Features({"text": datasets.Value("string")}),
|
66 |
+
supervised_keys=None,
|
67 |
+
homepage="https://github.com/karpathy/char-rnn/blob/master/data/tinyshakespeare/input.txt",
|
68 |
+
citation=_CITATION,
|
69 |
+
)
|
70 |
+
|
71 |
+
def _split_generators(self, dl_manager):
|
72 |
+
"""Returns SplitGenerators."""
|
73 |
+
download_path = dl_manager.download_and_extract(
|
74 |
+
"https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt"
|
75 |
+
)
|
76 |
+
if os.path.isdir(download_path):
|
77 |
+
# During testing the download manager mock gives us a directory
|
78 |
+
txt_path = os.path.join(download_path, "input.txt")
|
79 |
+
else:
|
80 |
+
txt_path = download_path
|
81 |
+
with open(txt_path, "r", encoding="utf-8") as f:
|
82 |
+
text = f.read()
|
83 |
+
|
84 |
+
# 90/5/5 split
|
85 |
+
i = int(len(text) * 0.9)
|
86 |
+
train_text, text = text[:i], text[i:]
|
87 |
+
i = int(len(text) * 0.5)
|
88 |
+
validation_text, text = text[:i], text[i:]
|
89 |
+
test_text = text
|
90 |
+
|
91 |
+
return [
|
92 |
+
datasets.SplitGenerator(
|
93 |
+
name=datasets.Split.TRAIN,
|
94 |
+
# These kwargs will be passed to _generate_examples
|
95 |
+
gen_kwargs={"split_key": "train", "split_text": train_text},
|
96 |
+
),
|
97 |
+
datasets.SplitGenerator(
|
98 |
+
name=datasets.Split.VALIDATION,
|
99 |
+
gen_kwargs={"split_key": "validation", "split_text": validation_text},
|
100 |
+
),
|
101 |
+
datasets.SplitGenerator(
|
102 |
+
name=datasets.Split.TEST,
|
103 |
+
gen_kwargs={"split_key": "test", "split_text": test_text},
|
104 |
+
),
|
105 |
+
]
|
106 |
+
|
107 |
+
def _generate_examples(self, split_key, split_text):
|
108 |
+
"""Yields examples."""
|
109 |
+
data_key = split_key # Should uniquely identify the thing yielded
|
110 |
+
feature_dict = {"text": split_text}
|
111 |
+
yield data_key, feature_dict
|