|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""LJ automatic speech recognition dataset.""" |
|
|
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
from datasets.tasks import AutomaticSpeechRecognition |
|
|
|
|
|
_CITATION = """\ |
|
@misc{ljspeech17, |
|
author = {Keith Ito and Linda Johnson}, |
|
title = {The LJ Speech Dataset}, |
|
howpublished = {\\url{https://keithito.com/LJ-Speech-Dataset/}}, |
|
year = 2017 |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This is a public domain speech dataset consisting of 13,100 short audio clips of a single speaker reading |
|
passages from 7 non-fiction books in English. A transcription is provided for each clip. Clips vary in length |
|
from 1 to 10 seconds and have a total length of approximately 24 hours. |
|
|
|
Note that in order to limit the required storage for preparing this dataset, the audio |
|
is stored in the .wav format and is not converted to a float32 array. To convert the audio |
|
file to a float32 array, please make use of the `.map()` function as follows: |
|
|
|
|
|
```python |
|
import soundfile as sf |
|
|
|
def map_to_array(batch): |
|
speech_array, _ = sf.read(batch["file"]) |
|
batch["speech"] = speech_array |
|
return batch |
|
|
|
dataset = dataset.map(map_to_array, remove_columns=["file"]) |
|
``` |
|
""" |
|
|
|
_URL = "https://keithito.com/LJ-Speech-Dataset/" |
|
_DL_URL = "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2" |
|
|
|
|
|
class LJSpeech(datasets.GeneratorBasedBuilder): |
|
"""LJ Speech dataset.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="main", version=VERSION, description="The full LJ Speech dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=22050), |
|
"file": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"normalized_text": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=("file", "text"), |
|
homepage=_URL, |
|
citation=_CITATION, |
|
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
root_path = dl_manager.download_and_extract(_DL_URL) |
|
root_path = os.path.join(root_path, "LJSpeech-1.1") |
|
wav_path = os.path.join(root_path, "wavs") |
|
csv_path = os.path.join(root_path, "metadata.csv") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"wav_path": wav_path, "csv_path": csv_path} |
|
), |
|
] |
|
|
|
def _generate_examples(self, wav_path, csv_path): |
|
"""Generate examples from an LJ Speech archive_path.""" |
|
|
|
with open(csv_path, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader(csv_file, delimiter="|", quotechar=None, skipinitialspace=True) |
|
for row in csv_reader: |
|
uid, text, norm_text = row |
|
filename = f"{uid}.wav" |
|
example = { |
|
"id": uid, |
|
"file": os.path.join(wav_path, filename), |
|
"audio": os.path.join(wav_path, filename), |
|
"text": text, |
|
"normalized_text": norm_text, |
|
} |
|
yield uid, example |
|
|