Datasets:
Commit
•
7611c36
1
Parent(s):
bd63f52
Delete loading script
Browse files- lj_speech.py +0 -116
lj_speech.py
DELETED
@@ -1,116 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""LJ automatic speech recognition dataset."""
|
18 |
-
|
19 |
-
|
20 |
-
import csv
|
21 |
-
import os
|
22 |
-
|
23 |
-
import datasets
|
24 |
-
from datasets.tasks import AutomaticSpeechRecognition
|
25 |
-
|
26 |
-
|
27 |
-
_CITATION = """\
|
28 |
-
@misc{ljspeech17,
|
29 |
-
author = {Keith Ito and Linda Johnson},
|
30 |
-
title = {The LJ Speech Dataset},
|
31 |
-
howpublished = {\\url{https://keithito.com/LJ-Speech-Dataset/}},
|
32 |
-
year = 2017
|
33 |
-
}
|
34 |
-
"""
|
35 |
-
|
36 |
-
_DESCRIPTION = """\
|
37 |
-
This is a public domain speech dataset consisting of 13,100 short audio clips of a single speaker reading
|
38 |
-
passages from 7 non-fiction books in English. A transcription is provided for each clip. Clips vary in length
|
39 |
-
from 1 to 10 seconds and have a total length of approximately 24 hours.
|
40 |
-
|
41 |
-
Note that in order to limit the required storage for preparing this dataset, the audio
|
42 |
-
is stored in the .wav format and is not converted to a float32 array. To convert the audio
|
43 |
-
file to a float32 array, please make use of the `.map()` function as follows:
|
44 |
-
|
45 |
-
|
46 |
-
```python
|
47 |
-
import soundfile as sf
|
48 |
-
|
49 |
-
def map_to_array(batch):
|
50 |
-
speech_array, _ = sf.read(batch["file"])
|
51 |
-
batch["speech"] = speech_array
|
52 |
-
return batch
|
53 |
-
|
54 |
-
dataset = dataset.map(map_to_array, remove_columns=["file"])
|
55 |
-
```
|
56 |
-
"""
|
57 |
-
|
58 |
-
_URL = "https://keithito.com/LJ-Speech-Dataset/"
|
59 |
-
_DL_URL = "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2"
|
60 |
-
|
61 |
-
|
62 |
-
class LJSpeech(datasets.GeneratorBasedBuilder):
|
63 |
-
"""LJ Speech dataset."""
|
64 |
-
|
65 |
-
VERSION = datasets.Version("1.1.0")
|
66 |
-
|
67 |
-
BUILDER_CONFIGS = [
|
68 |
-
datasets.BuilderConfig(name="main", version=VERSION, description="The full LJ Speech dataset"),
|
69 |
-
]
|
70 |
-
|
71 |
-
def _info(self):
|
72 |
-
return datasets.DatasetInfo(
|
73 |
-
description=_DESCRIPTION,
|
74 |
-
features=datasets.Features(
|
75 |
-
{
|
76 |
-
"id": datasets.Value("string"),
|
77 |
-
"audio": datasets.Audio(sampling_rate=22050),
|
78 |
-
"file": datasets.Value("string"),
|
79 |
-
"text": datasets.Value("string"),
|
80 |
-
"normalized_text": datasets.Value("string"),
|
81 |
-
}
|
82 |
-
),
|
83 |
-
supervised_keys=("file", "text"),
|
84 |
-
homepage=_URL,
|
85 |
-
citation=_CITATION,
|
86 |
-
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
|
87 |
-
)
|
88 |
-
|
89 |
-
def _split_generators(self, dl_manager):
|
90 |
-
root_path = dl_manager.download_and_extract(_DL_URL)
|
91 |
-
root_path = os.path.join(root_path, "LJSpeech-1.1")
|
92 |
-
wav_path = os.path.join(root_path, "wavs")
|
93 |
-
csv_path = os.path.join(root_path, "metadata.csv")
|
94 |
-
|
95 |
-
return [
|
96 |
-
datasets.SplitGenerator(
|
97 |
-
name=datasets.Split.TRAIN, gen_kwargs={"wav_path": wav_path, "csv_path": csv_path}
|
98 |
-
),
|
99 |
-
]
|
100 |
-
|
101 |
-
def _generate_examples(self, wav_path, csv_path):
|
102 |
-
"""Generate examples from an LJ Speech archive_path."""
|
103 |
-
|
104 |
-
with open(csv_path, encoding="utf-8") as csv_file:
|
105 |
-
csv_reader = csv.reader(csv_file, delimiter="|", quotechar=None, skipinitialspace=True)
|
106 |
-
for row in csv_reader:
|
107 |
-
uid, text, norm_text = row
|
108 |
-
filename = f"{uid}.wav"
|
109 |
-
example = {
|
110 |
-
"id": uid,
|
111 |
-
"file": os.path.join(wav_path, filename),
|
112 |
-
"audio": os.path.join(wav_path, filename),
|
113 |
-
"text": text,
|
114 |
-
"normalized_text": norm_text,
|
115 |
-
}
|
116 |
-
yield uid, example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|