khalidalt commited on
Commit
3b05d24
1 Parent(s): fbd56cd

Create tydiqa-goldp.py

Browse files
Files changed (1) hide show
  1. tydiqa-goldp.py +131 -0
tydiqa-goldp.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import textwrap
3
+
4
+ import datasets
5
+ from datasets.tasks import QuestionAnsweringExtractive
6
+
7
+ # TODO(tydiqa): BibTeX citation
8
+ _CITATION = """\
9
+ @article{tydiqa,
10
+ title = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
11
+ author = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}
12
+ year = {2020},
13
+ journal = {Transactions of the Association for Computational Linguistics}
14
+ }
15
+ """
16
+
17
+ # TODO(tydiqa):
18
+ _DESCRIPTION = """\
19
+ TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.
20
+ The languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language
21
+ expresses -- such that we expect models performing well on this set to generalize across a large number of the languages
22
+ in the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic
23
+ information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but
24
+ don’t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without
25
+ the use of translation (unlike MLQA and XQuAD).
26
+ """
27
+
28
+
29
+ _LANG = ["arabic", "bengali", "english", "finnish", "indonesian", "japanese", "korean", "russoam", "swahili", "telugu", "thai"]
30
+ #_URL = "https://raw.githubusercontent.com/cambridgeltl/xcopa/master/{subdir}/{language}/{split}.{language}.jsonl"
31
+ _URL = "https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/{split}/{language}-{split}.jsonl"
32
+ _VERSION = datasets.Version("1.1.0", "")
33
+
34
+
35
+ class tydiqa_GoldP(datasets.GeneratorBasedBuilder):
36
+ BUILDER_CONFIGS = [
37
+ datasets.BuilderConfig(
38
+ name=lang,
39
+ description=f"tydiqa-GoldP language {lang}",
40
+ version=_VERSION,
41
+ )
42
+ for lang in _LANG
43
+ ]
44
+ BUILDER_CONFIGS += [
45
+ datasets.BuilderConfig(
46
+ name=f"translation-{lang}",
47
+ description=f"tydiqa-GoldP English translation for language {lang}",
48
+ version=_VERSION,
49
+ ) ]
50
+
51
+ def _info(self):
52
+ # TODO(tydiqa): Specifies the datasets.DatasetInfo object
53
+
54
+ return datasets.DatasetInfo(
55
+ description=_DESCRIPTION,
56
+ features=datasets.Features(
57
+ {
58
+ "id": datasets.Value("string"),
59
+ "title": datasets.Value("string"),
60
+ "context": datasets.Value("string"),
61
+ "question": datasets.Value("string"),
62
+ "answers": datasets.features.Sequence(
63
+ {
64
+ "text": datasets.Value("string"),
65
+ "answer_start": datasets.Value("int32"),
66
+ }
67
+ ),
68
+ }
69
+ ),
70
+ # No default supervised_keys (as we have to pass both question
71
+ # and context as input).
72
+ supervised_keys=None,
73
+ homepage="https://github.com/google-research-datasets/tydiqa",
74
+ citation=_CITATION,
75
+ task_templates=[
76
+ QuestionAnsweringExtractive(
77
+ question_column="question", context_column="context", answers_column="answers"
78
+ )
79
+ ],
80
+ )
81
+
82
+ def _split_generators(self, dl_manager):
83
+ """Returns SplitGenerators."""
84
+ # TODO(tydiqa): Downloads the data and defines the splits
85
+ # dl_manager is a datasets.download.DownloadManager that can be used to
86
+ # download and extract URLs
87
+ language = self.config.name
88
+ splits = {datasets.Split.TRAIN: "train", datasets.Split.VALIDATION: "dev"}
89
+
90
+ data_urls = {
91
+ split: _URL.format(language=language, split=splits[split]) for split in splits
92
+ }
93
+
94
+ dl_paths = dl_manager.download(data_urls)
95
+ return [
96
+ datasets.SplitGenerator(
97
+ name=split,
98
+ gen_kwargs={"filepath": dl_paths[split]},
99
+ )
100
+ for split in splits
101
+ ]
102
+
103
+ def _generate_examples(self, filepath):
104
+ """Yields examples."""
105
+ # TODO(tydiqa): Yields (key, example) tuples from the dataset
106
+
107
+ with open(filepath, encoding="utf-8") as f:
108
+ data = json.load(f)
109
+ for article in data["data"]:
110
+ title = article.get("title", "").strip()
111
+ for paragraph in article["paragraphs"]:
112
+ context = paragraph["context"].strip()
113
+ for qa in paragraph["qas"]:
114
+ question = qa["question"].strip()
115
+ id_ = qa["id"]
116
+
117
+ answer_starts = [answer["answer_start"] for answer in qa["answers"]]
118
+ answers = [answer["text"].strip() for answer in qa["answers"]]
119
+
120
+ # Features currently used are "context", "question", and "answers".
121
+ # Others are extracted here for the ease of future expansions.
122
+ yield id_, {
123
+ "title": title,
124
+ "context": context,
125
+ "question": question,
126
+ "id": id_,
127
+ "answers": {
128
+ "answer_start": answer_starts,
129
+ "text": answers,
130
+ },
131
+ }