kjj0 commited on
Commit
9219ec0
·
verified ·
1 Parent(s): e85db8c

Upload airbench94.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. airbench94.py +483 -0
airbench94.py ADDED
@@ -0,0 +1,483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Uncompiled variant of airbench94_compiled.py
2
+ # 3.83s runtime on an A100; 0.36 PFLOPs.
3
+ # Evidence: 94.01 average accuracy in n=1000 runs.
4
+ #
5
+ # We recorded the runtime of 3.83 seconds on an NVIDIA A100-SXM4-80GB with the following nvidia-smi:
6
+ # NVIDIA-SMI 515.105.01 Driver Version: 515.105.01 CUDA Version: 11.7
7
+ # torch.__version__ == '2.1.2+cu118'
8
+
9
+ #############################################
10
+ # Setup/Hyperparameters #
11
+ #############################################
12
+
13
+ import os
14
+ import sys
15
+ import uuid
16
+ from math import ceil
17
+
18
+ import torch
19
+ from torch import nn
20
+ import torch.nn.functional as F
21
+ import torchvision
22
+ import torchvision.transforms as T
23
+
24
+ torch.backends.cudnn.benchmark = True
25
+
26
+ # We express the main training hyperparameters (batch size, learning rate, momentum, and weight decay)
27
+ # in decoupled form, so that each one can be tuned independently. This accomplishes the following:
28
+ # * Assuming time-constant gradients, the average step size is decoupled from everything but the lr.
29
+ # * The size of the weight decay update is decoupled from everything but the wd.
30
+ # In constrast, normally when we increase the (Nesterov) momentum, this also scales up the step size
31
+ # proportionally to 1 + 1 / (1 - momentum), meaning we cannot change momentum without having to re-tune
32
+ # the learning rate. Similarly, normally when we increase the learning rate this also increases the size
33
+ # of the weight decay, requiring a proportional decrease in the wd to maintain the same decay strength.
34
+ #
35
+ # The practical impact is that hyperparameter tuning is faster, since this parametrization allows each
36
+ # one to be tuned independently. See https://myrtle.ai/learn/how-to-train-your-resnet-5-hyperparameters/.
37
+
38
+ hyp = {
39
+ 'opt': {
40
+ 'train_epochs': 9.9,
41
+ 'batch_size': 1024,
42
+ 'lr': 11.5, # learning rate per 1024 examples
43
+ 'momentum': 0.85,
44
+ 'weight_decay': 0.0153, # weight decay per 1024 examples (decoupled from learning rate)
45
+ 'bias_scaler': 64.0, # scales up learning rate (but not weight decay) for BatchNorm biases
46
+ 'label_smoothing': 0.2,
47
+ 'whiten_bias_epochs': 3, # how many epochs to train the whitening layer bias before freezing
48
+ },
49
+ 'aug': {
50
+ 'flip': True,
51
+ 'translate': 2,
52
+ },
53
+ 'net': {
54
+ 'widths': {
55
+ 'block1': 64,
56
+ 'block2': 256,
57
+ 'block3': 256,
58
+ },
59
+ 'batchnorm_momentum': 0.6,
60
+ 'scaling_factor': 1/9,
61
+ 'tta_level': 2, # the level of test-time augmentation: 0=none, 1=mirror, 2=mirror+translate
62
+ },
63
+ }
64
+
65
+ #############################################
66
+ # DataLoader #
67
+ #############################################
68
+
69
+ CIFAR_MEAN = torch.tensor((0.4914, 0.4822, 0.4465))
70
+ CIFAR_STD = torch.tensor((0.2470, 0.2435, 0.2616))
71
+
72
+ def batch_flip_lr(inputs):
73
+ flip_mask = (torch.rand(len(inputs), device=inputs.device) < 0.5).view(-1, 1, 1, 1)
74
+ return torch.where(flip_mask, inputs.flip(-1), inputs)
75
+
76
+ def batch_crop(images, crop_size):
77
+ r = (images.size(-1) - crop_size)//2
78
+ shifts = torch.randint(-r, r+1, size=(len(images), 2), device=images.device)
79
+ images_out = torch.empty((len(images), 3, crop_size, crop_size), device=images.device, dtype=images.dtype)
80
+ # The two cropping methods in this if-else produce equivalent results, but the second is faster for r > 2.
81
+ if r <= 2:
82
+ for sy in range(-r, r+1):
83
+ for sx in range(-r, r+1):
84
+ mask = (shifts[:, 0] == sy) & (shifts[:, 1] == sx)
85
+ images_out[mask] = images[mask, :, r+sy:r+sy+crop_size, r+sx:r+sx+crop_size]
86
+ else:
87
+ images_tmp = torch.empty((len(images), 3, crop_size, crop_size+2*r), device=images.device, dtype=images.dtype)
88
+ for s in range(-r, r+1):
89
+ mask = (shifts[:, 0] == s)
90
+ images_tmp[mask] = images[mask, :, r+s:r+s+crop_size, :]
91
+ for s in range(-r, r+1):
92
+ mask = (shifts[:, 1] == s)
93
+ images_out[mask] = images_tmp[mask, :, :, r+s:r+s+crop_size]
94
+ return images_out
95
+
96
+ class CifarLoader:
97
+
98
+ def __init__(self, path, train=True, batch_size=500, aug=None, drop_last=None, shuffle=None, gpu=0):
99
+ data_path = os.path.join(path, 'train.pt' if train else 'test.pt')
100
+ if not os.path.exists(data_path):
101
+ dset = torchvision.datasets.CIFAR10(path, download=True, train=train)
102
+ images = torch.tensor(dset.data)
103
+ labels = torch.tensor(dset.targets)
104
+ torch.save({'images': images, 'labels': labels, 'classes': dset.classes}, data_path)
105
+
106
+ data = torch.load(data_path, map_location=torch.device(gpu))
107
+ self.images, self.labels, self.classes = data['images'], data['labels'], data['classes']
108
+ # It's faster to load+process uint8 data than to load preprocessed fp16 data
109
+ self.images = (self.images.half() / 255).permute(0, 3, 1, 2).to(memory_format=torch.channels_last)
110
+
111
+ self.normalize = T.Normalize(CIFAR_MEAN, CIFAR_STD)
112
+ self.proc_images = {} # Saved results of image processing to be done on the first epoch
113
+ self.epoch = 0
114
+
115
+ self.aug = aug or {}
116
+ for k in self.aug.keys():
117
+ assert k in ['flip', 'translate'], 'Unrecognized key: %s' % k
118
+
119
+ self.batch_size = batch_size
120
+ self.drop_last = train if drop_last is None else drop_last
121
+ self.shuffle = train if shuffle is None else shuffle
122
+
123
+ def __len__(self):
124
+ return len(self.images)//self.batch_size if self.drop_last else ceil(len(self.images)/self.batch_size)
125
+
126
+ def __iter__(self):
127
+
128
+ if self.epoch == 0:
129
+ images = self.proc_images['norm'] = self.normalize(self.images)
130
+ # Pre-flip images in order to do every-other epoch flipping scheme
131
+ if self.aug.get('flip', False):
132
+ images = self.proc_images['flip'] = batch_flip_lr(images)
133
+ # Pre-pad images to save time when doing random translation
134
+ pad = self.aug.get('translate', 0)
135
+ if pad > 0:
136
+ self.proc_images['pad'] = F.pad(images, (pad,)*4, 'reflect')
137
+
138
+ if self.aug.get('translate', 0) > 0:
139
+ images = batch_crop(self.proc_images['pad'], self.images.shape[-2])
140
+ elif self.aug.get('flip', False):
141
+ images = self.proc_images['flip']
142
+ else:
143
+ images = self.proc_images['norm']
144
+ # Flip all images together every other epoch. This increases diversity relative to random flipping
145
+ if self.aug.get('flip', False):
146
+ if self.epoch % 2 == 1:
147
+ images = images.flip(-1)
148
+
149
+ self.epoch += 1
150
+
151
+ indices = (torch.randperm if self.shuffle else torch.arange)(len(images), device=images.device)
152
+ for i in range(len(self)):
153
+ idxs = indices[i*self.batch_size:(i+1)*self.batch_size]
154
+ yield (images[idxs], self.labels[idxs])
155
+
156
+ #############################################
157
+ # Network Components #
158
+ #############################################
159
+
160
+ class Flatten(nn.Module):
161
+ def forward(self, x):
162
+ return x.view(x.size(0), -1)
163
+
164
+ class Mul(nn.Module):
165
+ def __init__(self, scale):
166
+ super().__init__()
167
+ self.scale = scale
168
+ def forward(self, x):
169
+ return x * self.scale
170
+
171
+ class BatchNorm(nn.BatchNorm2d):
172
+ def __init__(self, num_features, momentum, eps=1e-12,
173
+ weight=False, bias=True):
174
+ super().__init__(num_features, eps=eps, momentum=1-momentum)
175
+ self.weight.requires_grad = weight
176
+ self.bias.requires_grad = bias
177
+ # Note that PyTorch already initializes the weights to one and bias to zero
178
+
179
+ class Conv(nn.Conv2d):
180
+ def __init__(self, in_channels, out_channels, kernel_size=3, padding='same', bias=False):
181
+ super().__init__(in_channels, out_channels, kernel_size=kernel_size, padding=padding, bias=bias)
182
+
183
+ def reset_parameters(self):
184
+ super().reset_parameters()
185
+ if self.bias is not None:
186
+ self.bias.data.zero_()
187
+ w = self.weight.data
188
+ torch.nn.init.dirac_(w[:w.size(1)])
189
+
190
+ class ConvGroup(nn.Module):
191
+ def __init__(self, channels_in, channels_out, batchnorm_momentum):
192
+ super().__init__()
193
+ self.conv1 = Conv(channels_in, channels_out)
194
+ self.pool = nn.MaxPool2d(2)
195
+ self.norm1 = BatchNorm(channels_out, batchnorm_momentum)
196
+ self.conv2 = Conv(channels_out, channels_out)
197
+ self.norm2 = BatchNorm(channels_out, batchnorm_momentum)
198
+ self.activ = nn.GELU()
199
+
200
+ def forward(self, x):
201
+ x = self.conv1(x)
202
+ x = self.pool(x)
203
+ x = self.norm1(x)
204
+ x = self.activ(x)
205
+ x = self.conv2(x)
206
+ x = self.norm2(x)
207
+ x = self.activ(x)
208
+ return x
209
+
210
+ #############################################
211
+ # Network Definition #
212
+ #############################################
213
+
214
+ def make_net():
215
+ widths = hyp['net']['widths']
216
+ batchnorm_momentum = hyp['net']['batchnorm_momentum']
217
+ whiten_kernel_size = 2
218
+ whiten_width = 2 * 3 * whiten_kernel_size**2
219
+ net = nn.Sequential(
220
+ Conv(3, whiten_width, whiten_kernel_size, padding=0, bias=True),
221
+ nn.GELU(),
222
+ ConvGroup(whiten_width, widths['block1'], batchnorm_momentum),
223
+ ConvGroup(widths['block1'], widths['block2'], batchnorm_momentum),
224
+ ConvGroup(widths['block2'], widths['block3'], batchnorm_momentum),
225
+ nn.MaxPool2d(3),
226
+ Flatten(),
227
+ nn.Linear(widths['block3'], 10, bias=False),
228
+ Mul(hyp['net']['scaling_factor']),
229
+ )
230
+ net[0].weight.requires_grad = False
231
+ net = net.half().cuda()
232
+ net = net.to(memory_format=torch.channels_last)
233
+ for mod in net.modules():
234
+ if isinstance(mod, BatchNorm):
235
+ mod.float()
236
+ return net
237
+
238
+ #############################################
239
+ # Whitening Conv Initialization #
240
+ #############################################
241
+
242
+ def get_patches(x, patch_shape):
243
+ c, (h, w) = x.shape[1], patch_shape
244
+ return x.unfold(2,h,1).unfold(3,w,1).transpose(1,3).reshape(-1,c,h,w).float()
245
+
246
+ def get_whitening_parameters(patches):
247
+ n,c,h,w = patches.shape
248
+ patches_flat = patches.view(n, -1)
249
+ est_patch_covariance = (patches_flat.T @ patches_flat) / n
250
+ eigenvalues, eigenvectors = torch.linalg.eigh(est_patch_covariance, UPLO='U')
251
+ return eigenvalues.flip(0).view(-1, 1, 1, 1), eigenvectors.T.reshape(c*h*w,c,h,w).flip(0)
252
+
253
+ def init_whitening_conv(layer, train_set, eps=5e-4):
254
+ patches = get_patches(train_set, patch_shape=layer.weight.data.shape[2:])
255
+ eigenvalues, eigenvectors = get_whitening_parameters(patches)
256
+ eigenvectors_scaled = eigenvectors / torch.sqrt(eigenvalues + eps)
257
+ layer.weight.data[:] = torch.cat((eigenvectors_scaled, -eigenvectors_scaled))
258
+
259
+ ############################################
260
+ # Lookahead #
261
+ ############################################
262
+
263
+ class LookaheadState:
264
+ def __init__(self, net):
265
+ self.net_ema = {k: v.clone() for k, v in net.state_dict().items()}
266
+
267
+ def update(self, net, decay):
268
+ for ema_param, net_param in zip(self.net_ema.values(), net.state_dict().values()):
269
+ if net_param.dtype in (torch.half, torch.float):
270
+ ema_param.lerp_(net_param, 1-decay)
271
+ net_param.copy_(ema_param)
272
+
273
+ ############################################
274
+ # Logging #
275
+ ############################################
276
+
277
+ def print_columns(columns_list, is_head=False, is_final_entry=False):
278
+ print_string = ''
279
+ for col in columns_list:
280
+ print_string += '| %s ' % col
281
+ print_string += '|'
282
+ if is_head:
283
+ print('-'*len(print_string))
284
+ print(print_string)
285
+ if is_head or is_final_entry:
286
+ print('-'*len(print_string))
287
+
288
+ logging_columns_list = ['run ', 'epoch', 'train_loss', 'train_acc', 'val_acc', 'tta_val_acc', 'total_time_seconds']
289
+ def print_training_details(variables, is_final_entry):
290
+ formatted = []
291
+ for col in logging_columns_list:
292
+ var = variables.get(col.strip(), None)
293
+ if type(var) in (int, str):
294
+ res = str(var)
295
+ elif type(var) is float:
296
+ res = '{:0.4f}'.format(var)
297
+ else:
298
+ assert var is None
299
+ res = ''
300
+ formatted.append(res.rjust(len(col)))
301
+ print_columns(formatted, is_final_entry=is_final_entry)
302
+
303
+ ############################################
304
+ # Evaluation #
305
+ ############################################
306
+
307
+ def infer(model, loader, tta_level=0):
308
+
309
+ # Test-time augmentation strategy (for tta_level=2):
310
+ # 1. Flip/mirror the image left-to-right (50% of the time).
311
+ # 2. Translate the image by one pixel either up-and-left or down-and-right (50% of the time,
312
+ # i.e. both happen 25% of the time).
313
+ #
314
+ # This creates 6 views per image (left/right times the two translations and no-translation),
315
+ # which we evaluate and then weight according to the given probabilities.
316
+
317
+ def infer_basic(inputs, net):
318
+ return net(inputs).clone()
319
+
320
+ def infer_mirror(inputs, net):
321
+ return 0.5 * net(inputs) + 0.5 * net(inputs.flip(-1))
322
+
323
+ def infer_mirror_translate(inputs, net):
324
+ logits = infer_mirror(inputs, net)
325
+ pad = 1
326
+ padded_inputs = F.pad(inputs, (pad,)*4, 'reflect')
327
+ inputs_translate_list = [
328
+ padded_inputs[:, :, 0:32, 0:32],
329
+ padded_inputs[:, :, 2:34, 2:34],
330
+ ]
331
+ logits_translate_list = [infer_mirror(inputs_translate, net)
332
+ for inputs_translate in inputs_translate_list]
333
+ logits_translate = torch.stack(logits_translate_list).mean(0)
334
+ return 0.5 * logits + 0.5 * logits_translate
335
+
336
+ model.eval()
337
+ test_images = loader.normalize(loader.images)
338
+ infer_fn = [infer_basic, infer_mirror, infer_mirror_translate][tta_level]
339
+ with torch.no_grad():
340
+ return torch.cat([infer_fn(inputs, model) for inputs in test_images.split(2000)])
341
+
342
+ def evaluate(model, loader, tta_level=0):
343
+ logits = infer(model, loader, tta_level)
344
+ return (logits.argmax(1) == loader.labels).float().mean().item()
345
+
346
+ ############################################
347
+ # Training #
348
+ ############################################
349
+
350
+ def main(run):
351
+
352
+ batch_size = hyp['opt']['batch_size']
353
+ epochs = hyp['opt']['train_epochs']
354
+ momentum = hyp['opt']['momentum']
355
+ # Assuming gradients are constant in time, for Nesterov momentum, the below ratio is how much
356
+ # larger the default steps will be than the underlying per-example gradients. We divide the
357
+ # learning rate by this ratio in order to ensure steps are the same scale as gradients, regardless
358
+ # of the choice of momentum.
359
+ kilostep_scale = 1024 * (1 + 1 / (1 - momentum))
360
+ lr = hyp['opt']['lr'] / kilostep_scale # un-decoupled learning rate for PyTorch SGD
361
+ wd = hyp['opt']['weight_decay'] * batch_size / kilostep_scale
362
+ lr_biases = lr * hyp['opt']['bias_scaler']
363
+
364
+ loss_fn = nn.CrossEntropyLoss(label_smoothing=hyp['opt']['label_smoothing'], reduction='none')
365
+ test_loader = CifarLoader('cifar10', train=False, batch_size=2000)
366
+ train_loader = CifarLoader('cifar10', train=True, batch_size=batch_size, aug=hyp['aug'])
367
+ if run == 'warmup':
368
+ # The only purpose of the first run is to warmup, so we can use dummy data
369
+ train_loader.labels = torch.randint(0, 10, size=(len(train_loader.labels),), device=train_loader.labels.device)
370
+ total_train_steps = ceil(len(train_loader) * epochs)
371
+
372
+ model = make_net()
373
+ current_steps = 0
374
+
375
+ norm_biases = [p for k, p in model.named_parameters() if 'norm' in k and p.requires_grad]
376
+ other_params = [p for k, p in model.named_parameters() if 'norm' not in k and p.requires_grad]
377
+ param_configs = [dict(params=norm_biases, lr=lr_biases, weight_decay=wd/lr_biases),
378
+ dict(params=other_params, lr=lr, weight_decay=wd/lr)]
379
+ optimizer = torch.optim.SGD(param_configs, momentum=momentum, nesterov=True)
380
+
381
+ def get_lr(step):
382
+ warmup_steps = int(total_train_steps * 0.23)
383
+ warmdown_steps = total_train_steps - warmup_steps
384
+ if step < warmup_steps:
385
+ frac = step / warmup_steps
386
+ return 0.2 * (1 - frac) + 1.0 * frac
387
+ else:
388
+ frac = (step - warmup_steps) / warmdown_steps
389
+ return 1.0 * (1 - frac) + 0.07 * frac
390
+ scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, get_lr)
391
+
392
+ alpha_schedule = 0.95**5 * (torch.arange(total_train_steps+1) / total_train_steps)**3
393
+ lookahead_state = LookaheadState(model)
394
+
395
+ # For accurately timing GPU code
396
+ starter = torch.cuda.Event(enable_timing=True)
397
+ ender = torch.cuda.Event(enable_timing=True)
398
+ total_time_seconds = 0.0
399
+
400
+ # Initialize the whitening layer using training images
401
+ starter.record()
402
+ train_images = train_loader.normalize(train_loader.images[:5000])
403
+ init_whitening_conv(model[0], train_images)
404
+ ender.record()
405
+ torch.cuda.synchronize()
406
+ total_time_seconds += 1e-3 * starter.elapsed_time(ender)
407
+
408
+ for epoch in range(ceil(epochs)):
409
+
410
+ model[0].bias.requires_grad = (epoch < hyp['opt']['whiten_bias_epochs'])
411
+
412
+ ####################
413
+ # Training #
414
+ ####################
415
+
416
+ starter.record()
417
+
418
+ model.train()
419
+ for inputs, labels in train_loader:
420
+
421
+ outputs = model(inputs)
422
+ loss = loss_fn(outputs, labels).sum()
423
+ optimizer.zero_grad(set_to_none=True)
424
+ loss.backward()
425
+ optimizer.step()
426
+ scheduler.step()
427
+
428
+ current_steps += 1
429
+
430
+ if current_steps % 5 == 0:
431
+ lookahead_state.update(model, decay=alpha_schedule[current_steps].item())
432
+
433
+ if current_steps >= total_train_steps:
434
+ if lookahead_state is not None:
435
+ lookahead_state.update(model, decay=1.0)
436
+ break
437
+
438
+ ender.record()
439
+ torch.cuda.synchronize()
440
+ total_time_seconds += 1e-3 * starter.elapsed_time(ender)
441
+
442
+ ####################
443
+ # Evaluation #
444
+ ####################
445
+
446
+ # Save the accuracy and loss from the last training batch of the epoch
447
+ train_acc = (outputs.detach().argmax(1) == labels).float().mean().item()
448
+ train_loss = loss.item() / batch_size
449
+ val_acc = evaluate(model, test_loader, tta_level=0)
450
+ print_training_details(locals(), is_final_entry=False)
451
+ run = None # Only print the run number once
452
+
453
+ ####################
454
+ # TTA Evaluation #
455
+ ####################
456
+
457
+ starter.record()
458
+ tta_val_acc = evaluate(model, test_loader, tta_level=hyp['net']['tta_level'])
459
+ ender.record()
460
+ torch.cuda.synchronize()
461
+ total_time_seconds += 1e-3 * starter.elapsed_time(ender)
462
+
463
+ epoch = 'eval'
464
+ print_training_details(locals(), is_final_entry=True)
465
+
466
+ return tta_val_acc
467
+
468
+ if __name__ == "__main__":
469
+ with open(sys.argv[0]) as f:
470
+ code = f.read()
471
+
472
+ print_columns(logging_columns_list, is_head=True)
473
+ #main('warmup')
474
+ accs = torch.tensor([main(run) for run in range(25)])
475
+ print('Mean: %.4f Std: %.4f' % (accs.mean(), accs.std()))
476
+
477
+ log = {'code': code, 'accs': accs}
478
+ log_dir = os.path.join('logs', str(uuid.uuid4()))
479
+ os.makedirs(log_dir, exist_ok=True)
480
+ log_path = os.path.join(log_dir, 'log.pt')
481
+ print(os.path.abspath(log_path))
482
+ torch.save(log, os.path.join(log_dir, 'log.pt'))
483
+