Datasets:
File size: 8,233 Bytes
2152969 4970960 2152969 4970960 2152969 e215847 4970960 2152969 e215847 4970960 2152969 4970960 2152969 4970960 2152969 4970960 2152969 4970960 2152969 4970960 2152969 e4c4e01 2152969 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DIALOGSum dataset."""
import json
import py7zr
import datasets
_CITATION = """
@inproceedings{chen-etal-2021-dialogsum,
title={{D}ialog{S}um: {A} Real-Life Scenario Dialogue Summarization Dataset},
author={Chen, Yulong and Liu, Yang and Chen, Liang and Zhang, Yue},
journal={arXiv preprint arXiv:1911.12237},
year={2021},
booktitle ={Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021"},
month = {aug},
address = {Online},
publisher = {Association for Computational Linguistics},
url = {https://aclanthology.org/2021.findings-acl.449},
doi = {10.18653/v1/2021.findings-acl.449},
pages = {5062--5074}
}
"""
_DESCRIPTION = """
DialogSUM Corpus contains 13460 chat dialogues with manually annotated
summaries.
There are two features:
- dialogue: text of dialogue.
- summary: human written summary of the dialogue.
- topic: one liner summary of the dialogue.
- id: id of a example.
"""
_HOMEPAGE = "hhttps://aclanthology.org/2021.findings-acl.449"
_LICENSE = "CC BY-NC-ND 4.0"
_URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/resolve/main/corpus.7z"
class Dialogsum(datasets.GeneratorBasedBuilder):
"""DIALOGSum Corpus dataset."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="dialogsum"),
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"dialogue": datasets.Value("string"),
"summary": datasets.Value("string"),
"topic": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
path = dl_manager.download(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": (path, "train.json"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": (path, "test.json"),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": (path, "val.json"),
"split": "val",
},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
path, fname = filepath
with open(path, "rb") as f:
with py7zr.SevenZipFile(f, "r") as z:
for name, bio in z.readall().items():
if name == fname:
data = json.load(bio)
for example in data:
yield example["id"], example
###################### OLD #####################
# import json
# import pandas as pd
# import datasets
# import os
# logger = datasets.logging.get_logger(__name__)
# _CITATION = """
# @inproceedings{chen-etal-2021-dialogsum,
# title={{D}ialog{S}um: {A} Real-Life Scenario Dialogue Summarization Dataset},
# author={Chen, Yulong and Liu, Yang and Chen, Liang and Zhang, Yue},
# journal={arXiv preprint arXiv:1911.12237},
# year={2021},
# booktitle ={Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021"},
# month = {aug},
# address = {Online},
# publisher = {Association for Computational Linguistics},
# url = {https://aclanthology.org/2021.findings-acl.449},
# doi = {10.18653/v1/2021.findings-acl.449},
# pages = {5062--5074}
# }
# """
# _DESCRIPTION = """
# DialogSUM Corpus contains 13460 chat dialogues with manually annotated
# summaries.
# There are two features:
# - dialogue: text of dialogue.
# - summary: human written summary of the dialogue.
# - topic: one liner summary of the dialogue.
# - id: id of a example.
# """
# _HOMEPAGE = "hhttps://aclanthology.org/2021.findings-acl.449"
# _LICENSE = "CC BY-NC-ND 4.0"
# # _URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/tree/main/"
# _URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/resolve/main/"
# # _URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/blob/main/"
# _URLS = {
# "train": _URL + "train.json",
# "test": _URL + "test.json",
# "val": _URL + "val.json",
# }
# class Dialogsum(datasets.GeneratorBasedBuilder):
# """Dialogsum Corpus dataset."""
# VERSION = datasets.Version("1.1.0")
# BUILDER_CONFIGS = [
# datasets.BuilderConfig(name="dialogsum_reformat"),
# ]
# def _info(self):
# return datasets.DatasetInfo(
# description=_DESCRIPTION,
# features=datasets.Features(
# {
# "id": datasets.Value("string"),
# "dialogue": datasets.Value("string"),
# "summary": datasets.Value("string"),
# "topic": datasets.Value("string"),
# }
# ),
# # No default supervised_keys (as we have to pass both question
# # and context as input).
# supervised_keys=None,
# homepage=_HOMEPAGE,
# license=_LICENSE,
# citation=_CITATION,
# )
# def _split_generators(self, dl_manager):
# downloaded_files = dl_manager.download_and_extract(_URLS)
# return [
# datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
# datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
# datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}),
# ]
# def _generate_examples(self, filepath):
# """This function returns the examples in the raw (text) form."""
# logger.info("generating examples from = %s", filepath)
# with open(filepath) as f :
# data = json.load(f)
# for info in data :
# dialogue_id = info['id']
# dialogue_name = info['dialogue']
# dialogue_summary = info['summary']
# dialogue_topic = info['topic']
# yield {
# "id" : dialogue_id,
# "dialogue" : dialogue_name,
# "summary" : dialogue_summary,
# "topic" : dialogue_topic,
# }
# # def _generate_examples(self, filepath, split):
# # """This function returns the examples in the raw (text) form."""
# # logger.info("generating examples from = %s", filepath)
# # with open(os.path.join(filepath, split)) as f :
# # data = json.load(f)
# # for info in data :
# # dialogue_id = info['id']
# # dialogue_name = info['dialogue']
# # dialogue_summary = info['summary']
# # dialogue_topic = info['topic']
# # yield key, {
# # "id" : dialogue_id,
# # "dialogue" : dialogue_name,
# # "summary" : dialogue_summary,
# # "topic" : dialogue_topic,
# # } |