File size: 8,233 Bytes
2152969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4970960
2152969
 
 
4970960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2152969
e215847
 
4970960
2152969
e215847
 
4970960
 
2152969
4970960
 
 
2152969
 
 
 
 
 
 
 
4970960
 
2152969
4970960
 
 
 
 
 
 
2152969
 
4970960
2152969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4970960
 
2152969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4c4e01
2152969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DIALOGSum dataset."""


import json

import py7zr

import datasets


_CITATION = """
@inproceedings{chen-etal-2021-dialogsum,
  title={{D}ialog{S}um: {A} Real-Life Scenario Dialogue Summarization Dataset},
  author={Chen, Yulong and Liu, Yang  and Chen, Liang  and Zhang, Yue},
  journal={arXiv preprint arXiv:1911.12237},
  year={2021},
  booktitle ={Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021"},
  month = {aug},
  address = {Online},
  publisher = {Association for Computational Linguistics},
  url = {https://aclanthology.org/2021.findings-acl.449},
  doi = {10.18653/v1/2021.findings-acl.449},
  pages = {5062--5074}
}
"""

_DESCRIPTION = """
DialogSUM Corpus contains 13460 chat dialogues with manually annotated
summaries.
There are two features:
  - dialogue: text of dialogue.
  - summary: human written summary of the dialogue.
  - topic: one liner summary of the dialogue.
  - id: id of a example.
"""
_HOMEPAGE = "hhttps://aclanthology.org/2021.findings-acl.449"
_LICENSE = "CC BY-NC-ND 4.0"
_URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/resolve/main/corpus.7z"


class Dialogsum(datasets.GeneratorBasedBuilder):
    """DIALOGSum Corpus dataset."""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="dialogsum"),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "dialogue": datasets.Value("string"),
                "summary": datasets.Value("string"),
                "topic": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        path = dl_manager.download(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": (path, "train.json"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": (path, "test.json"),
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": (path, "val.json"),
                    "split": "val",
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        """Yields examples."""
        path, fname = filepath
        with open(path, "rb") as f:
            with py7zr.SevenZipFile(f, "r") as z:
                for name, bio in z.readall().items():
                    if name == fname:
                        data = json.load(bio)
        for example in data:
            yield example["id"], example

###################### OLD #####################

# import json
# import pandas as pd
# import datasets
# import os

# logger = datasets.logging.get_logger(__name__)

# _CITATION = """
# @inproceedings{chen-etal-2021-dialogsum,
#   title={{D}ialog{S}um: {A} Real-Life Scenario Dialogue Summarization Dataset},
#   author={Chen, Yulong and Liu, Yang  and Chen, Liang  and Zhang, Yue},
#   journal={arXiv preprint arXiv:1911.12237},
#   year={2021},
#   booktitle ={Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021"},
#   month = {aug},
#   address = {Online},
#   publisher = {Association for Computational Linguistics},
#   url = {https://aclanthology.org/2021.findings-acl.449},
#   doi = {10.18653/v1/2021.findings-acl.449},
#   pages = {5062--5074}
# }
# """

# _DESCRIPTION = """
# DialogSUM Corpus contains 13460 chat dialogues with manually annotated
# summaries.
# There are two features:
#   - dialogue: text of dialogue.
#   - summary: human written summary of the dialogue.
#   - topic: one liner summary of the dialogue.
#   - id: id of a example.
# """
# _HOMEPAGE = "hhttps://aclanthology.org/2021.findings-acl.449"
# _LICENSE = "CC BY-NC-ND 4.0"
# # _URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/tree/main/"
# _URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/resolve/main/"
# # _URL = "https://huggingface.co/datasets/knkarthick/dialogsum_reformat/blob/main/"

# _URLS = {
#     "train": _URL + "train.json",
#     "test": _URL + "test.json",
#     "val": _URL + "val.json",
# }



# class Dialogsum(datasets.GeneratorBasedBuilder):
#     """Dialogsum Corpus dataset."""

#     VERSION = datasets.Version("1.1.0")

#     BUILDER_CONFIGS = [
#         datasets.BuilderConfig(name="dialogsum_reformat"),
#     ]

#     def _info(self):
#         return datasets.DatasetInfo(
#             description=_DESCRIPTION,
#             features=datasets.Features(
#                 {
#                     "id": datasets.Value("string"),
#                     "dialogue": datasets.Value("string"),
#                     "summary": datasets.Value("string"),
#                     "topic": datasets.Value("string"),
#                 }
#             ),
#             # No default supervised_keys (as we have to pass both question
#             # and context as input).
#             supervised_keys=None,
#             homepage=_HOMEPAGE,
#             license=_LICENSE,
#             citation=_CITATION,
#         )

#     def _split_generators(self, dl_manager):
#         downloaded_files = dl_manager.download_and_extract(_URLS)
#         return [
#             datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
#             datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
#             datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}),
#         ]

#     def _generate_examples(self, filepath):
#         """This function returns the examples in the raw (text) form."""
#         logger.info("generating examples from = %s", filepath)
#         with open(filepath) as f :
#     		data = json.load(f)

#         for info in data :
#             dialogue_id = info['id']
#             dialogue_name = info['dialogue']
#             dialogue_summary = info['summary']
#             dialogue_topic = info['topic']

#             yield {
#                 "id" : dialogue_id,
#                 "dialogue" : dialogue_name,
#                 "summary" : dialogue_summary,
#                 "topic" : dialogue_topic,
#             }
            
#     # def _generate_examples(self, filepath, split):
#     #     """This function returns the examples in the raw (text) form."""
#     #     logger.info("generating examples from = %s", filepath)
#     #     with open(os.path.join(filepath, split)) as f :
#     # 		data = json.load(f)

#     #     for info in data :
#     #         dialogue_id = info['id']
#     #         dialogue_name = info['dialogue']
#     #         dialogue_summary = info['summary']
#     #         dialogue_topic = info['topic']

#     #         yield key, {
#     #             "id" : dialogue_id,
#     #             "dialogue" : dialogue_name,
#     #             "summary" : dialogue_summary,
#     #             "topic" : dialogue_topic,
#     #         }