Datasets:
File size: 2,845 Bytes
8b4e076 c5dd1d0 2c1d07a f91945a 2c1d07a 31c3cd7 8c806c7 31c3cd7 8c806c7 31c3cd7 8c806c7 31c3cd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: mit
dataset_info:
config_name: jhumaneval
features:
- name: task_id
dtype: string
- name: prompt_en
dtype: string
- name: prompt
dtype: string
- name: entry_point
dtype: string
- name: canonical_solution
dtype: string
- name: test
dtype: string
splits:
- name: test
num_bytes: 275012
num_examples: 164
download_size: 66597
dataset_size: 275012
task_categories:
- text2text-generation
language:
- ja
- en
source_datasets:
- openai_humaneval
size_categories:
- n<1K
---
# Dataset Card for JHumanEval: Japanese Hand-Translated HumanEval
## Dataset Summary
This is a Japanese translated version of HumanEval, an evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code".
LLMのコード生成能力の標準ベンチマーク HumanEval の日本語翻訳版です。
機械翻訳(DeepL, GPT-4)の翻訳結果を全て人手によって再修正し、 訳文を日本人のプログラマが読んで理解し、コードが書ける内容かチェックしました。
ただし、英語版 HumanEval の間違いは、修正せずに残して、 HumanEval 同様に不完全なドキュメントからの生成能力を見るようになっています。
日本語LLMのベンチマークとしてお使いください。
## Languages
The programming problems are written in Python and contain English natural text in comments and docstrings.
## Dataset Structure
```python
from datasets import load_dataset
load_dataset("kogi-jwu/jhumaneval")
DatasetDict({
test: Dataset({
features: ['task_id', 'prompt_en', 'prompt', 'entry_point', 'canonical_solution', 'test'],
num_rows: 164
})
})
```
### Data Instances
An example of a dataset instance:
```
{
"task_id": "test/0",
"prompt_en": "def return1():\n \"\"\"\n A simple function that returns the integer 1.\n \"\"\"\n",
"prompt": "def return1():\n \"\"\"\n 整数1を返すシンプルな関数。\n \"\"\"\n",
"canonical_solution": " return 1",
"test": "def check(candidate):\n assert candidate() == 1",
"entry_point": "return1"
}
```
### Data Fields
- task_id: Unique identifier for a task.
- prompt_en: Function header and English docstrings as model input.
- prompt: Function header and Japanese docstrings, parallel to prompt_en.
- canonical_solution: The expected function implementation.
- test: Function to verify the correctness of generated code.
- entry_point: Function name to initiate the test.
### Data Splits
The dataset only consists of a test split with 164 samples.
## Additional Information
### Licensing Information
MIT License
## GitHub Repository
[https://github.com/KuramitsuLab/jhuman-eval](https://github.com/KuramitsuLab/jhuman-eval)
|