Datasets:
Create jhumaneval.py
Browse files- jhumaneval.py +63 -0
jhumaneval.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import datasets
|
3 |
+
|
4 |
+
|
5 |
+
_DESCRIPTION = """\
|
6 |
+
This is a Japanese translated version of HumanEval, an evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code".
|
7 |
+
"""
|
8 |
+
|
9 |
+
_URL = "https://raw.githubusercontent.com/KuramitsuLab/jhuman-eval/main/data/jhuman-eval.jsonl.gz"
|
10 |
+
|
11 |
+
_LICENSE = "MIT"
|
12 |
+
|
13 |
+
|
14 |
+
class JHumaneval(datasets.GeneratorBasedBuilder):
|
15 |
+
VERSION = datasets.Version("0.1.0")
|
16 |
+
|
17 |
+
BUILDER_CONFIGS = [
|
18 |
+
datasets.BuilderConfig(
|
19 |
+
name="jhumaneval",
|
20 |
+
version=VERSION,
|
21 |
+
description=_DESCRIPTION,
|
22 |
+
)
|
23 |
+
]
|
24 |
+
|
25 |
+
def _info(self):
|
26 |
+
features = datasets.Features(
|
27 |
+
{
|
28 |
+
"task_id": datasets.Value("string"),
|
29 |
+
"prompt_en": datasets.Value("string"),
|
30 |
+
"prompt": datasets.Value("string"),
|
31 |
+
"entry_point": datasets.Value("string"),
|
32 |
+
"canonical_solution": datasets.Value("string"),
|
33 |
+
"test": datasets.Value("string"),
|
34 |
+
}
|
35 |
+
)
|
36 |
+
|
37 |
+
return datasets.DatasetInfo(
|
38 |
+
description=_DESCRIPTION,
|
39 |
+
features=features,
|
40 |
+
supervised_keys=None,
|
41 |
+
license=_LICENSE,
|
42 |
+
)
|
43 |
+
|
44 |
+
def _split_generators(self, dl_manager):
|
45 |
+
"""Returns SplitGenerators."""
|
46 |
+
data_dir = dl_manager.download_and_extract(_URL)
|
47 |
+
return [
|
48 |
+
datasets.SplitGenerator(
|
49 |
+
name=datasets.Split.TEST,
|
50 |
+
gen_kwargs={
|
51 |
+
"filepath": data_dir,
|
52 |
+
},
|
53 |
+
)
|
54 |
+
]
|
55 |
+
|
56 |
+
def _generate_examples(self, filepath):
|
57 |
+
"""Yields examples."""
|
58 |
+
with open(filepath, encoding="utf-8") as file:
|
59 |
+
data = [json.loads(line) for line in file]
|
60 |
+
id_ = 0
|
61 |
+
for sample in data:
|
62 |
+
yield id_, sample
|
63 |
+
id_ += 1
|