File size: 8,123 Bytes
2a00acc c4a44b0 2a00acc c4a44b0 2a00acc c4a44b0 2a00acc c4a44b0 2a00acc c4a44b0 2a00acc c4a44b0 2a00acc c4a44b0 2a00acc c4a44b0 7845d61 c4a44b0 7845d61 c4a44b0 2a00acc c4a44b0 2a00acc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
# coding=utf-8
# Copyright 2023 Charles Koutcheme and the original authors of the datasets
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import datasets
from itertools import product
_DUBLIN_DESCRIPTION = """
The Dublin programming dataset is a dataset composed of students' submissions
to introductory programming assignments at the University of Dublin.
Students submitted these programs for multiple programming courses over the duration of three academic years."""
_SINGAPORE_DESCRIPTION = """
This dataset contains 2442 correct and 1783 buggy program attempts by 361 undergraduate students crediting
an introduction to Python programming course at NUS (National University of Singapore).
"""
_DUBLIN_HOMEPAGE = """https://figshare.com/articles/dataset/_5_Million_Python_Bash_Programming_Submissions_for_5_Courses_Grades_for_Computer-Based_Exams_over_3_academic_years_/12610958"""
_SINGAPORE_HOMEPAGE = """https://github.com/githubhuyang/refactory"""
_DUBLIN_CITATION = """
@inproceedings{azcona2019user2code2vec,
title={user2code2vec: Embeddings for Profiling Students Based on Distributional Representations of Source Code},
author={Azcona, David and Arora, Piyush and Hsiao, I-Han and Smeaton, Alan},
booktitle={Proceedings of the 9th International Learning Analytics & Knowledge Conference (LAK’19)},
year={2019},
organization={ACM}
}
@inproceedings{DBLP:conf/edm/CleuziouF21,
author = {Guillaume Cleuziou and
Fr{\'{e}}d{\'{e}}ric Flouvat},
editor = {Sharon I{-}Han Hsiao and
Shaghayegh (Sherry) Sahebi and
Fran{\c{c}}ois Bouchet and
Jill{-}J{\^{e}}nn Vie},
title = {Learning student program embeddings using abstract execution traces},
booktitle = {Proceedings of the 14th International Conference on Educational Data
Mining, {EDM} 2021, virtual, June 29 - July 2, 2021},
publisher = {International Educational Data Mining Society},
year = {2021},
timestamp = {Wed, 09 Mar 2022 16:47:22 +0100},
biburl = {https://dblp.org/rec/conf/edm/CleuziouF21.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_SINGAPORE_CITATION = """
@inproceedings{yang2019refactory,
title={Re-factoring based Program Repair applied to Programming Assignments},
author={Hu, Yang and Ahmed, Umair Z. and Mechtaev, Sergey and Leong, Ben and Roychoudhury, Abhik},
booktitle={2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)},
pages={388--398},
year={2019},
organization={IEEE/ACM}
}
"""
_DESCRIPTION = """
Intro Programming. A dataset of open student submissions to programming assignments.
"""
_DUBLIN_URLS = {
"metadata": {
"train": "./data/dublin_metadata_train.jsonl",
"test": "./data/dublin_metadata_test.jsonl"
},
"data": {
"train": f"./data/dublin_data_train.jsonl",
"test": f"./data/dublin_data_test.jsonl",
},
"repair": {
"train": f"./data/dublin_repair_train.jsonl",
"test": f"./data/dublin_repair_test.jsonl",
}
}
_SINGAPORE_URLS = {
"metadata": {
"train": "./data/singapore_metadata_train.jsonl",
},
"data": {
"train": f"./data/singapore_data_train.jsonl",
},
"repair": {
"train": f"./data/singapore_repair_train.jsonl",
}
}
_URLS = {
"dublin": _DUBLIN_URLS,
"singapore": _SINGAPORE_URLS
}
class IntroProgConfig(datasets.BuilderConfig):
""" BuilderConfig for StaQC."""
def __init__(self, **kwargs):
"""BuilderConfig for StaQC.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(IntroProgConfig, self).__init__(**kwargs)
class IntroProg(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
# splits "data", "repair", "bugs"
# also add here the "metadata" split which will also contain the full metadata
tasks = [("metadata", "Information about the programming assignments."),
("data", "Submissions to the programming assignments."),
("repair", "Buggy programs and ground truth repair(s)."),]
# ("bug", "Buggy programs and bug categories.")]
sources = ["dublin", "singapore"]
BUILDER_CONFIGS = []
for (task, description), source in product(tasks, sources):
BUILDER_CONFIGS.append(
IntroProgConfig(
name=f"{source}_{task}",
# description=description, # TODO: map to correct description
version=VERSION,
)
)
def _info(self):
# TODO: could be more conscise
if self.config.name.split("_")[0] == "dublin":
description = _DUBLIN_DESCRIPTION
citation = _DUBLIN_CITATION
homepage = _DUBLIN_HOMEPAGE
elif self.config.name.split("_")[0] == "singapore":
description =_SINGAPORE_DESCRIPTION
citation = _SINGAPORE_CITATION
homepage = _SINGAPORE_HOMEPAGE
main_features = datasets.Features({
"submission_id": datasets.Value("int32"),
"func_code": datasets.Value("string"),
# assignment information
"assignment_id": datasets.Value("string"),
"func_name": datasets.Value("string"),
"description": datasets.Value(dtype='string'),
"test": datasets.Value(dtype='string'),
})
if self.config.name.split("_")[1] == "data":
features = main_features
features["correct"] = datasets.Value(dtype="bool")
if self.config.name.split("_")[0] == "dublin":
features["user"] = datasets.Value("string")
features["academic_year"] = datasets.Value('int32')
elif self.config.name.split("_")[1] == "metadata":
# metadata information
features = datasets.Features({
"assignment_id": datasets.Value("string"),
"func_name": datasets.Value("string"),
"reference_solution": datasets.Value("string"),
"description": datasets.Value("string"),
"test": datasets.Value("string"),
})
elif self.config.name.split("_")[1] == "repair":
features = main_features
features["annotation"] = datasets.Value("string")
elif self.config.name.split("_")[1] == "bug":
features = main_features
features["comments"] = datasets.Value("string")
return datasets.DatasetInfo(
description=description,
citation=citation,
homepage=homepage,
features=features,
supervised_keys=None,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
source, task = self.config.name.split("_")
urls = _URLS[source][task]
downloaded_files = dl_manager.download_and_extract(urls)
splits = []
for name, files in downloaded_files.items():
splits.append(datasets.SplitGenerator(name=name, gen_kwargs={"filepath": files}))
return splits
def _generate_examples(self, filepath):
with open(filepath, "r") as f:
lines = f.read().splitlines()
for key, line in enumerate(lines):
d = json.loads(line)
d = {k:v for k, v in d.items() if k in self.info.features}
yield key, d |