File size: 8,123 Bytes
2a00acc
c4a44b0
2a00acc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a44b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a00acc
 
 
 
 
 
c4a44b0
 
 
 
2a00acc
 
 
 
 
 
 
 
 
 
 
c4a44b0
 
 
2a00acc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a44b0
 
2a00acc
 
 
 
 
 
 
 
 
 
c4a44b0
2a00acc
 
 
 
 
 
 
c4a44b0
2a00acc
 
c4a44b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7845d61
c4a44b0
 
 
 
7845d61
 
c4a44b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a00acc
 
c4a44b0
 
 
 
2a00acc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# coding=utf-8
# Copyright 2023 Charles Koutcheme and the original authors of the datasets 
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import datasets
from itertools import product



_DUBLIN_DESCRIPTION = """
The Dublin programming dataset is a dataset composed of students' submissions 
to introductory programming assignments at the University of Dublin. 
Students submitted these programs for multiple programming courses over the duration of three academic years."""

_SINGAPORE_DESCRIPTION = """
This dataset contains 2442 correct and 1783 buggy program attempts by 361 undergraduate students crediting 
an introduction to Python programming course at NUS (National University of Singapore).
"""

_DUBLIN_HOMEPAGE = """https://figshare.com/articles/dataset/_5_Million_Python_Bash_Programming_Submissions_for_5_Courses_Grades_for_Computer-Based_Exams_over_3_academic_years_/12610958"""

_SINGAPORE_HOMEPAGE = """https://github.com/githubhuyang/refactory"""

_DUBLIN_CITATION = """
@inproceedings{azcona2019user2code2vec,
  title={user2code2vec: Embeddings for Profiling Students Based on Distributional Representations of Source Code},
  author={Azcona, David and Arora, Piyush and Hsiao, I-Han and Smeaton, Alan},
  booktitle={Proceedings of the 9th International Learning Analytics & Knowledge Conference (LAK’19)},
  year={2019},
  organization={ACM}
}

@inproceedings{DBLP:conf/edm/CleuziouF21,
  author    = {Guillaume Cleuziou and
               Fr{\'{e}}d{\'{e}}ric Flouvat},
  editor    = {Sharon I{-}Han Hsiao and
               Shaghayegh (Sherry) Sahebi and
               Fran{\c{c}}ois Bouchet and
               Jill{-}J{\^{e}}nn Vie},
  title     = {Learning student program embeddings using abstract execution traces},
  booktitle = {Proceedings of the 14th International Conference on Educational Data
               Mining, {EDM} 2021, virtual, June 29 - July 2, 2021},
  publisher = {International Educational Data Mining Society},
  year      = {2021},
  timestamp = {Wed, 09 Mar 2022 16:47:22 +0100},
  biburl    = {https://dblp.org/rec/conf/edm/CleuziouF21.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

_SINGAPORE_CITATION = """
@inproceedings{yang2019refactory,
    title={Re-factoring based Program Repair applied to Programming Assignments},
    author={Hu, Yang and Ahmed, Umair Z. and Mechtaev, Sergey and Leong, Ben and Roychoudhury, Abhik},
    booktitle={2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)},
    pages={388--398},
    year={2019},
    organization={IEEE/ACM}
}
"""

_DESCRIPTION = """
Intro Programming. A dataset of open student submissions to programming assignments.

"""

_DUBLIN_URLS = {
    "metadata": {
        "train": "./data/dublin_metadata_train.jsonl",
        "test": "./data/dublin_metadata_test.jsonl"
    },
    "data": {
        "train": f"./data/dublin_data_train.jsonl",
        "test": f"./data/dublin_data_test.jsonl",
    },
    "repair": {
        "train": f"./data/dublin_repair_train.jsonl",
        "test": f"./data/dublin_repair_test.jsonl",
    }
}

_SINGAPORE_URLS = {
    "metadata": {
        "train": "./data/singapore_metadata_train.jsonl",
    },
     "data": {
        "train": f"./data/singapore_data_train.jsonl",
    },
    "repair": {
        "train": f"./data/singapore_repair_train.jsonl",
    }
}

_URLS = {
    "dublin": _DUBLIN_URLS,
    "singapore": _SINGAPORE_URLS
}

class IntroProgConfig(datasets.BuilderConfig):
    """ BuilderConfig for StaQC."""

    def __init__(self, **kwargs):
        """BuilderConfig for StaQC.
        Args:
          **kwargs: keyword arguments forwarded to super.

        """
        super(IntroProgConfig, self).__init__(**kwargs)


class IntroProg(datasets.GeneratorBasedBuilder):

    VERSION = datasets.Version("1.0.0")

    # splits "data", "repair", "bugs"
    # also add here the "metadata" split which will also contain the full metadata 
    tasks = [("metadata", "Information about the programming assignments."),
             ("data", "Submissions to the programming assignments."),
             ("repair", "Buggy programs and ground truth repair(s)."),]
             # ("bug", "Buggy programs and bug categories.")]
    
    sources = ["dublin", "singapore"]

    BUILDER_CONFIGS = []
    for (task, description), source in product(tasks, sources):
        BUILDER_CONFIGS.append(
            IntroProgConfig(
                name=f"{source}_{task}",
                # description=description, # TODO: map to correct description
                version=VERSION,          
            )
        )


    def _info(self):
        
        # TODO: could be more conscise 

        if self.config.name.split("_")[0] == "dublin":
            description = _DUBLIN_DESCRIPTION
            citation = _DUBLIN_CITATION
            homepage = _DUBLIN_HOMEPAGE
        elif self.config.name.split("_")[0] == "singapore":
            description =_SINGAPORE_DESCRIPTION
            citation = _SINGAPORE_CITATION
            homepage = _SINGAPORE_HOMEPAGE
    

        main_features = datasets.Features({
                "submission_id": datasets.Value("int32"),
                "func_code": datasets.Value("string"),
                # assignment information
                "assignment_id": datasets.Value("string"),
                "func_name": datasets.Value("string"),
                "description": datasets.Value(dtype='string'),
                "test": datasets.Value(dtype='string'),
                
            })
        
        if self.config.name.split("_")[1] == "data":
            features = main_features
            features["correct"] = datasets.Value(dtype="bool")
            
            if self.config.name.split("_")[0] == "dublin":
                features["user"] = datasets.Value("string")
                features["academic_year"] = datasets.Value('int32')

        elif self.config.name.split("_")[1] == "metadata":
            # metadata information 
            features = datasets.Features({
                "assignment_id": datasets.Value("string"),
                "func_name": datasets.Value("string"),
                "reference_solution": datasets.Value("string"),
                "description": datasets.Value("string"),
                "test": datasets.Value("string"),
            })

        elif self.config.name.split("_")[1] == "repair":
            features = main_features
            features["annotation"] = datasets.Value("string")
        elif self.config.name.split("_")[1] == "bug":
            features = main_features
            features["comments"] = datasets.Value("string")

        return datasets.DatasetInfo(
                description=description,
                citation=citation,
                homepage=homepage,

                features=features,
                supervised_keys=None,
            )
    

    def _split_generators(self, dl_manager: datasets.DownloadManager):
        source, task = self.config.name.split("_")
        urls = _URLS[source][task]
        downloaded_files = dl_manager.download_and_extract(urls)

        splits = []
        for name, files in downloaded_files.items():
            splits.append(datasets.SplitGenerator(name=name, gen_kwargs={"filepath": files}))
 
        return splits 

    def _generate_examples(self, filepath):
        with open(filepath, "r") as f:
            lines = f.read().splitlines()
            for key, line in enumerate(lines):
                d = json.loads(line)
                d = {k:v for k, v in d.items() if k in self.info.features}
                yield key, d