File size: 9,266 Bytes
01552fb 2a00acc e8c87db 2a00acc 7845d61 2a00acc f6d6467 007405f 2a00acc f6d6467 007405f f6d6467 2a00acc 7845d61 2a00acc 7845d61 2a00acc 7845d61 2a00acc e8c87db 2a00acc e8c87db 2a00acc e8c87db 2a00acc e8c87db 2a00acc f6d6467 01552fb 743542f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
---
dataset_info:
- config_name: dublin_metadata
features:
- name: assignment_id
dtype: string
- name: func_name
dtype: string
- name: reference_solution
dtype: string
- name: description
dtype: string
- name: test
dtype: string
splits:
- name: train
num_bytes: 18983
num_examples: 36
- name: test
num_bytes: 17403
num_examples: 35
download_size: 41873
dataset_size: 36386
- config_name: singapore_metadata
features:
- name: assignment_id
dtype: string
- name: func_name
dtype: string
- name: reference_solution
dtype: string
- name: description
dtype: string
- name: test
dtype: string
splits:
- name: train
num_bytes: 5577
num_examples: 5
download_size: 6139
dataset_size: 5577
- config_name: dublin_data
features:
- name: submission_id
dtype: int32
- name: func_code
dtype: string
- name: assignment_id
dtype: string
- name: func_name
dtype: string
- name: description
dtype: string
- name: test
dtype: string
- name: correct
dtype: bool
- name: user
dtype: string
- name: academic_year
dtype: int32
splits:
- name: train
num_bytes: 4412068
num_examples: 7486
- name: test
num_bytes: 7737585
num_examples: 14259
download_size: 15756562
dataset_size: 12149653
- config_name: singapore_data
features:
- name: submission_id
dtype: int32
- name: func_code
dtype: string
- name: assignment_id
dtype: string
- name: func_name
dtype: string
- name: description
dtype: string
- name: test
dtype: string
- name: correct
dtype: bool
splits:
- name: train
num_bytes: 5098928
num_examples: 4394
download_size: 5705043
dataset_size: 5098928
- config_name: dublin_repair
features:
- name: submission_id
dtype: int32
- name: func_code
dtype: string
- name: assignment_id
dtype: string
- name: func_name
dtype: string
- name: description
dtype: string
- name: test
dtype: string
- name: annotation
dtype: string
- name: user
dtype: string
- name: academic_year
dtype: int32
splits:
- name: train
num_bytes: 234628
num_examples: 307
- name: test
num_bytes: 1479344
num_examples: 1698
download_size: 2137031
dataset_size: 1713972
- config_name: singapore_repair
features:
- name: submission_id
dtype: int32
- name: func_code
dtype: string
- name: assignment_id
dtype: string
- name: func_name
dtype: string
- name: description
dtype: string
- name: test
dtype: string
- name: annotation
dtype: string
splits:
- name: train
num_bytes: 18979
num_examples: 18
download_size: 21737
dataset_size: 18979
- config_name: newcaledonia_metadata
features:
- name: assignment_id
dtype: string
- name: func_name
dtype: string
- name: reference_solution
dtype: string
- name: description
dtype: string
- name: test
dtype: string
splits:
- name: train
num_bytes: 9053
num_examples: 9
download_size: 9760
dataset_size: 9053
- config_name: newcaledonia_data
features:
- name: submission_id
dtype: int32
- name: func_code
dtype: string
- name: assignment_id
dtype: string
- name: func_name
dtype: string
- name: description
dtype: string
- name: test
dtype: string
- name: correct
dtype: bool
splits:
- name: train
num_bytes: 932024
num_examples: 1201
download_size: 1198518
dataset_size: 932024
---
# Dataset Card for intro_prog
## Dataset Description
### Dataset Summary
IntroProg is a collection of students' submissions to assignments in various introductory programming courses offered at different universities.
Currently, the dataset contains submissions collected from Dublin City University, and the University of Singapore.
#### Dublin
The Dublin programming dataset is a dataset composed of students' submissions to introductory programming assignments at the University of Dublin.
Students submitted these programs for multiple programming courses over the duration of three academic years.
#### Singapore
The Singapore dataset contains 2442 correct and 1783 buggy program attempts by 361 undergraduate students
crediting an introduction to Python programming course at NUS (National University of Singapore).
### Supported Tasks and Leaderboards
#### "Metadata": Program synthesis
Similarly to the [Most Basic Python Programs](https://huggingface.co/datasets/mbpp) (mbpp), the data split can be used to evaluate
code generations models.
#### "Data"
The data configuration contains all the submissions as well as an indicator of whether these passed the required test.
#### "repair": Program refinement/repair
The "repair" configuration of each dataset is a subset of the "data" configuration
augmented with educators' annotations on the corrections to the buggy programs.
This configuration can be used for the task of program refinement. In [Computing Education Research](https://faculty.washington.edu/ajko/cer/) (CER),
methods for automatically repairing student programs are used to provide students with feedback and help them debug their code.
#### "bug": Bug classification
[Coming soon]
### Languages
The assignments were written in Python.
## Dataset Structure
One configuration is defined by one source dataset *dublin* or *singapore* and one subconfiguration ("metadata", "data", or "repair"):
* "dublin_metadata"
* "dublin_data"
* "dublin_repair"
* "singapore_metadata"
* "singapore_data"
* "singapore_repair"
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
Some of the fields are configuration specific
* submission_id: a unique number identifying the submission
* user: a unique string identifying the (anonymized) student who submitted the solution
* date: the timestamp at which the grading server received the submission
* func_code: the cleaned code submitted
* func_name: the name of the function that had to be implemented
* assingment_id: the unique (string) identifier of the assignment that had to be completed
* academic_year: the starting year of the academic year (e.g. 2015 for the academic year 2015-2016)
* module: the course/module
* test: a human eval-style string which can be used to execute the submitted solution on the provided test cases
* Description: a description of what the function is supposed to achieve
* correct: whether the solution passed all tests or not
### Data Splits
#### Dublin
The Dublin dataset is split into a training and validation set. The training set contains the submissions to the assignments
written during the academic years 2015-2016, and 2016-2017, while the test set contains programs written during the academic year 2017-2018.
#### Singapore
The Singapore dataset only contains a training split, which can be used as a test split for evaluating how your feedback
methods perform on an unseen dataset (if, for instance, you train your methods on the Dublin Dataset).
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
#### Dublin
#### Singapore
The data was released under a [GNU Lesser General Public License v3.0](https://github.com/githubhuyang/refactory/blob/master/LICENSE) license
### Citation Information
```
@inproceedings{azcona2019user2code2vec,
title={user2code2vec: Embeddings for Profiling Students Based on Distributional Representations of Source Code},
author={Azcona, David and Arora, Piyush and Hsiao, I-Han and Smeaton, Alan},
booktitle={Proceedings of the 9th International Learning Analytics & Knowledge Conference (LAK’19)},
year={2019},
organization={ACM}
}
@inproceedings{DBLP:conf/edm/CleuziouF21,
author = {Guillaume Cleuziou and
Fr{\'{e}}d{\'{e}}ric Flouvat},
editor = {Sharon I{-}Han Hsiao and
Shaghayegh (Sherry) Sahebi and
Fran{\c{c}}ois Bouchet and
Jill{-}J{\^{e}}nn Vie},
title = {Learning student program embeddings using abstract execution traces},
booktitle = {Proceedings of the 14th International Conference on Educational Data
Mining, {EDM} 2021, virtual, June 29 - July 2, 2021},
publisher = {International Educational Data Mining Society},
year = {2021},
timestamp = {Wed, 09 Mar 2022 16:47:22 +0100},
biburl = {https://dblp.org/rec/conf/edm/CleuziouF21.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
[More Information Needed] |