File size: 9,266 Bytes
01552fb
2a00acc
e8c87db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a00acc
 
 
 
 
 
 
 
 
 
 
 
 
 
7845d61
 
2a00acc
 
 
 
 
 
f6d6467
007405f
2a00acc
f6d6467
007405f
f6d6467
 
2a00acc
 
 
 
 
 
 
 
 
 
 
 
 
 
7845d61
 
2a00acc
 
7845d61
2a00acc
 
7845d61
2a00acc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8c87db
 
 
 
2a00acc
 
36989ea
2a00acc
 
36989ea
2a00acc
36989ea
 
2a00acc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6d6467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01552fb
743542f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
---
dataset_info:
- config_name: dublin_metadata
  features:
  - name: assignment_id
    dtype: string
  - name: func_name
    dtype: string
  - name: reference_solution
    dtype: string
  - name: description
    dtype: string
  - name: test
    dtype: string
  splits:
  - name: train
    num_bytes: 18983
    num_examples: 36
  - name: test
    num_bytes: 17403
    num_examples: 35
  download_size: 41873
  dataset_size: 36386
- config_name: singapore_metadata
  features:
  - name: assignment_id
    dtype: string
  - name: func_name
    dtype: string
  - name: reference_solution
    dtype: string
  - name: description
    dtype: string
  - name: test
    dtype: string
  splits:
  - name: train
    num_bytes: 5577
    num_examples: 5
  download_size: 6139
  dataset_size: 5577
- config_name: dublin_data
  features:
  - name: submission_id
    dtype: int32
  - name: func_code
    dtype: string
  - name: assignment_id
    dtype: string
  - name: func_name
    dtype: string
  - name: description
    dtype: string
  - name: test
    dtype: string
  - name: correct
    dtype: bool
  - name: user
    dtype: string
  - name: academic_year
    dtype: int32
  splits:
  - name: train
    num_bytes: 4412068
    num_examples: 7486
  - name: test
    num_bytes: 7737585
    num_examples: 14259
  download_size: 15756562
  dataset_size: 12149653
- config_name: singapore_data
  features:
  - name: submission_id
    dtype: int32
  - name: func_code
    dtype: string
  - name: assignment_id
    dtype: string
  - name: func_name
    dtype: string
  - name: description
    dtype: string
  - name: test
    dtype: string
  - name: correct
    dtype: bool
  splits:
  - name: train
    num_bytes: 5098928
    num_examples: 4394
  download_size: 5705043
  dataset_size: 5098928
- config_name: dublin_repair
  features:
  - name: submission_id
    dtype: int32
  - name: func_code
    dtype: string
  - name: assignment_id
    dtype: string
  - name: func_name
    dtype: string
  - name: description
    dtype: string
  - name: test
    dtype: string
  - name: annotation
    dtype: string
  - name: user
    dtype: string
  - name: academic_year
    dtype: int32
  splits:
  - name: train
    num_bytes: 229683
    num_examples: 307
  - name: test
    num_bytes: 1451820
    num_examples: 1698
  download_size: 1929518
  dataset_size: 1681503
- config_name: singapore_repair
  features:
  - name: submission_id
    dtype: int32
  - name: func_code
    dtype: string
  - name: assignment_id
    dtype: string
  - name: func_name
    dtype: string
  - name: description
    dtype: string
  - name: test
    dtype: string
  - name: annotation
    dtype: string
  splits:
  - name: train
    num_bytes: 18979
    num_examples: 18
  download_size: 21737
  dataset_size: 18979
- config_name: newcaledonia_metadata
  features:
  - name: assignment_id
    dtype: string
  - name: func_name
    dtype: string
  - name: reference_solution
    dtype: string
  - name: description
    dtype: string
  - name: test
    dtype: string
  splits:
  - name: train
    num_bytes: 9053
    num_examples: 9
  download_size: 9760
  dataset_size: 9053
- config_name: newcaledonia_data
  features:
  - name: submission_id
    dtype: int32
  - name: func_code
    dtype: string
  - name: assignment_id
    dtype: string
  - name: func_name
    dtype: string
  - name: description
    dtype: string
  - name: test
    dtype: string
  - name: correct
    dtype: bool
  splits:
  - name: train
    num_bytes: 932024
    num_examples: 1201
  download_size: 1198518
  dataset_size: 932024
---
# Dataset Card for intro_prog

## Dataset Description

### Dataset Summary

IntroProg is a collection of students' submissions to assignments in various introductory programming courses offered at different universities.
Currently, the dataset contains submissions collected from Dublin City University, and the University of Singapore.

#### Dublin

The Dublin programming dataset is a dataset composed of students' submissions to introductory programming assignments at the University of Dublin. 
Students submitted these programs for multiple programming courses over the duration of three academic years.

#### Singapore 

The Singapore dataset contains 2442 correct and 1783 buggy program attempts by 361 undergraduate students 
crediting an introduction to Python programming course at NUS (National University of Singapore).


### Supported Tasks and Leaderboards

#### "Metadata": Program synthesis

Similarly to the [Most Basic Python Programs](https://huggingface.co/datasets/mbpp) (mbpp), the data split can be used to evaluate
code generations models.

#### "Data"

The data configuration contains all the submissions as well as an indicator of whether these passed the required test. 
 
#### "repair": Program refinement/repair

The "repair" configuration of each dataset is a subset of the "data" configuration
augmented with educators' annotations on the corrections to the buggy programs. 
This configuration can be used for the task of program refinement. In [Computing Education Research](https://faculty.washington.edu/ajko/cer/) (CER), 
methods for automatically repairing student programs are used to provide students with feedback and help them debug their code.

#### "bug": Bug classification

[Coming soon]

### Languages

The assignments were written in Python. 

## Dataset Structure

One configuration is defined by one source dataset *dublin* or *singapore* and one subconfiguration ("metadata", "data", or "repair"):

* "dublin_metadata"
* "dublin_data"
* "dublin_repair"
* "singapore_metadata"
* "singapore_data"
* "singapore_repair"


### Data Instances

[More Information Needed]

### Data Fields

[More Information Needed]

Some of the fields are configuration specific

* submission_id: a unique number identifying the submission
* user: a unique string identifying the (anonymized) student who submitted the solution
* date: the timestamp at which the grading server received the submission
* func_code: the cleaned code submitted
* func_name: the name of the function that had to be implemented
* assingment_id: the unique (string) identifier of the assignment that had to be completed
* academic_year: the starting year of the academic year (e.g. 2015 for the academic year 2015-2016)
* module: the course/module
* test: a human eval-style string which can be used to execute the submitted solution on the provided test cases
* Description: a description of what the function is supposed to achieve
* correct: whether the solution passed all tests or not


### Data Splits

#### Dublin

The Dublin dataset is split into a training and validation set. The training set contains the submissions to the assignments
written during the academic years 2015-2016, and 2016-2017, while the test set contains programs written during the academic year 2017-2018. 

#### Singapore

The Singapore dataset only contains a training split, which can be used as a test split for evaluating how your feedback
methods perform on an unseen dataset (if, for instance, you train your methods on the Dublin Dataset). 

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information


#### Dublin 

#### Singapore

The data was released under a [GNU Lesser General Public License v3.0](https://github.com/githubhuyang/refactory/blob/master/LICENSE) license


### Citation Information

```
@inproceedings{azcona2019user2code2vec,
  title={user2code2vec: Embeddings for Profiling Students Based on Distributional Representations of Source Code},
  author={Azcona, David and Arora, Piyush and Hsiao, I-Han and Smeaton, Alan},
  booktitle={Proceedings of the 9th International Learning Analytics & Knowledge Conference (LAK’19)},
  year={2019},
  organization={ACM}
}
@inproceedings{DBLP:conf/edm/CleuziouF21,
  author    = {Guillaume Cleuziou and
               Fr{\'{e}}d{\'{e}}ric Flouvat},
  editor    = {Sharon I{-}Han Hsiao and
               Shaghayegh (Sherry) Sahebi and
               Fran{\c{c}}ois Bouchet and
               Jill{-}J{\^{e}}nn Vie},
  title     = {Learning student program embeddings using abstract execution traces},
  booktitle = {Proceedings of the 14th International Conference on Educational Data
               Mining, {EDM} 2021, virtual, June 29 - July 2, 2021},
  publisher = {International Educational Data Mining Society},
  year      = {2021},
  timestamp = {Wed, 09 Mar 2022 16:47:22 +0100},
  biburl    = {https://dblp.org/rec/conf/edm/CleuziouF21.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

### Contributions

[More Information Needed]