Datasets:

File size: 9,735 Bytes
e86e346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab53d78
e86e346
 
 
 
 
 
 
 
 
 
ab53d78
e86e346
21c5a4b
e86e346
 
 
 
 
 
 
 
 
 
 
 
 
 
ab53d78
 
e86e346
ab53d78
 
 
 
e86e346
ab53d78
 
e86e346
ab53d78
 
 
 
 
e86e346
 
 
 
 
 
 
 
 
ab53d78
 
 
e86e346
 
 
 
ab53d78
 
 
e86e346
 
 
 
ab53d78
 
 
e86e346
 
 
 
 
ab53d78
 
 
 
 
 
 
 
 
 
 
e86e346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d85f643
e86e346
 
 
 
 
 
baa15a1
e86e346
 
 
 
 
 
 
baa15a1
e86e346
 
 
 
 
 
ab53d78
e86e346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab53d78
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""OntoLAMA Dataset Loading Script"""


import csv
import json
import os

import datasets


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{he2023language,
  title={Language Model Analysis for Ontology Subsumption Inference},
  author={He, Yuan and Chen, Jiaoyan and Jim{\'e}nez-Ruiz, Ernesto and Dong, Hang and Horrocks, Ian},
  journal={arXiv preprint arXiv:2302.06761},
  year={2023}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
OntoLAMA: LAnguage Model Analysis datasets for Ontology Subsumption Inference.
"""

_URL = lambda name: f"https://zenodo.org/record/7696383/files/{name}.zip?download=1"

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://krr-oxford.github.io/DeepOnto/"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "Apache License, Version 2.0"


# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class OntoLAMA(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.0.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="bimnli", version=VERSION, description="BiMNLI dataset created from the MNLI dataset."
        ),
        datasets.BuilderConfig(
            name="schemaorg-atomic-SI",
            version=VERSION,
            description="Atomic SI dataset created from the Schema.org Ontology.",
        ),
        datasets.BuilderConfig(
            name="doid-atomic-SI", version=VERSION, description="Atomic SI dataset created from the Disease Ontology."
        ),
        datasets.BuilderConfig(
            name="foodon-atomic-SI", version=VERSION, description="Atomic SI dataset created from the Food Ontology."
        ),
        datasets.BuilderConfig(
            name="go-atomic-SI", version=VERSION, description="Atomic SI dataset created from the Gene Ontology."
        ),
    ]

    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        if "atomic-SI" in self.config.name:  # This is the name of the configuration selected in BUILDER_CONFIGS above
            features = datasets.Features(
                {
                    "v_sub_concept": datasets.Value("string"),
                    "v_super_concept": datasets.Value("string"),
                    "label": datasets.ClassLabel(
                        num_classes=2, names=["negative_subsumption", "positive_subsumption"], names_file=None, id=None
                    ),
                    "axiom": datasets.Value("string"),
                    # These are the features of your dataset like images, labels ...
                }
            )
        elif (
            "complex-SI" in self.config.name
        ):  # This is an example to show how to have different features for "first_domain" and "second_domain"
            features = datasets.Features(
                {
                    "v_sub_concept": datasets.Value("string"),
                    "v_super_concept": datasets.Value("string"),
                    "label": datasets.ClassLabel(
                        num_classes=2, names=["negative_subsumption", "positive_subsumption"], names_file=None, id=None
                    ),
                    "axiom": datasets.Value("string"),
                    "anchor_axiom": datasets.Value("string")  # the equivalence axiom used as anchor
                    # These are the features of your dataset like images, labels ...
                }
            )
        elif self.config.name == "bimnli":
            features = datasets.Features(
                {
                    "premise": datasets.Value("string"),
                    "hypothesis": datasets.Value("string"),
                    "label": datasets.ClassLabel(
                        num_classes=2, names=["contradiction", "entailment"], names_file=None, id=None
                    ),
                }
            )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        urls = _URL(self.config.name)
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, self.config.name, "train.jsonl"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, self.config.name, "dev.jsonl"),
                    "split": "dev",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": os.path.join(data_dir, self.config.name, "test.jsonl"), "split": "test"},
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        with open(filepath, encoding="utf-8") as f:
            for key, row in enumerate(f):
                data = json.loads(row)
                if "atomic-SI" in self.config.name:
                    # Yields examples as (key, example) tuples
                    yield key, {
                        "v_sub_concept": data["v_sub_concept"],
                        "v_super_concept": data["v_super_concept"],
                        "label": data["label"],
                        "axiom": data["axiom"],
                    }
                elif "complex-SI" in self.config.name:
                    yield key, {
                        "v_sub_concept": data["v_sub_concept"],
                        "v_super_concept": data["v_super_concept"],
                        "label": data["label"],
                        "axiom": data["axiom"],
                        "anchor_axiom": data["anchor_axiom"],
                    }
                elif self.config.name == "bimnli":
                    yield key, {
                        "premise": data["premise"],
                        "hypothesis": data["hypothesis"],
                        "label": data["label"],
                    }