File size: 6,813 Bytes
fbf8c0c 5898e26 02b2a53 61daf69 2d931ea ade7051 ab53d78 dd2cf05 02b2a53 bcfd8d1 02b2a53 cea98e3 02b2a53 cea98e3 02b2a53 a679a0e 02b2a53 a679a0e 02b2a53 a679a0e 02b2a53 1676aca 02b2a53 bcfd8d1 02b2a53 2d931ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
---
license: apache-2.0
task_categories:
- text-classification
tags:
- Ontologies
- Subsumption Inference
- Natural Language Inference
pretty_name: OntoLAMA
size_categories:
- 1M<n<10M
language:
- en
dataset_info:
- config_name: schemaorg-atomic-SI
features:
- name: v_sub_concept
dtype: string
- name: v_super_concept
dtype: string
- name: label
dtype:
class_label:
names:
'0': negative_subsumption
'1': positive_subsumption
- name: axiom
dtype: string
splits:
- name: train
num_bytes: 103485
num_examples: 808
- name: validation
num_bytes: 51523
num_examples: 404
- name: test
num_bytes: 361200
num_examples: 2830
download_size: 82558
dataset_size: 516208
- config_name: doid-atomic-SI
features:
- name: v_sub_concept
dtype: string
- name: v_super_concept
dtype: string
- name: label
dtype:
class_label:
names:
'0': negative_subsumption
'1': positive_subsumption
- name: axiom
dtype: string
splits:
- name: train
num_bytes: 15803053
num_examples: 90500
- name: validation
num_bytes: 1978584
num_examples: 11312
- name: test
num_bytes: 1977582
num_examples: 11314
download_size: 3184028
dataset_size: 19759219
- config_name: foodon-atomic-SI
features:
- name: v_sub_concept
dtype: string
- name: v_super_concept
dtype: string
- name: label
dtype:
class_label:
names:
'0': negative_subsumption
'1': positive_subsumption
- name: axiom
dtype: string
splits:
- name: train
num_bytes: 128737404
num_examples: 768486
- name: validation
num_bytes: 16090857
num_examples: 96060
- name: test
num_bytes: 16098373
num_examples: 96062
download_size: 28499028
dataset_size: 160926634
- config_name: go-atomic-SI
features:
- name: v_sub_concept
dtype: string
- name: v_super_concept
dtype: string
- name: label
dtype:
class_label:
names:
'0': negative_subsumption
'1': positive_subsumption
- name: axiom
dtype: string
splits:
- name: train
num_bytes: 152537233
num_examples: 772870
- name: validation
num_bytes: 19060490
num_examples: 96608
- name: test
num_bytes: 19069265
num_examples: 96610
download_size: 32379717
dataset_size: 190666988
- config_name: bimnli
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': contradiction
'1': entailment
splits:
- name: train
num_bytes: 43363266
num_examples: 235622
- name: validation
num_bytes: 4818648
num_examples: 26180
- name: test
num_bytes: 2420273
num_examples: 12906
download_size: 19264134
dataset_size: 50602187
---
# OntoLAMA: LAnguage Model Analysis for Ontology Subsumption Inference
### Dataset Summary
OntoLAMA is a set of language model (LM) probing datasets for ontology subsumption inference.
The work follows the "LMs-as-KBs" literature but focuses on conceptualised knowledge extracted from formalised KBs such as the OWL ontologies.
Specifically, the subsumption inference (SI) task is introduced and formulated in the NLI style, where the sub-concept and the super-concept
involved in a subsumption axiom are verbalised and fitted into a template to form the premise and hypothesis, respectively. The SI task is
further divided into Atomic SI and Complex SI where the former involves only atomic named concepts and the latter involves complex concept
expressions restricted to OWL 2 EL. Real-world ontologies of different scales and domains are used for constructing OntoLAMA and in total
there are four Atomic SI datasets and two Complex SI datasets.
### Languages
The text in the dataset is in English, as used in the source ontologies. The associated BCP-47 code is `en`.
## Dataset Structure
### Data Instances
An example in the **Atomic SI** dataset created from the Gene Ontology (GO) is as follows:
```
{
'v_sub_concept': 'ctpase activity',
'v_super_concept': 'ribonucleoside triphosphate phosphatase activity',
'label': 1,
'axiom': 'SubClassOf(<http://purl.obolibrary.org/obo/GO_0043273> <http://purl.obolibrary.org/obo/GO_0017111>)'
}
```
An example in the **Complex SI** dataset created from the Food Ontology (FoodOn) is as follows:
```
{
'v_sub_concept': '...',
'v_super_concept': '...',
'label': 0,
'axiom': ...,
'anchor_axiom': ...,
}
```
An example in the **biMNLI** dataset created from the MNLI dataset is as follows:
```
{
'premise': 'At the turn of the 19th century Los Angeles and Salt Lake City were among the burgeoning metropolises of the new American West.',
'hypothesis': 'Salt Lake City was booming in the early 19th century.',
'label': 1
}
```
### Data Fields
#### SI Data Fields
- `v_sub_concept`: verbalised sub-concept expression.
- `v_super_concept`: verbalised super-concept expression.
- `label`: a binary class label indicating whether two concepts really form a subsumption relationship (`1` means yes).
- `axiom`: a string representation of the original subsumption axiom which is useful for tracing back to the ontology.
- `anchor_axiom`: (for complex SI only) a string representation of the anchor equivalence axiom used for sampling the `axiom`.
#### biMNLI Data Fields
- `premise`: inheritated from the MNLI dataset.
- `hypothesis`: inheritated from the MNLI dataset.
- `label`: a binary class label indicating `contradiction` (`0`) or `entailment` (`1`).
### Data Splits
| Source | #Concepts | #EquivAxioms | #Dataset (Train/Dev/Test) |
|--------|-----------|--------------|--------------------------------------------------------------------------|
| schema | 894 | - | Atomic SI: 808/404/2,830 |
| doid | 11,157 | - | Atomic SI: 90,500/11,312/11,314 |
| foodon | 30,995 | 2,383 | Atomic SI: 768,486/96,060/96,062 <br /> Complex SI: 1,256/628/4,042 |
| go | 43,303 | 11,456 | Atomic SI: 772,870/96,608/96,610 <br /> Complex SI: 38,708/4,838/4,840 |
| MNLI | - | - | biMNLI: 235,622/26,180/12,906 |
### Licensing Information
Apache License, Version 2.0
### Citation Information
```
@article{he2023language,
title={Language Model Analysis for Ontology Subsumption Inference},
author={He, Yuan and Chen, Jiaoyan and Jim{\'e}nez-Ruiz, Ernesto and Dong, Hang and Horrocks, Ian},
journal={arXiv preprint arXiv:2302.06761},
year={2023}
}
``` |