# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: Address all TODOs and remove all explanatory comments """OntoLAMA Dataset Loading Script""" import csv import json import os import datasets # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @article{he2023language, title={Language Model Analysis for Ontology Subsumption Inference}, author={He, Yuan and Chen, Jiaoyan and Jim{\'e}nez-Ruiz, Ernesto and Dong, Hang and Horrocks, Ian}, journal={arXiv preprint arXiv:2302.06761}, year={2023} } """ # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ OntoLAMA: LAnguage Model Analysis datasets for Ontology Subsumption Inference. """ _URL = lambda name: f"https://zenodo.org/record/7699244/files/{name}.zip?download=1" # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "https://krr-oxford.github.io/DeepOnto/" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "Apache License, Version 2.0" # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case class OntoLAMA(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("1.0.0") # This is an example of a dataset with multiple configurations. # If you don't want/need to define several sub-sets in your dataset, # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. # If you need to make complex sub-parts in the datasets with configurable options # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig # BUILDER_CONFIG_CLASS = MyBuilderConfig # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('my_dataset', 'first_domain') # data = datasets.load_dataset('my_dataset', 'second_domain') BUILDER_CONFIGS = [ datasets.BuilderConfig( name="bimnli", version=VERSION, description="BiMNLI dataset created from the MNLI dataset." ), datasets.BuilderConfig( name="schemaorg-atomic-SI", version=VERSION, description="Atomic SI dataset created from the Schema.org Ontology.", ), datasets.BuilderConfig( name="doid-atomic-SI", version=VERSION, description="Atomic SI dataset created from the Disease Ontology." ), datasets.BuilderConfig( name="foodon-atomic-SI", version=VERSION, description="Atomic SI dataset created from the Food Ontology." ), datasets.BuilderConfig( name="foodon-complex-SI", version=VERSION, description="Complex SI dataset created from the Gene Ontology." ), datasets.BuilderConfig( name="go-atomic-SI", version=VERSION, description="Atomic SI dataset created from the Gene Ontology." ), datasets.BuilderConfig( name="go-complex-SI", version=VERSION, description="Complex SI dataset created from the Gene Ontology." ), ] def _info(self): # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset if "atomic-SI" in self.config.name: # This is the name of the configuration selected in BUILDER_CONFIGS above features = datasets.Features( { "v_sub_concept": datasets.Value("string"), "v_super_concept": datasets.Value("string"), "label": datasets.ClassLabel( num_classes=2, names=["negative_subsumption", "positive_subsumption"], names_file=None, id=None ), "axiom": datasets.Value("string"), # These are the features of your dataset like images, labels ... } ) elif ( "complex-SI" in self.config.name ): # This is an example to show how to have different features for "first_domain" and "second_domain" features = datasets.Features( { "v_sub_concept": datasets.Value("string"), "v_super_concept": datasets.Value("string"), "label": datasets.ClassLabel( num_classes=2, names=["negative_subsumption", "positive_subsumption"], names_file=None, id=None ), "axiom": datasets.Value("string"), "anchor_axiom": datasets.Value("string") # the equivalence axiom used as anchor # These are the features of your dataset like images, labels ... } ) elif self.config.name == "bimnli": features = datasets.Features( { "premise": datasets.Value("string"), "hypothesis": datasets.Value("string"), "label": datasets.ClassLabel( num_classes=2, names=["contradiction", "entailment"], names_file=None, id=None ), } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive urls = _URL(self.config.name) data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, self.config.name, "train.jsonl"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, self.config.name, "dev.jsonl"), "split": "dev", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": os.path.join(data_dir, self.config.name, "test.jsonl"), "split": "test"}, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. with open(filepath, encoding="utf-8") as f: for key, row in enumerate(f): data = json.loads(row) if "atomic-SI" in self.config.name: # Yields examples as (key, example) tuples yield key, { "v_sub_concept": data["v_sub_concept"], "v_super_concept": data["v_super_concept"], "label": data["label"], "axiom": data["axiom"], } elif "complex-SI" in self.config.name: yield key, { "v_sub_concept": data["v_sub_concept"], "v_super_concept": data["v_super_concept"], "label": data["label"], "axiom": data["axiom"], "anchor_axiom": data["anchor_axiom"], } elif self.config.name == "bimnli": yield key, { "premise": data["premise"], "hypothesis": data["hypothesis"], "label": data["label"], }