Datasets:
Tasks:
Question Answering
Sub-tasks:
extractive-qa
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
File size: 9,405 Bytes
125e01a cf6b8fb 527ac5a a0c5756 cf6b8fb 4676410 cf6b8fb 6717a11 3f15acf 6717a11 125e01a dcb1272 125e01a dcb1272 125e01a dc63c15 125e01a cf6b8fb 125e01a 795bdc3 125e01a dc63c15 125e01a dcb1272 125e01a dc63c15 125e01a dc63c15 125e01a dc63c15 125e01a 795bdc3 125e01a 795bdc3 125e01a dc63c15 125e01a dcb1272 125e01a dc63c15 125e01a dc63c15 125e01a dc63c15 125e01a dcb1272 125e01a dc63c15 125e01a dcb1272 125e01a dc63c15 125e01a dc63c15 125e01a dc63c15 125e01a dc63c15 125e01a dc63c15 125e01a dc63c15 125e01a dc63c15 125e01a dc63c15 125e01a dc63c15 125e01a cf6b8fb 125e01a cf6b8fb 125e01a 6717a11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
---
annotations_creators:
- found
language:
- en
language_creators:
- found
license:
- unknown
multilinguality:
- monolingual
pretty_name: SearchQA
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- extractive-qa
paperswithcode_id: searchqa
dataset_info:
- config_name: raw_jeopardy
features:
- name: category
dtype: string
- name: air_date
dtype: string
- name: question
dtype: string
- name: value
dtype: string
- name: answer
dtype: string
- name: round
dtype: string
- name: show_number
dtype: int32
- name: search_results
sequence:
- name: urls
dtype: string
- name: snippets
dtype: string
- name: titles
dtype: string
- name: related_links
dtype: string
splits:
- name: train
num_bytes: 7770972348
num_examples: 216757
download_size: 3314386157
dataset_size: 7770972348
- config_name: train_test_val
features:
- name: category
dtype: string
- name: air_date
dtype: string
- name: question
dtype: string
- name: value
dtype: string
- name: answer
dtype: string
- name: round
dtype: string
- name: show_number
dtype: int32
- name: search_results
sequence:
- name: urls
dtype: string
- name: snippets
dtype: string
- name: titles
dtype: string
- name: related_links
dtype: string
splits:
- name: train
num_bytes: 5303005740
num_examples: 151295
- name: test
num_bytes: 1466749978
num_examples: 43228
- name: validation
num_bytes: 740962715
num_examples: 21613
download_size: 3148550732
dataset_size: 7510718433
---
# Dataset Card for "search_qa"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** https://github.com/nyu-dl/dl4ir-searchQA
- **Paper:** [SearchQA: A New Q&A Dataset Augmented with Context from a Search Engine](https://arxiv.org/abs/1704.05179)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 6.46 GB
- **Size of the generated dataset:** 15.28 GB
- **Total amount of disk used:** 21.74 GB
### Dataset Summary
We publicly release a new large-scale dataset, called SearchQA, for machine comprehension, or question-answering. Unlike recently released datasets, such as DeepMind
CNN/DailyMail and SQuAD, the proposed SearchQA was constructed to reflect a full pipeline of general question-answering. That is, we start not from an existing article
and generate a question-answer pair, but start from an existing question-answer pair, crawled from J! Archive, and augment it with text snippets retrieved by Google.
Following this approach, we built SearchQA, which consists of more than 140k question-answer pairs with each pair having 49.6 snippets on average. Each question-answer-context
tuple of the SearchQA comes with additional meta-data such as the snippet's URL, which we believe will be valuable resources for future research. We conduct human evaluation
as well as test two baseline methods, one simple word selection and the other deep learning based, on the SearchQA. We show that there is a meaningful gap between the human
and machine performances. This suggests that the proposed dataset could well serve as a benchmark for question-answering.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### raw_jeopardy
- **Size of downloaded dataset files:** 3.31 GB
- **Size of the generated dataset:** 7.77 GB
- **Total amount of disk used:** 11.09 GB
An example of 'train' looks as follows.
```
```
#### train_test_val
- **Size of downloaded dataset files:** 3.15 GB
- **Size of the generated dataset:** 7.51 GB
- **Total amount of disk used:** 10.66 GB
An example of 'validation' looks as follows.
```
```
### Data Fields
The data fields are the same among all splits.
#### raw_jeopardy
- `category`: a `string` feature.
- `air_date`: a `string` feature.
- `question`: a `string` feature.
- `value`: a `string` feature.
- `answer`: a `string` feature.
- `round`: a `string` feature.
- `show_number`: a `int32` feature.
- `search_results`: a dictionary feature containing:
- `urls`: a `string` feature.
- `snippets`: a `string` feature.
- `titles`: a `string` feature.
- `related_links`: a `string` feature.
#### train_test_val
- `category`: a `string` feature.
- `air_date`: a `string` feature.
- `question`: a `string` feature.
- `value`: a `string` feature.
- `answer`: a `string` feature.
- `round`: a `string` feature.
- `show_number`: a `int32` feature.
- `search_results`: a dictionary feature containing:
- `urls`: a `string` feature.
- `snippets`: a `string` feature.
- `titles`: a `string` feature.
- `related_links`: a `string` feature.
### Data Splits
#### raw_jeopardy
| |train |
|------------|-----:|
|raw_jeopardy|216757|
#### train_test_val
| |train |validation|test |
|--------------|-----:|---------:|----:|
|train_test_val|151295| 21613|43228|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@article{DBLP:journals/corr/DunnSHGCC17,
author = {Matthew Dunn and
Levent Sagun and
Mike Higgins and
V. Ugur G{"{u}}ney and
Volkan Cirik and
Kyunghyun Cho},
title = {SearchQA: {A} New Q{\&}A Dataset Augmented with Context from a
Search Engine},
journal = {CoRR},
volume = {abs/1704.05179},
year = {2017},
url = {http://arxiv.org/abs/1704.05179},
archivePrefix = {arXiv},
eprint = {1704.05179},
timestamp = {Mon, 13 Aug 2018 16:47:09 +0200},
biburl = {https://dblp.org/rec/journals/corr/DunnSHGCC17.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
Thanks to [@lewtun](https://github.com/lewtun), [@mariamabarham](https://github.com/mariamabarham), [@lhoestq](https://github.com/lhoestq), [@thomwolf](https://github.com/thomwolf) for adding this dataset. |