|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
from PIL import Image |
|
import numpy as np |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@article{Jaume2019FUNSDAD, |
|
title={FUNSD: A Dataset for Form Understanding in Noisy Scanned Documents}, |
|
author={Guillaume Jaume and H. K. Ekenel and J. Thiran}, |
|
journal={2019 International Conference on Document Analysis and Recognition Workshops (ICDARW)}, |
|
year={2019}, |
|
volume={2}, |
|
pages={1-6} |
|
} |
|
""" |
|
_DESCRIPTION = """\ |
|
https://guillaumejaume.github.io/FUNSD/ |
|
""" |
|
|
|
def load_image(image_path): |
|
image = Image.open(image_path).convert("RGB") |
|
w, h = image.size |
|
return image, (w, h) |
|
|
|
def normalize_bbox(bbox, size): |
|
return [ |
|
int(1000 * bbox[0] / size[0]), |
|
int(1000 * bbox[1] / size[1]), |
|
int(1000 * bbox[2] / size[0]), |
|
int(1000 * bbox[3] / size[1]), |
|
] |
|
|
|
class FunsdConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for FUNSD""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for FUNSD. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(FunsdConfig, self).__init__(**kwargs) |
|
|
|
class Funsd(datasets.GeneratorBasedBuilder): |
|
"""FUNSD dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
FunsdConfig(name="funsd", version=datasets.Version("1.0.0"), description="FUNSD dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"words": datasets.Sequence(datasets.Value("string")), |
|
"bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=["header", "name", "initial", "range", "price", "other"] |
|
) |
|
), |
|
"image_path": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://guillaumejaume.github.io/FUNSD/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
downloaded_file = dl_manager.download_and_extract("https://filebin.net/haec8sl3m9a0muop/PPOCR_SER.zip") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"filepath": f"{downloaded_file}/PPOCR_SER/training_data/"} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"filepath": f"{downloaded_file}/PPOCR_SER/testing_data/"} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
ann_dir = os.path.join(filepath, "annotations") |
|
img_dir = os.path.join(filepath, "images") |
|
for guid, file in enumerate(sorted(os.listdir(ann_dir))): |
|
words = [] |
|
bboxes = [] |
|
ner_tags = [] |
|
file_path = os.path.join(ann_dir, file) |
|
with open(file_path, "r", encoding="utf8") as f: |
|
data = json.load(f) |
|
image_path = os.path.join(img_dir, file) |
|
image_path = image_path.replace("json", "png") |
|
image, size = load_image(image_path) |
|
for item in data["form"]: |
|
words_example, label = item["words"], item["label"] |
|
words_example = [w for w in words_example if w["text"].strip() != ""] |
|
if len(words_example) == 0: |
|
continue |
|
if label == "other": |
|
for w in words_example: |
|
words.append(w["text"]) |
|
ner_tags.append("O") |
|
bboxes.append(normalize_bbox(w["box"], size)) |
|
else: |
|
words.append(words_example[0]["text"]) |
|
ner_tags.append("B-" + label.upper()) |
|
bboxes.append(normalize_bbox(words_example[0]["box"], size)) |
|
for w in words_example[1:]: |
|
words.append(w["text"]) |
|
ner_tags.append("I-" + label.upper()) |
|
bboxes.append(normalize_bbox(w["box"], size)) |
|
yield guid, {"id": str(guid), "words": words, "bboxes": bboxes, "ner_tags": ner_tags, "image_path": image_path} |