# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# TODO: Address all TODOs and remove all explanatory comments | |
"""TODO: Add a description here.""" | |
import csv | |
import json | |
import jsonlines | |
import os | |
import datasets | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@inproceedings{Zhu2023FIREBALL, | |
title={{FIREBALL: A Dataset of Dungeons and Dragons Actual-Play with Structured Game State Information}}, | |
author={Zhu, Andrew and Aggarwal, Karmanya and Feng, Alexander and Martin, Lara J. and Callison-Burch, Chris}, | |
year={2023}, | |
booktitle={Annual Meeting of the Association for Computational Linguistics (ACL)}, | |
month={7}, | |
url={https://aclanthology.org/2023.acl-long.229/}, | |
address={Toronto, Canada}, | |
pages={4171--4193}, | |
publisher={ACL}, | |
doi={10.18653/v1/2023.acl-long.229} | |
} | |
""" | |
_DESCRIPTION = """\ | |
FIREBALL Dungeons & Dragons data with narrative and Avrae scripting commands. | |
""" | |
_HOMEPAGE = "https://github.com/zhudotexe/FIREBALL" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "cc-by-4.0" | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLS = { | |
"FIREBALL": "https://huggingface.co/datasets/lara-martin/FIREBALL/tree/main/" | |
} | |
class Fireball(datasets.GeneratorBasedBuilder): | |
"""TODO: Short description of my dataset.""" | |
VERSION = datasets.Version("1.0.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="FIREBALL", version=VERSION), | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
# "speaker_id": datasets.Value('int64'), | |
"before_utterances": datasets.Sequence(datasets.Value('string')), | |
# 'combat_state_before': datasets.Sequence( | |
# { | |
# 'name': datasets.Value(dtype='string'), | |
# 'hp': datasets.Value(dtype='string'), | |
# 'class': datasets.Value(dtype='string'), | |
# 'race': datasets.Value(dtype='string'), | |
# 'attacks': datasets.Value(dtype='string'), | |
# 'spells': datasets.Value(dtype='string'), | |
# 'actions': datasets.Value(dtype='string'), | |
# 'effects': datasets.Value(dtype='string'), | |
# 'description': datasets.Value(dtype='string'), | |
# 'controller_id': datasets.Value(dtype='string') | |
# } | |
# ), #list of dictionaries | |
# 'current_actor': { | |
# 'name': datasets.Value(dtype='string'), | |
# 'hp': datasets.Value(dtype='string'), | |
# 'class': datasets.Value(dtype='string'), | |
# 'race': datasets.Value(dtype='string'), | |
# 'attacks': datasets.Value(dtype='string'), | |
# 'spells': datasets.Value(dtype='string'), | |
# 'actions': datasets.Value(dtype='string'), | |
# 'effects': datasets.Value(dtype='string'), | |
# 'description': datasets.Value(dtype='string'), | |
# 'controller_id': datasets.Value(dtype='string') | |
# }, #dictionary | |
# 'commands_norm': datasets.value('string'), | |
# 'automation_results': datasets.value('string'), | |
# 'caster_after': { | |
# 'name': datasets.Value(dtype='string'), | |
# 'hp': datasets.Value(dtype='string'), | |
# 'class': datasets.Value(dtype='string'), | |
# 'race': datasets.Value(dtype='string'), | |
# 'attacks': datasets.Value(dtype='string'), | |
# 'spells': datasets.Value(dtype='string'), | |
# 'actions': datasets.Value(dtype='string'), | |
# 'effects': datasets.Value(dtype='string'), | |
# 'description': datasets.Value(dtype='string'), | |
# 'controller_id': datasets.Value(dtype='string') | |
# }, #dictionary | |
# 'targets_after': datasets.Sequence( | |
# { | |
# 'name': datasets.Value(dtype='string'), | |
# 'hp': datasets.Value(dtype='string'), | |
# 'class': datasets.Value(dtype='string'), | |
# 'race': datasets.Value(dtype='string'), | |
# 'attacks': datasets.Value(dtype='string'), | |
# 'spells': datasets.Value(dtype='string'), | |
# 'actions': datasets.Value(dtype='string'), | |
# 'effects': datasets.Value(dtype='string'), | |
# 'description': datasets.Value(dtype='string'), | |
# 'controller_id': datasets.Value(dtype='string') | |
# } | |
# ), #list of dictionaries | |
# 'combat_state_after': datasets.Sequence( | |
# { | |
# 'name': datasets.Value(dtype='string'), | |
# 'hp': datasets.Value(dtype='string'), | |
# 'class': datasets.Value(dtype='string'), | |
# 'race': datasets.Value(dtype='string'), | |
# 'attacks': datasets.Value(dtype='string'), | |
# 'spells': datasets.Value(dtype='string'), | |
# 'actions': datasets.Value(dtype='string'), | |
# 'effects': datasets.Value(dtype='string'), | |
# 'description': datasets.Value(dtype='string'), | |
# 'controller_id': datasets.Value(dtype='string') | |
# } | |
# ), #list of dictionaries | |
# 'after_utterances': datasets.Sequence(datasets.Value('string')), | |
# 'utterance_history': datasets.Sequence(datasets.Value('string')), | |
# 'before_idxs': datasets.Sequence(datasets.Value('int16')), | |
# 'before_state_idx': datasets.Value('int16'), | |
# 'command_idxs': datasets.Sequence(datasets.Value('int16')), | |
# 'after_state_idx': datasets.Value('int16'), | |
# 'after_idxs': datasets.Sequence(datasets.Value('int16')), | |
# 'embed_idxs': datasets.Sequence(datasets.Value('int16')) | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# based off of OSCAR - https://huggingface.co/datasets/oscar/blob/main/oscar.py | |
url = _URLS[self.config.name] | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
#data_dir = dl_manager.download_and_extract(urls) | |
file_list = dl_manager.download(url+"files.txt") | |
with open(file_list) as f: | |
data_filenames = [line.strip() for line in f if line] | |
data_urls = dl_manager.download([url+"filtered/"+data_filename for data_filename in data_filenames]) | |
downloaded_files = dl_manager.download(data_urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files | |
}, | |
), | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath): | |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
key = 0 | |
for file in filepath: | |
with jsonlines.open(file) as f: | |
for data in f: | |
# Yields examples as (key, example) tuples | |
yield key, { | |
# "speaker_id": data["speaker_id"], | |
"before_utterances": data["before_utterances"], | |
# 'combat_state_before': data['combat_state_before'], | |
# 'current_actor': data["current_actor"], | |
# 'commands_norm': data['commands_norm'], | |
# 'automation_results': data['automation_results'], | |
# 'caster_after': data['caster_after'], | |
# 'targets_after': data['targets_after'], | |
# 'combat_state_after': data['combat_state_after'], | |
# 'after_utterances': data['after_utterances'], | |
# 'utterance_history': data['utterance_history'], | |
# 'before_idxs': data['before_idxs'], | |
# 'before_state_idx': data['before_state_idx'], | |
# 'command_idxs': data['command_idxs'], | |
# 'after_state_idx': data['after_state_idx'], | |
# 'after_idxs': data['after_idxs'], | |
# 'embed_idxs': data['embed_idxs'] | |
} | |
key+=1 | |