Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
File size: 13,678 Bytes
a76ff36 a96f259 a76ff36 a96f259 f6881ad a76ff36 07c0879 a76ff36 07c0879 df1f78d b396d4e 008b447 a76ff36 07c0879 a76ff36 008b447 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- intent-classification
- multi-class-classification
paperswithcode_id: null
pretty_name: BANKING77
train-eval-index:
- config: default
task: text-classification
task_id: multi_class_classification
splits:
train_split: train
eval_split: test
col_mapping:
text: text
label: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 macro
args:
average: macro
- type: f1
name: F1 micro
args:
average: micro
- type: f1
name: F1 weighted
args:
average: weighted
- type: precision
name: Precision macro
args:
average: macro
- type: precision
name: Precision micro
args:
average: micro
- type: precision
name: Precision weighted
args:
average: weighted
- type: recall
name: Recall macro
args:
average: macro
- type: recall
name: Recall micro
args:
average: micro
- type: recall
name: Recall weighted
args:
average: weighted
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: activate_my_card
1: age_limit
2: apple_pay_or_google_pay
3: atm_support
4: automatic_top_up
5: balance_not_updated_after_bank_transfer
6: balance_not_updated_after_cheque_or_cash_deposit
7: beneficiary_not_allowed
8: cancel_transfer
9: card_about_to_expire
10: card_acceptance
11: card_arrival
12: card_delivery_estimate
13: card_linking
14: card_not_working
15: card_payment_fee_charged
16: card_payment_not_recognised
17: card_payment_wrong_exchange_rate
18: card_swallowed
19: cash_withdrawal_charge
20: cash_withdrawal_not_recognised
21: change_pin
22: compromised_card
23: contactless_not_working
24: country_support
25: declined_card_payment
26: declined_cash_withdrawal
27: declined_transfer
28: direct_debit_payment_not_recognised
29: disposable_card_limits
30: edit_personal_details
31: exchange_charge
32: exchange_rate
33: exchange_via_app
34: extra_charge_on_statement
35: failed_transfer
36: fiat_currency_support
37: get_disposable_virtual_card
38: get_physical_card
39: getting_spare_card
40: getting_virtual_card
41: lost_or_stolen_card
42: lost_or_stolen_phone
43: order_physical_card
44: passcode_forgotten
45: pending_card_payment
46: pending_cash_withdrawal
47: pending_top_up
48: pending_transfer
49: pin_blocked
50: receiving_money
51: Refund_not_showing_up
52: request_refund
53: reverted_card_payment?
54: supported_cards_and_currencies
55: terminate_account
56: top_up_by_bank_transfer_charge
57: top_up_by_card_charge
58: top_up_by_cash_or_cheque
59: top_up_failed
60: top_up_limits
61: top_up_reverted
62: topping_up_by_card
63: transaction_charged_twice
64: transfer_fee_charged
65: transfer_into_account
66: transfer_not_received_by_recipient
67: transfer_timing
68: unable_to_verify_identity
69: verify_my_identity
70: verify_source_of_funds
71: verify_top_up
72: virtual_card_not_working
73: visa_or_mastercard
74: why_verify_identity
75: wrong_amount_of_cash_received
76: wrong_exchange_rate_for_cash_withdrawal
splits:
- name: test
num_bytes: 204014
num_examples: 3080
- name: train
num_bytes: 715036
num_examples: 10003
download_size: 1079034
dataset_size: 919050
---
# Dataset Card for BANKING77
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Github](https://github.com/PolyAI-LDN/task-specific-datasets)
- **Repository:** [Github](https://github.com/PolyAI-LDN/task-specific-datasets)
- **Paper:** [ArXiv](https://arxiv.org/abs/2003.04807)
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
Dataset composed of online banking queries annotated with their corresponding intents.
BANKING77 dataset provides a very fine-grained set of intents in a banking domain.
It comprises 13,083 customer service queries labeled with 77 intents.
It focuses on fine-grained single-domain intent detection.
### Supported Tasks and Leaderboards
Intent classification, intent detection
### Languages
English
## Dataset Structure
### Data Instances
An example of 'train' looks as follows:
```
{
'label': 11, # integer label corresponding to "card_arrival" intent
'text': 'I am still waiting on my card?'
}
```
### Data Fields
- `text`: a string feature.
- `label`: One of classification labels (0-76) corresponding to unique intents.
Intent names are mapped to `label` in the following way:
| label | intent (category) |
|---:|:-------------------------------------------------|
| 0 | activate_my_card |
| 1 | age_limit |
| 2 | apple_pay_or_google_pay |
| 3 | atm_support |
| 4 | automatic_top_up |
| 5 | balance_not_updated_after_bank_transfer |
| 6 | balance_not_updated_after_cheque_or_cash_deposit |
| 7 | beneficiary_not_allowed |
| 8 | cancel_transfer |
| 9 | card_about_to_expire |
| 10 | card_acceptance |
| 11 | card_arrival |
| 12 | card_delivery_estimate |
| 13 | card_linking |
| 14 | card_not_working |
| 15 | card_payment_fee_charged |
| 16 | card_payment_not_recognised |
| 17 | card_payment_wrong_exchange_rate |
| 18 | card_swallowed |
| 19 | cash_withdrawal_charge |
| 20 | cash_withdrawal_not_recognised |
| 21 | change_pin |
| 22 | compromised_card |
| 23 | contactless_not_working |
| 24 | country_support |
| 25 | declined_card_payment |
| 26 | declined_cash_withdrawal |
| 27 | declined_transfer |
| 28 | direct_debit_payment_not_recognised |
| 29 | disposable_card_limits |
| 30 | edit_personal_details |
| 31 | exchange_charge |
| 32 | exchange_rate |
| 33 | exchange_via_app |
| 34 | extra_charge_on_statement |
| 35 | failed_transfer |
| 36 | fiat_currency_support |
| 37 | get_disposable_virtual_card |
| 38 | get_physical_card |
| 39 | getting_spare_card |
| 40 | getting_virtual_card |
| 41 | lost_or_stolen_card |
| 42 | lost_or_stolen_phone |
| 43 | order_physical_card |
| 44 | passcode_forgotten |
| 45 | pending_card_payment |
| 46 | pending_cash_withdrawal |
| 47 | pending_top_up |
| 48 | pending_transfer |
| 49 | pin_blocked |
| 50 | receiving_money |
| 51 | Refund_not_showing_up |
| 52 | request_refund |
| 53 | reverted_card_payment? |
| 54 | supported_cards_and_currencies |
| 55 | terminate_account |
| 56 | top_up_by_bank_transfer_charge |
| 57 | top_up_by_card_charge |
| 58 | top_up_by_cash_or_cheque |
| 59 | top_up_failed |
| 60 | top_up_limits |
| 61 | top_up_reverted |
| 62 | topping_up_by_card |
| 63 | transaction_charged_twice |
| 64 | transfer_fee_charged |
| 65 | transfer_into_account |
| 66 | transfer_not_received_by_recipient |
| 67 | transfer_timing |
| 68 | unable_to_verify_identity |
| 69 | verify_my_identity |
| 70 | verify_source_of_funds |
| 71 | verify_top_up |
| 72 | virtual_card_not_working |
| 73 | visa_or_mastercard |
| 74 | why_verify_identity |
| 75 | wrong_amount_of_cash_received |
| 76 | wrong_exchange_rate_for_cash_withdrawal |
### Data Splits
| Dataset statistics | Train | Test |
| --- | --- | --- |
| Number of examples | 10 003 | 3 080 |
| Average character length | 59.5 | 54.2 |
| Number of intents | 77 | 77 |
| Number of domains | 1 | 1 |
## Dataset Creation
### Curation Rationale
Previous intent detection datasets such as Web Apps, Ask Ubuntu, the Chatbot Corpus or SNIPS are limited to small number of classes (<10), which oversimplifies the intent detection task and does not emulate the true environment of commercial systems. Although there exist large scale *multi-domain* datasets ([HWU64](https://github.com/xliuhw/NLU-Evaluation-Data) and [CLINC150](https://github.com/clinc/oos-eval)), the examples per each domain may not sufficiently capture the full complexity of each domain as encountered "in the wild". This dataset tries to fill the gap and provides a very fine-grained set of intents in a *single-domain* i.e. **banking**. Its focus on fine-grained single-domain intent detection makes it complementary to the other two multi-domain datasets.
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
The dataset does not contain any additional annotations.
#### Who are the annotators?
[N/A]
### Personal and Sensitive Information
[N/A]
## Considerations for Using the Data
### Social Impact of Dataset
The purpose of this dataset it to help develop better intent detection systems.
Any comprehensive intent detection evaluation should involve both coarser-grained multi-domain datasets and a fine-grained single-domain dataset such as BANKING77.
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[PolyAI](https://github.com/PolyAI-LDN)
### Licensing Information
Creative Commons Attribution 4.0 International
### Citation Information
```
@inproceedings{Casanueva2020,
author = {I{\~{n}}igo Casanueva and Tadas Temcinas and Daniela Gerz and Matthew Henderson and Ivan Vulic},
title = {Efficient Intent Detection with Dual Sentence Encoders},
year = {2020},
month = {mar},
note = {Data available at https://github.com/PolyAI-LDN/task-specific-datasets},
url = {https://arxiv.org/abs/2003.04807},
booktitle = {Proceedings of the 2nd Workshop on NLP for ConvAI - ACL 2020}
}
```
### Contributions
Thanks to [@dkajtoch](https://github.com/dkajtoch) for adding this dataset. |