Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 7,305 Bytes
a76ff36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee59b4
a76ff36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee59b4
a76ff36
 
 
 
 
 
 
 
 
 
 
 
aa0d9bf
a76ff36
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BANKING77 dataset."""


import csv

import datasets
from datasets.tasks import TextClassification


_CITATION = """\
@inproceedings{Casanueva2020,
    author      = {I{\~{n}}igo Casanueva and Tadas Temcinas and Daniela Gerz and Matthew Henderson and Ivan Vulic},
    title       = {Efficient Intent Detection with Dual Sentence Encoders},
    year        = {2020},
    month       = {mar},
    note        = {Data available at https://github.com/PolyAI-LDN/task-specific-datasets},
    url         = {https://arxiv.org/abs/2003.04807},
    booktitle   = {Proceedings of the 2nd Workshop on NLP for ConvAI - ACL 2020}
}
"""  # noqa: W605

_DESCRIPTION = """\
BANKING77 dataset provides a very fine-grained set of intents in a banking domain.
It comprises 13,083 customer service queries labeled with 77 intents.
It focuses on fine-grained single-domain intent detection.
"""

_HOMEPAGE = "https://github.com/PolyAI-LDN/task-specific-datasets"

_LICENSE = "Creative Commons Attribution 4.0 International"

_TRAIN_DOWNLOAD_URL = (
    "https://raw.githubusercontent.com/PolyAI-LDN/task-specific-datasets/master/banking_data/train.csv"
)
_TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/PolyAI-LDN/task-specific-datasets/master/banking_data/test.csv"


class Banking77(datasets.GeneratorBasedBuilder):
    """BANKING77 dataset."""

    VERSION = datasets.Version("1.1.0")

    def _info(self):
        features = datasets.Features(
            {
                "text": datasets.Value("string"),
                "label": datasets.features.ClassLabel(
                    names=[
                        "activate_my_card",
                        "age_limit",
                        "apple_pay_or_google_pay",
                        "atm_support",
                        "automatic_top_up",
                        "balance_not_updated_after_bank_transfer",
                        "balance_not_updated_after_cheque_or_cash_deposit",
                        "beneficiary_not_allowed",
                        "cancel_transfer",
                        "card_about_to_expire",
                        "card_acceptance",
                        "card_arrival",
                        "card_delivery_estimate",
                        "card_linking",
                        "card_not_working",
                        "card_payment_fee_charged",
                        "card_payment_not_recognised",
                        "card_payment_wrong_exchange_rate",
                        "card_swallowed",
                        "cash_withdrawal_charge",
                        "cash_withdrawal_not_recognised",
                        "change_pin",
                        "compromised_card",
                        "contactless_not_working",
                        "country_support",
                        "declined_card_payment",
                        "declined_cash_withdrawal",
                        "declined_transfer",
                        "direct_debit_payment_not_recognised",
                        "disposable_card_limits",
                        "edit_personal_details",
                        "exchange_charge",
                        "exchange_rate",
                        "exchange_via_app",
                        "extra_charge_on_statement",
                        "failed_transfer",
                        "fiat_currency_support",
                        "get_disposable_virtual_card",
                        "get_physical_card",
                        "getting_spare_card",
                        "getting_virtual_card",
                        "lost_or_stolen_card",
                        "lost_or_stolen_phone",
                        "order_physical_card",
                        "passcode_forgotten",
                        "pending_card_payment",
                        "pending_cash_withdrawal",
                        "pending_top_up",
                        "pending_transfer",
                        "pin_blocked",
                        "receiving_money",
                        "Refund_not_showing_up",
                        "request_refund",
                        "reverted_card_payment?",
                        "supported_cards_and_currencies",
                        "terminate_account",
                        "top_up_by_bank_transfer_charge",
                        "top_up_by_card_charge",
                        "top_up_by_cash_or_cheque",
                        "top_up_failed",
                        "top_up_limits",
                        "top_up_reverted",
                        "topping_up_by_card",
                        "transaction_charged_twice",
                        "transfer_fee_charged",
                        "transfer_into_account",
                        "transfer_not_received_by_recipient",
                        "transfer_timing",
                        "unable_to_verify_identity",
                        "verify_my_identity",
                        "verify_source_of_funds",
                        "verify_top_up",
                        "virtual_card_not_working",
                        "visa_or_mastercard",
                        "why_verify_identity",
                        "wrong_amount_of_cash_received",
                        "wrong_exchange_rate_for_cash_withdrawal",
                    ]
                ),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
            task_templates=[TextClassification(text_column="text", label_column="label")],
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
        test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
        ]

    def _generate_examples(self, filepath):
        """Yields examples as (key, example) tuples."""
        with open(filepath, encoding="utf-8") as f:
            csv_reader = csv.reader(f, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True)
            # call next to skip header
            next(csv_reader)
            for id_, row in enumerate(csv_reader):
                text, label = row
                yield id_, {"text": text, "label": label}