Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
hate-speech-detection
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Automated Hate Speech Detection and the Problem of Offensive Language.""" | |
import csv | |
import os | |
import datasets | |
_CITATION = """ | |
@article{article, | |
author = {Davidson, Thomas and Warmsley, Dana and Macy, Michael and Weber, Ingmar}, | |
year = {2017}, | |
month = {03}, | |
pages = {}, | |
title = {Automated Hate Speech Detection and the Problem of Offensive Language} | |
} | |
""" | |
_DESCRIPTION = "This dataset contains annotated tweets for automated hate-speech recognition" | |
_HOMEPAGE = "https://arxiv.org/abs/1905.12516" | |
_LICENSE = "MIT License" | |
_URLs = "https://github.com/t-davidson/hate-speech-and-offensive-language/raw/master/data/labeled_data.csv" | |
class HateOffensive(datasets.GeneratorBasedBuilder): | |
"""Automated Hate Speech Detection and the Problem of Offensive Language""" | |
VERSION = datasets.Version("1.1.0") | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"total_annotation_count": datasets.Value("int32"), | |
"hate_speech_annotations": datasets.Value("int32"), | |
"offensive_language_annotations": datasets.Value("int32"), | |
"neither_annotations": datasets.Value("int32"), | |
"label": datasets.ClassLabel(names=["hate-speech", "offensive-language", "neither"]), | |
"tweet": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=("tweet", "label"), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
data_dir = dl_manager.download_and_extract(_URLs) | |
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir)})] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as csv_file: | |
csv_reader = csv.reader( | |
csv_file, lineterminator="\n", delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True | |
) | |
next(csv_reader, None) | |
for id_, row in enumerate(csv_reader): | |
yield id_, { | |
"total_annotation_count": row[1], | |
"hate_speech_annotations": row[2], | |
"offensive_language_annotations": row[3], | |
"neither_annotations": row[4], | |
"label": int(row[5]), | |
"tweet": str(row[6]), | |
} | |