{ "pythonClassName": "tensorflow_datasets.core.features.features_dict.FeaturesDict", "featuresDict": { "features": { "steps": { "pythonClassName": "tensorflow_datasets.core.features.dataset_feature.Dataset", "sequence": { "feature": { "pythonClassName": "tensorflow_datasets.core.features.features_dict.FeaturesDict", "featuresDict": { "features": { "observation": { "pythonClassName": "tensorflow_datasets.core.features.features_dict.FeaturesDict", "featuresDict": { "features": { "image": { "pythonClassName": "tensorflow_datasets.core.features.image_feature.Image", "image": { "shape": { "dimensions": [ "240", "320", "3" ] }, "dtype": "uint8", "encodingFormat": "jpeg" }, "description": "Main camera RGB observation." }, "image1": { "pythonClassName": "tensorflow_datasets.core.features.image_feature.Image", "image": { "shape": { "dimensions": [ "240", "320", "3" ] }, "dtype": "uint8", "encodingFormat": "jpeg" }, "description": "Main camera RGB observation." }, "image2": { "pythonClassName": "tensorflow_datasets.core.features.image_feature.Image", "image": { "shape": { "dimensions": [ "240", "320", "3" ] }, "dtype": "uint8", "encodingFormat": "jpeg" }, "description": "Main camera RGB observation." }, "state": { "pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor", "tensor": { "shape": { "dimensions": [ "5" ] }, "dtype": "float32", "encoding": "none" }, "description": "Robot state, consists of eef position, wristorientation, and gripper state[e_x, e_y, e_z, theta, gripper]." } } } }, "reward": { "pythonClassName": "tensorflow_datasets.core.features.scalar.Scalar", "tensor": { "shape": {}, "dtype": "float32", "encoding": "none" }, "description": "Reward if provided, 0 for all random data." }, "is_first": { "pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor", "tensor": { "shape": {}, "dtype": "bool", "encoding": "none" } }, "is_terminal": { "pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor", "tensor": { "shape": {}, "dtype": "bool", "encoding": "none" } }, "action": { "pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor", "tensor": { "shape": { "dimensions": [ "5" ] }, "dtype": "float32", "encoding": "none" }, "description": "Robot action, consists of [3x eef delta, 1x wrist rotation, 1x gripper width target]." }, "discount": { "pythonClassName": "tensorflow_datasets.core.features.scalar.Scalar", "tensor": { "shape": {}, "dtype": "float32", "encoding": "none" }, "description": "Discount if provided, default to 1." }, "language_embedding": { "pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor", "tensor": { "shape": { "dimensions": [ "512" ] }, "dtype": "float32", "encoding": "none" }, "description": "Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5" }, "is_last": { "pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor", "tensor": { "shape": {}, "dtype": "bool", "encoding": "none" } }, "language_instruction": { "pythonClassName": "tensorflow_datasets.core.features.text_feature.Text", "text": {}, "description": "Language Instruction." } } } }, "length": "-1" } }, "episode_metadata": { "pythonClassName": "tensorflow_datasets.core.features.features_dict.FeaturesDict", "featuresDict": { "features": { "file_path": { "pythonClassName": "tensorflow_datasets.core.features.text_feature.Text", "text": {}, "description": "Path to the original data file." }, "robot": { "pythonClassName": "tensorflow_datasets.core.features.text_feature.Text", "text": {}, "description": "Robot model used during data collection." } } } } } } }